Tools and Verification

Massimo Bartoletti!, Luis Caires?, Ivan Lanese?, Franco Mazzanti*, Davide
Sangiorgi®, Hugo T. Vieira?, Roberto Zunino®

! Dipartimento di Matematica e Informatica, Universita degli Studi di Cagliari, Italy
2 CITI and Dept. de Informatica, FCT, Universidade Nova de Lisboa, Portugal
3 Dipartimento di Scienze dell’Informazione, Universitd di Bologna, Italy
* ISTI-CNR, Pisa, Italy
® Dipartimento di Ingegneria e Scienza dell’Informazione, Universita di Trento, Italy

Abstract. This chapter presents different tools that have been devel-
oped inside the SENSORIA project. SENSORIA studied qualitative analysis
techniques for verifying properties of service implementations with re-
spect to their formal specifications. The tools presented in this chapter
have been developed to carry out the analysis in an automated, or semi-
automated, way.

We present four different tools, all developed during the SENSORIA pro-
ject exploiting new techniques and calculi from the SENSORIA project
itself.

1 Introduction

This chapter presents a set of tools that have been developed inside the SENSORIA
project for analysis and verification of service oriented systems. The tools allow
the application of novel analysis techniques for service oriented systems that
have been studied inside the project. Those tools are (partly) based on calculi
and models described in Chapter 2-1. Also, they have been validated by applying
them to the SENSORIA case studies (described in Chapter 0-2), as illustrated in
Chapter 7-4 for the COWS Model Checker (CMC). This experimentation has
provided useful feedback for improving the tools themselves.

We describe four different tools in detail, all developed within the SENSORIA
project and based on new techniques and calculi introduced in the project itself.
While referring to the next sections and to the publications in the bibliography
for a more detailed description of the tools and of the underlying theory, we give
here a short outline of each of them.

CMC and UMC model checkers: CMC (COWS Model Checker) and UMC
(UML Model Checker) are two prototypical instantiations of a common log-
ical verification framework for the analysis of functional properties of service
oriented systems. Both tools have the goal of model-checking properties spec-
ified in Socl (the Service Oriented Computing Logic), and they differ just
for the underlying computational models, which are built out from COWS
(see Chapter 2-1) specifications in the case of CMC, and UML statecharts

in the case of UMC. In both cases, the specifications are mapped onto Dou-
bly Labeled Transition Systems, in which transitions are labeled by sets of
observable events. The on-the-fly model checking technique is used to avoid
state space explosion. In this chapter we describe the tools themselves, while
the underlying logic and the algorithms exploited by them have been de-
scribed in Chapter 4-2.

ChorSLMC: ChorSLMC (Choreography Spatial Logic Model Checker) is a
verification tool for service-based systems implemented as an extension to
SLMC, a framework for model checking distributed systems against proper-
ties expressible in dynamic spatial logic. Descriptions of participants may be
specified either in the Conversation Calculus [VCS08] (see also Chapter 2-1),
a core calculus for service oriented computing developed within the SEN-
SORIA project, or in a fragment of WS-BPEL [A106], while choreographic
descriptions may be specified in an abstract version of WS-CDL [WCDO06].
The tool may also be used on service-based systems to check other interest-
ing properties of typical distributed systems, using the core dynamic-spatial
logic available in SLMC.

LocUsT: the LocUsT tool is a model checker for usages, abstract descriptions of
the behavior of services. Usages are expressed in a simple process calculus.
They over-approximate all the possible execution traces of a service, focusing
on resource creation and access. Usage policies are then used to express
constraints on the use of resources, by identifying the forbidden patterns.
A policy is represented through a finite state automaton parametrized over
resources. LocUsT takes as input a usage and a policy, and decides whether
a trace of the usage that violates some instantiation of the policy exists.

The CMC and UMC tools are strongly related, just differing on the format
of the description of the model of the system to be analyzed, and concentrate on
verifying behavioral properties expressed in Socl logic. ChorSLMC also concen-
trates on behavioral properties, but they are verified by checking conformance
to a choreography description. LocUsT instead tackles a different problem, con-
centrating more on the security aspects, and allowing to check that resources
are used according to a specified policy.

2 CMC-UMC Verification of Service-Oriented Models

CMC (COWS Model Checker) and UMC (UML Model Checker) [tMG09,Maz06)
are two prototypical instantiations of a common logical verification framework
for the verification of functional properties of service oriented systems. They
differ just for the underlying computational models which are built out from
COWS [LPT07a,LPTQ7b] specifications in the case of CMC, and out from UML
[Uni] statecharts in the case of UMC. For verification of service oriented models
we do not intend just the final “validation” step of a completed architecture
design, but rather a formal support during all the steps of the incremental design
phase (hence when running designs are still likely to be incomplete and with

high probability to contain mistakes). Indeed CMC/UMC have been developed
having in mind the needs of a system designer which intends to take advantage
of formal approaches to achieve an early validation of the system requirements
and an early detection of design errors. From this point of view the design of
CMC/UMC has been driven by the desire to achieve the following goals (or, at
least, to experiment in the following directions):

— The support of a good user experience (easiness of use) in the computer-aided
application of formal methods.

— The support of abstraction mechanisms allowing to observe the system at
an high level of abstraction, hiding all the irrelevant and unnecessary com-
putational details.

— The possibility to explore step by step the possible system evolutions and the
possibility to generate a “summary” of system behavior in terms of minimal
abstract traces.

— The possibility to investigate detailed and complex system properties using a
parametric branching time temporal logic supported by an on-the-fly model
checker.

— The possibility of obtaining an understandable explanation of the model-
checking results.

In the following we will briefly present the achieved results with respect to
the above five points.

User experience Several kinds of user interfaces have been experimented in the
attempt to make possible the access to verification facilities also by non technical
people. This without losing the possibility to tune and control the verification
environment in a more advanced way. In particular:

— CMC/UMC are accessible as web applications to allow their experimentation
and use without any kind of local installation, and exploiting the friendliness
and flexibility of hypertextual documents to support the interactions with
the user.

— CMC/UMC are usable with a simple, platform independent, java-based,
graphical interface to achieve offline model exploration and verification.

— CMC/UMC are available as binary, platform-specific, command line oriented
applications (for Mac, Windows, Linux and Sun systems) to exploit the
simplest, most efficient, and finest level of interaction and control of the
system verification and exploration.

— Models can be edited as simple textual documents.

— UML Statechart models can also be edited through a dedicated graphical
interface.

— UML Statechart models can be extracted from standard UML XMI docu-
ments.

Abstraction Mechanisms In our context, services are considered as entities
which have some kind of abstract internal state and which are capable of support-
ing abstract interactions with their clients, like for example accepting requests,
delivering corresponding responses and, on-demand, canceling requests. More-
over, concrete operational models, with a specific concrete operational semantics,
are used to describe the details of the system states and their possible evolution
steps. This means that an abstraction mechanism needs to be applied to the sys-
tem state description and to the system evolution information. This mechanism
allows to extract from the operational semantics of the specific computational
model the relevant aspects we want to observe. In our tools this abstraction step
is achieved via a list of pattern matching rules which allow to specify which
state properties and which transition events we want to observe. These rules are
presented as structured actions of the form “mainlabel(flag,flag,..)”. When this
abstraction step is performed, the semantic model of a service oriented system
can be seen as a doubly labeled transitions system (L27T'S), where both the states
and the edges are labeled with sets of the above described structured actions.
This abstract L2T'S induced by the operational semantics of the system will con-
stitute the reference structure used by the logic as interpretation domain and
by the full-trace minimization algorithm to generate and display the abstract
minimized views of the system.

CMC is the instantiation of our verification framework with respect to the
COWS process calculus. COWS ha been explicitly defined for the specifica-
tion and orchestration of services and combines in an original way constructs
and well known features like asynchronous communication, polyadic synchro-
nization, pattern matching, protection, delimited receiving and killing activities.
The abstraction rules of CMC allow to “intercept” the communication actions
occurring between two COWS processes and present them as request/response
events in the context of some client-server interaction. The corresponding ab-
stract labels will therefore appear on the edges of the L2T'S as they represent the
abstract events occurred during an evolution step. The CMC abstraction rules
moreover allow to observe the willingness of a COWS term to participate to a
communication synchronization (e.g., its willingness to perform the input side of
the synchronization) and present it as a state property reflecting the willingness
of a service to accept operation requests. In this case this abstract property will
appear as an abstract label associated to some states of the L2T'S.

UMC is instead the instantiation of our verification framework with respect to
UML statecharts. These have a standard presentation and semantics as defined
by the OMG (Object Management Group). The communication events which
can be observed in this case are based on the notion of message passing. Indeed,
we can distinguish the event of sending an operation request (on the client side)
from the event of accepting that request (on the server side). Moreover UML
statecharts are built over the concept of local attribute of objects, and during
the execution of a system transition (beyond multiple communication actions)
several updates of the local object attributes can be executed. The abstraction
rules of UMC allow to observe all these events (acceptance of a message, sending

he System Classes are: Car Garagé TowTruck RentalCar Bank
he Active System Objects are: carl:Car bank1:Bank garl:Garage gar2:Garage tow1:TowTruck
ow2:TowTruck rentl:RentalCar rent2:RentalCar

he Path from The Initial Configuration to Configuration C10 is:
—>C2 /*..%

--> C3 {request(road_assistance)} /* ... ¥/

->C4 /* ..M

--> C6 {request(bankcharge)} /* ... ¥/

=>C7 [* ... %

[Commands Memu' |

w Model ...

—>C10 /*..%
Edit Current Model
Explore the Model he Current Configuration is [Jll _(show details ...)

he Abstract State Labels of Configuration C10 are:

_ accepting_request(bankcharge), accepting_revoke(bankcharge)

he Possible Evolutions From Configuration C10 are:
Minimize (FullTrace)) C10 C15 %
) => {} " /* bank1:car1.chargeResponseOK(bankopID);
Welcome G116 40) /2 8/ cu:=carl */

C17 { response(bankcharge) } /* .. *7

i 4 C18 { fail(bankcharge) } /* ... */
i

Result

Fig. 1. UMC manual model exploration page

of an event, update of a local attribute) as abstract events representing relevant
aspects of the service oriented behavior of the system, and represent them as
abstract labels associated to the L2T'S edges. Other abstraction rules of UMC
allow instead to observe the specific value of selected object attributes, and
whether or not an object is in a specific state, and present this information as
abstract state predicates labeling the states of the L?T'S.

Step by Step Exploration The first and simpler way to explore a CMC/UMC
model is to manually navigate through its L2TS structure, observing at each
step the set of possible immediate evolutions, the set of abstract events occurring
during these evolutions, the set of abstract properties holding in the current state
and, if desired, also all the ground details of the underlying computational model
with respect to the current state structure and evolutions. The web application
interface (shown in Figure 1), thanks to the use of tooltips, colors and hyperlinks,
makes this exploration experience more immediate.

Abstract Minimized Traces The possibility of selecting a small set of abstract
events of interest and, starting from them, compute and observe the minimized
full-trace abstract view of the system is an extremely powerful way of checking
whether the system behavior matches the intended requirements. This works
even in the case in which the requirements themselves are not fully clear or well
formalized. Let us consider, for example, the automotive case study described

in Chapter 0-2. This is formalized as a collection of UMC statecharts, which is
a model constituted by several hundreds of states. Suppose we are interested in
observing only the “bank” related events and the “garage” related events. Using
the appropriate abstractions and using UMC to build the minimized model with
respect to them we obtain the L2T'S shown in Figure 2, which summarizes all the
possible system traces with respect to the observed set of events. It is extremely
easy to become confident of the correctness of the model just looking at the
L2TS, without being forced to identify a priori a complete set of requirements
and formalize them in terms of logic formulas for being separately model checked.
Unfortunately the abstract minimization approach to system verification has also
some drawbacks:

— It is computationally expensive: for very large models it might be too much
resource consuming to compute its abstract, minimal full-trace view.

— If the L?2TS is not finite, it is not even a matter of available computing
resources. Building the abstraction is not possible.

— The abstract view completely lost the connection with the original “con-
crete” computational model. If the system behavior is not the expected one,
no immediate way is available to reconstruct unexpected computations in
the concrete model.

— If the resulting chart is rather complex relying on just the intuition to assess
its correctness is unreliable and lacking of concrete formal evidence.

Socl Model Checking To overcome the drawbacks of the previous approach,
as well as to directly formalize and check specific functional / safety / liveness
requirements of a system, a verification technique based on on-the-fly, bounded
model checking of Socl formulas is considered. This approach also permits to
reduce the average verification time and, at the same time, performing some
verification also in the case of non finite-state systems. Socl [FGL*+08] is a service
oriented temporal logic derived from UCTL [tBFGMO08,GM05,GM04]. We recall
here its most important characteristics:

— It is a branching time logic, built over the classical intuitive “eventually”
(F), “always” (G), “until” (U), “next” (X) temporal operators. The evalu-
ation of this logic is known [BCG95] to be achievable with a computational
complexity which is linear with respect to the size of the formula and the
size of the model.

— It is an event and state based logic. Being its interpretation domain our
abstract state/event based L2T'S structures, Socl allows to directly express
state predicates to be evaluated over the abstract labels associated to the
states of the L2T'S, and action expressions to be evaluated over the abstract
labels associated to the edges of the L2T'S.

— It is a parametric temporal logic, in which the values of the arguments of
an abstract event occurring during a transition can be used to dynamically
instantiate a parametric subformula to be evaluated in the target state of
the transition itself.

P

{request(bankcharge,car1)}
\
{ response(bankcharge,carl)}
{fail(bankcharge,carl)}

{request(garage,car1)}
{ revoke(bankcharge,car1)}

{ response(garage,car1)}
{fail(garage,carl)}

. #final
{revoke(bankcharge,carl)} {revoke(garagecarl)}

@

#final

Fig. 2. An abstract view of the automotive case study

Socl is supported in CMC /UMC by an on-the-fly model checking algorithm
which generates the model statespace on demand according to the flow of the
evaluation. The UCTL formula is evaluated adopting a top-down traversal of
the structure of the formula itself minimizing the need of the model statespace
generation (which is explored in a depth-first way); a bounded [BCCZ99] model
checking approach is also used to try to produce an evaluation result even in the
case of infinite state models.

The Socl verification engine is exactly the same in both CMC and UMC
since it is based on the abstract L2T'S computed from the models, and not on
the specific concrete computational models defined by input model specification
languages. In the following we show some examples of Socl formulas, just to give
an intuition of its structure, referring to [FGL108] for the details of its definition
and for its formal presentation. These examples are written with respect to the
same abstraction rules used to generate the abstract minimized traces shown
in Figure 2. With respect to the above scenario we can check, for example,
that: “It is always true (AG) that an unsuccessful response from the garage to
a client is always eventually (AF) followed by a revoke operation to the bank,
on behalf of the same client”. This property can be formalized in Socl (following
the CMC/UMC syntax) as:

AG [fail(garage, $client)] AF{revoke(bankcharge,jclient)} true.

javascript:top.displayconf('C1')
javascript:top.displayconf('C2')
javascript:top.displayconf('C7')
javascript:top.displayconf('C3')
javascript:top.displayconf('C4')
javascript:top.displayconf('C6')
javascript:top.displayconf('C5')
javascript:top.displayconf('C8')

Another general property that we can check with respect to the same scenario is
that: “It is always true (AG) that a request for an operation is always followed
(AF) either by a successful response to that operation or by a failure notification” .
In this case the property can be formalized as:

AG [request($operation,$client)]
AF {response(operation,’%client)
or fail (Yoperation,’client)}.

Proofs and counterexamples It is well known that providing a counterex-
ample for a given temporal logic formula is quite easy in the case of linear time
logics and quite complex in the case of branching time logics. The problems to be
solved for the generation of useful proofs/counterexamples are essentially three:

— The proof/counterexample is not (in general) based on a single execution
path of the system, but may be based on a subgraph of the L2T'S modeling
the system.

— Not all the L?T'S states needed by the proof/counterexample are in general
“useful” from the point of view of the user.

— The information on the set of L2T'S states needed by the proof/counter-
example is sometimes not sufficient to produce usable feedback to the user.
We might need to provide feedback also on which subformula was being
evaluated when the L2T'S states have been explored.

Let us consider, for example a simple formula of the kind: “(AG predicatel) or
(AG predicate2)”. If this formula does not hold, its counterexample has the form
of a pair of paths, one leading to a state in which predicate! does not hold, and
another leading to a state in which predicate2 does not hold.

Let us consider, moreover, the formula: “EF predicate”. If this formula does
not hold, its counterexample would coincide with the full system statespace,
however it would be completely pointless to provide the user with an exhaustive
list of all the states for which the predicate does not hold. On the contrary, if the
formula holds the user might be interested in the sequence of steps which would
prove it.

Let us consider, as third example, the formula “EF AG predicate”. If the
formula holds for a certain system, the user might be interested in the proof for
the first part of the formula, showing an execution path which, starting from
the initial state would lead to an intermediate state for which the subformula
“AG predicate” holds; once identified that intermediate state all the other states
reachable from it belonging to the proof of the subformula ” AG predicate” would
probably add only irrelevant noise and complexity to the original information.
The “useful” part of the proof, would be constituted by a fragment of the full
proof. CMC/UMC tries to convey to user what is supposed to be the “useful”
part of a proof or counterexample, but only more experience might consolidate
the identification of the “best” reasonable behavior.

Application to the case studies The design and development of the pro-
totypes has greatly taken advantage from the early experiences gained through
their application to the SENSORIA case studies. The first of these applications has
been the use of UMC for the analysis of communication protocols for service-
oriented applications [tBFGMO08,tGMMO06]. Subsequently the SENSORIA auto-
motive case study has been the stimulus for the first experimentations with the
Socl logic and the COWS language [FGL108]. The same case study has also
been specified in terms of UML statecharts and verified with UMC [tGKMO08],
thus experimenting with the SENSORIA UML profile for SOA [KMH* MSKO08].
Finally both COWS/CMC and UML/UMC have been applied for the formal-
ization and verification of the SENSORIA Credit Portal case study (see Chapter
0-2).

3 Model-checking Service Conversations with ChorSLMC

A service based system is a decentralized coordinated distributed system, where
independent partners interact by message passing. It is then useful to consider
the extension of automated verification techniques, based on model-checking,
to service-oriented models, able to certify the general “standard properties” of
concurrent distributed systems, such as reachability, termination, liveness, race-
freedom, just to refer a few. We may also be interested in domain specific in-
variants. This class of properties is easily expressible in some kind of temporal
logic. Adding to these, it is well known that to describe interactions among part-
ners in a service relationship two viewpoints are considered particularly useful:
orchestration and choreography.

“Orchestration” focuses on the coordination of several partners from the local
viewpoint of a single participant, for the purpose of providing a new functionality
or service to the external world, “Choreography” describes the global behavior of
a system that emerges from the interaction of several independent participants.
An orchestration can be seen as the description of a workflow process, with its
own control flow graph, while a choreography, just like a message sequence chart,
describes the message exchanges between a group of partners involved in a com-
plex transaction. Orchestration specification languages are programming lan-
guages, with a definite operational semantics (cf. WS-BPEL [AT06] and various
service oriented calculi described in Chapter 2-1), while choreography languages
(cf. WS-CDL [WCDO06] and the calculus of [CHY07]) define global behaviors of
composite systems “without a single point of control”, and are not intended to
be “executable”. Therefore, in addition to common behavioral-temporal prop-
erties, an important analysis problem in service-oriented computing is to check
conformance of local descriptions (orchestrations) with respect to choreographies
(cf. [CHY™06,BZ07]). Specifying (and checking) conformance of localized process
interactions against choreographies requires a specification language able to talk
about the internal spatial structure of a concurrent system, and its dynamic
evolution. Such expressiveness falls out of the scope of extensional behavioral
logics such as Hennessy-Milner logic and variants (and supporting tools).

We have developed a fairly simple, yet powerful, technique, building on dy-
namic spatial logics and model-checking [CC03,Cai04], particularly appropriate
for this class of analysis problems. We have also implemented a supporting tool
ChorSLMC, which is an extension of SLMC, a dynamic-spatial logic model-
checker. The tool may be used to check not only choreography conformance, but
many other other key properties of service-oriented systems, such as race-freedom
and deadlock absence, and system invariants, that may be easily expressed in
the underlying logical framework.

Approach Our approach to the choreographic analysis problem relies on lan-
guage translations, and on the reuse of previously developed model-checking
techniques for spatial logic and related tools. More concretely, we have developed
provably correct encodings, allowing local descriptions of partner sites, expressed
in a service-oriented calculus, to be adequately translated into a lower level anal-
ysis language (a dialect of the w-calculus), and global descriptions (choreogra-
phies), to be adequately translated into dynamic spatial logic formulas. The
correctness of our translation ensures that a system System, expressed in the
core Conversation Calculus [VCS08] (described in Chapter 2-1 and referred be-
low by CC) or, alternatively, in a simple dialect of WS-BPEL, conforms to a
choreography Choreography, expressed in a WS-CDL dialect, if and only if its
m-calculus translation satisfies the corresponding dynamic spatial logic formula.

[System] = [Choreography]

The correctness of the translation between the source language (either CC
or WS-BPEL) is obtained by observing that for model-checking purposes, we
don’t really need full abstraction but just some suitable operational correspon-
dence. The encoding of choreographies in the logic is supported by the struc-
tural observational power of spatial logics, that allow observation of internal
message exchanges, unobservable by purely behavioral logics such as those sup-
ported by other existing model checking tools. Choreography conformance of
service-oriented systems is then reduced to a model-checking problem that may
be easily handled by existing tools, namely the Spatial Logic Model Checker
(SLMC) [VCV05,VCV] (started to be developed in Global Computing 1 Project
Profundis, and extended during Global Computing 2 Project SENSORIA). The
structural observation power of spatial logics turns out to be essential in this
application to choreographic verification, since, e.g., the message exchanges men-
tioned in a choreographic description are not observable by traditional process
logics invariant under behavioral equivalences. Thus, general process logics and
tools that cannot observe internal message exchanges in a system would not
be appropriate for the service verification problem we consider here. Both local
descriptions of services, expressed in suitable orchestration languages, and the
global choreographic descriptions, expressed in a WS-CDL dialect, are translated
by ChorSLMC into 7r-calculus / dynamic spatial logic specifications, respectively,
which are directly fed to the SLMC verification engine.

Input Specification Languages The ChorSLMC tool supports two modeling
languages for defining the behavior of partners in a service collaboration: a core
fragment of the Conversation Calculus, obtained by removing exception handling
primitives, and a fragment of WS-BPEL. The specification syntax is depicted
below, and includes the basic constructors presented in Chapter 2-1. Both the
CC model and the WS-BPEL model are detailed in [VCS09].

a = LABEL!(3) (send here)
| LABEL?(i) (receive here)
| LABEL™!(0) (send up)
| LABEL™?(i) (receive up)

P :=end (inaction)
| contextn {P} (site)
| P (action)
| switch {a1.Pi;...;04.P} (select)
| def LABEL = P (service definition)
| newn.LABEL < P (service instantiation)
| joinn.LABEL < P (conversation join)
| PP (parallel)
| Id (process identifier)
| if (bool expr) then P; else P, (conditional)

To describe choreographies, a fairly simplified version of the WS-CDL lan-
guage is also considered, defined as an extension of the dynamic spatial logic
available in SLMC with specialized choreography operators as shown below. In
such a way, it is possible to freely mix choreography operators with propositional
and first order name quantification, spatial operators and fixpoint operators.
The choreography fragment is close to the languages of global types introduced
by [CHY07,HYC08], and is also processed directly by the ChorSLMC tool.

A ::=-end (no action)
| exchange(n, LABEL, A) (may interaction in conversation n)
| exchanges(n, LABEL, arg, A) (may interaction in conversation n)
| aexchange(n, LABEL, A) (all interaction in conversation n)
| aexchanges(n, LABEL, arg, A) (all interaction in conversation n)
| parallel(A’, A") (parallel activities)
| choice(A’, A") (choice)
| F (spatial logic formulae)

The language contains constructs to express parallel / choice flow and prim-
itives to express message exchanges: exchange(n, LABEL, A) asserts that there
is a message interaction on label LABEL between two partners in conversation
n and A specifies the behavior of the continuation; exchanges(n, LABEL, arg, A)
specifies an extra argument arg which captures the conversation name exchanged
in the communication; aexchange(n, LABEL, A) asserts that after all interactions
on label LABEL in conversation n the continuation satisfies behavior A. We re-
fer to [VCSQ9] for a detailed explanation of our orchestration and choreography

[Client] [Bank] [FinanocPortal] [Clerk J [Manager)

CreditRequest
i i g e [S R TR T 1 ReviewApp
logp | =0 @ |eeeeeeace-d
login
request
RatcCalc
izttt il AuthCredit
userData il dhadieded iy
login
ratc Value
approved " requestEval
show
den
denicd z
pass }branch
ks requestApp
show
accept
d
AT reject }bfanch
denicd

Fig. 3. Credit Request Message Sequence Chart

description language semantics, and the formal specification of their translation
into the m-calculus and logic understood by the SLMC framework.

Simple Examples We now illustrate the usage of the specification languages
and of our tool. Consider the credit request scenario from the SENSORIA Finan-
cial Case Study described in Chapter 0-2, whose choreographic specification may
be graphically depicted by the message sequence chart in Figure 3. We specify
the part of the choreography related to the interaction between the client, the
finance portal and the bank as follows, using the basic choreographic language
for CC systems (actually the input syntax for ChorSLMC).

defprop clientInteraction =
maxfix Loop.
hidden clientConv.
exchanges (financePortal, creditRequest, clientConv,
exchange (clientConv, login,
exchange (clientConv, request,
exchanges(bank, rateCalc, clientConv,
exchange (clientConv, userData,
exchange (clientConv, rateValue,
choice(
exchange (clientConv, approved, exchange(client,approved,Loop)),
may_tau(clerkInteraction(clientConv,Loop)))))))))));

Notice that the exchange specification may be used not only to specify “reg-
ular” message exchanges, but also conversation initiation (creditRequest) and
conversation join (rateCalc) messages (see [CV09]). The behavior of each part-

ner / role is then specified using the appropriate modeling language. We show
the code for the creditRequest service definition:

defproc cc FinancePortalSpecl =
context financePortal {
def creditRequest => (
login?(uid) .request?(data).
join bank.rateCalc <= (
userData! (data) .rateValue?(rate) .
if (rate=aaa) then approved!().end
else this(clientChat).
requestEval~!(clientChat,uid,data).end))};

We specify the whole system as the composition of the roles of the finance
portal, bank, client, clerk and manager. Also we specify that clientInteraction is
the entry point of the global choreography.

defproc cc System = FinancePortalSpecl | BankSpec | BankSpec2
| ClientSpec | FinancePortalSpec2 | ClerkSpec
| FinancePortalSpec3 | ManagerSpec;

defprop chor = clientInteraction;

After all definitions have been loaded into the ChorSLMC tool we may verify
that the CC credit request system conforms to the prescribed choreography.

check System(up,here) |= chor;
Processing...
* Process System(up,here) satisfies the formula chor *

Notice that the tool may be used to automatically verify (for finite state
models) not only choreographic conformance of composite service systems, but
also common safety and liveness properties, such as invariant satisfaction, race
and deadlock absence. For example:

check System(up,here) |= eventually(exchange(bank,rateCalc,true));
Processing...

* Process System(up,here) satisfies the formula

eventually (exchange(bank,rateCalc,true)) *

To conclude, the ChorSLMC tool provides a very flexible and powerful in-
strument to analyze general structural safety and liveness properties of service-
oriented systems, expressed in languages which are familiar to software engineers,
while building in solid process calculi and specification logic based foundations.

4 The LocUsT Tool

A fundamental concern of service-oriented applications is to ensure that re-
sources are used correctly. Devising expressive, flexible and efficient mechanisms
to control resource usages is therefore a major issue in the design and implemen-
tation of languages for services. In [BDFZ09], a comprehensive framework has

been proposed for safely protecting code with usage policies, within a linguis-
tic setting. Resource usage control is made feasible by suitably extending and
integrating techniques from type theory and model-checking.

The LocUsT tool is the verification core of our framework. It takes as input
a usage policy and a program abstraction (called a usage), and statically checks
whether the abstraction complies with the policy. More precisely, LocUsT decides
in polynomial time whether some trace of the given usage that violates some
instantiation of the policy exists [BDFZ0S].

Usage policies Usage policies define safety properties on sequences of resource
accesses and creations. We will define below our usage policies, and the compli-
ance of a trace with a policy. First, we introduce some basic notions.

Resources are denoted with r, 7/, ... € Res, and they can be accessed through
actions a,a’,... € Act. An event a(r1,...,7) € Ev models the action a (with
arity |a| = k) being fired on the target resources ry,...,7;. The special ac-
tion new represents the creation of a resource. Traces n,7',... € Ev* are finite
sequences of events.

Usage policies are an extension of finite state automata. Their edges have
the form a(p), where p € (ResU Var)l®l. We use final states to represent policy
violations: a trace leading to a final state suffices to produce a violation. Two
examples of usage policies are in Figure 4.

Formally, a usage policy ¢ is a 5-tuple (S, @, qo, F, E), where:

S C Act x (ResU Var)* is the input alphabet,

@ is a finite set of states,

go € @\ F is the start state,

F C (@ is the set of final “offending” states,)

E C @ xS xQ is a finite set of edges, written ¢ 22 q

Each usage policy ¢ denotes a set of traces, i.e. the traces that obey .
The semantics of ¢ considers all the possible instantiations of its variables to
actual resources: a trace 1 respects ¢ when 75 leads no instantiations of ¢ (on
the resources in 77) to an offending state.

Usage policies were first introduced in [BDF05b], where a block of code B
could be sandboxed by a policy ¢, so to require that ¢ must hold through the
execution of B. The definition of policies has since then been revised several
times, so to make them more expressive. In the original formulation, policies
could only inspect sequences of actions, neglecting resources. In [BDFZ07] poli-
cies can be parametrized over a single resource, and resources can be dynamically
created; [BDFZ08] deals with the general case of an arbitrary number of param-
eters.

Examples Consider a Web application that allows for editing documents, stor-
ing them on a remote site, and sharing them with other users. The editor is
implemented as an applet run by a local browser. The user can tag any of her

documents as private. To avoid direct information flows, the policy requires that
private files cannot be sent to the server in plain text, yet they can be sent
encrypted. This policy is modeled by ¢ (z) below. After having tagged the file
z as private (edge from g¢p to ¢1), if was to be sent to the server (edge from
¢1 t0 ¢2), then the policy would be violated: the double circle around g, marks
it as an offending state. Instead, if x is encrypted (edge from ¢; to g3), then x
can be freely transmitted: indeed, the absence of paths from g5 to an offending
state indicates that once state g3 is reached, the policy will not be violated on
file . A further policy is applied to our editor, to avoid information flow due to
covert channels. It requires that, after reading a private file, any other file must
be encrypted before it can be transmitted. This is modeled by pcc(z,y) below.
A violation occurs if after some private file z is read (path from g to ¢3), then
some other file y is sent (edge from ¢} to the offending state q}).

private(z)

read(z)

G
®

Fig. 4. The information flow policy ¢ir(z) and the covert channels policy ¢cc(z, y)

Here is how the policies ¢ir(z) and @cc(z,y) are expressed in the LocUsT syn-
tax. The field tagged name defines the name of the policy. The remaining fields
describe the logic of the automaton. The tag states is for the set of states,
start is for the initial state, and final is for the list of the final (offending)
states. The tag trans preludes to the transition relation of the automaton.

name: phi_IF name: phi_CC

states: q0 q1 q2 q3 states: q0 ql q2 q3 q4

start: q0 start: q0

final: q2 final: q4

trans: trans:

q0 -- private(x) --> ql q0 -- private(x) --> ql
ql -- encrypt(x) --> q3 ql -- read(x) --> q2
ql -- send(x) --> g2 q2 -- send(y) --> q4

q2 -- encrypt(y) --> q3

Usages Usages are program abstractions, expressed in a simple process calculus.
They over-approximate all the patterns of resource accesses and creations of the
service itself. Formally, usages have the following syntax:

U,U0 =0 empty

a(p) event (p € Resl®)
nu n.U resource creation
uvg.w sequence

U+ choice

pl[Uu] policy framing
mu h.U recursion

h recursion variable

The usage 0 represents a computation not affecting resources. The usage a(p)
is for a computation that executes the action « on the resources mentioned in p.
The usage nu n.U represents the creation of a resource n, which can then be used
in U with the requirement that the first action on n must be a new(n) event.
The operators . and + denote sequentialization and non-deterministic choice of
usages, respectively. The usage ¢[U] represents the fact that the policy ¢ has
to be enforced on the usage U. The usage mu h.U stands for a recursion; the
recursion variable h may occur in U.

For instance, consider the following usage:
phi_IF[nu n. new(n).private(n).(send(n)+encrypt(n))]

This usage will be rejected by the LocUsT model-checker, because a send (n)
may occur in a trace after a private(n), so violating the policy yir.

The following usage will instead pass the model-checking, because the action
send is not fired on a private document.

phi_IF[nu n. nu f. new(n).new(f).private(n).read(n).send(f)]

The following usage is rejected by the model-checker, because it violates the
policy ¢cc. Note in fact that a file £ is sent unencrypted after the private file n
has been read.

phi_CC[nu n. nu f. new(n).new(f).private(n).read(n).send(f)]
The following trace is detected to attempt a violation of the policy pcc.-

nu n. new(n).private(n).nu f. new(f).
(mu h. phi_CC[send(f)] + read(n) . h)

After having read the private file n an arbitrary number of times, it may
activate the policy pc¢, within which sending the unencrypted file f is no longer
permitted.

Finally, the following usage passes the model-checking, since the file £ can
only be sent after it has been encrypted:

nu n. new(n).private(n) .nu f. new(f).
(mu h. phi_CC[send(f) . h] + read(n) . encrypt(f) . h)

Service call-by-contract So far, we have shown how LocUsT can verify that an
abstraction of the service behavior does not violate a given policy. This technique
can serve as a foundation for a service composition framework, where services
are orchestrated according to their behavioral properties.

In our framework, each service publishes the abstraction of its behavior (i.e.
its usage) in a repository. Then, a client can ask for a service that respects
a given property (expressed as a usage policy). This is done by querying the
repository with that usage policy. Upon such request, the repository matches
the given policy against the usages of the registered services. This task can
be accomplished by the LocUsT tool. When LocUsT finds that the property
requested by the client matches the usage of a service, the name of that service
is forwarded to the client, which can then invoke the service using standard
mechanisms.

Summing up, our technique allows for defining a call-by-contract invocation
mechanism, which allows clients to abstract from the actual service names, and
just consider the properties these services have to offer.

The theory underlying our call-by-contract invocation mechanism was orig-
inally introduced in [BDF05a]. There, a type and effect system and a model-
checker were exploited to define a call-by-contract orchestrator. Call-by-contract
is described in detail in Chapter 2-4.

The Verification Technique We now briefly recap the verification technique
described in detail in [BDFZ08], which is the one implemented in the LocUsT
tool. Our algorithm is composed of several phases, summarized below.

1. Regularization. First, the usage is regularized, i.e. transformed so that
in no trace a policy framing ¢[—] is entered twice: for instance @[U . ¢[U']]
becomes [U . U']. Particular care must be exercised when handling recursive
usages such as mu h. p[h + U].

2. Conversion into BPA. The usage is transformed in a process of Basic Pro-
cess Algebras. Dynamic creation caused by nu n is handled by instantiating
n with a finite number of static witnesses. Note that this transformation
restricts the resources to be considered by the model-checker from an infi-
nite to a finite set. Yet, this phase is correct, as shown in [BDFZ08]. Some
spurious traces might however be introduced by this transformation, so in-
validating completeness. For instance, in some trace of the BPA associated to
nu n.U. (nu m.U’) the same witness might be chosen for both n and m. This
would cause the model-checker to report a violation, so over-approximating
the predicted behavior. The “Weak Until” phase described below will allow
for recovering completeness.

3. Framing the Policy. The policy is duplicated in two layers, so that the
first layer handles the transitions made by the usage when outside the pol-
icy framing, and the second handles them when inside the policy framing.
Thanks to the regularization phase, this phase only needs to consider two
layers.

4. Instantiating the Policy. The usage policies are instantiated, by non-
deterministically assigning to each variable some known resource, including
the witnesses generated in the “Conversion into BPA” phase.

5. Weak Until. Policies are adapted so to correctly handle traces where the
same witness # happens to be generated twice, i.e. those having a dou-
ble new(#) event. As noticed above, these traces do not correspond to any
trace of the original usage, so they must never trigger a policy violation.
In [BDFZ08] this is proved enough to guarantee the completeness of model
checking, while preserving its correctness.

6. Model-Checking. Finally, the traces of the BPA generated at phase 2 are
matched against all the policies obtained after phase 5. Our model-checking
algorithm decides whether there exists a policy violated by some BPA trace.
Our model-checking procedure is complete, and it always terminates even
though the BPA may have an infinite number of traces, possibly of infinite
length (for instance, mu h. ¢ + h.h + a.h.b).

The complexity of our model-checking algorithm is polynomial in the size of
the usage and on the size of the policy. There is an exponential factor in the
number of policy parameters, only. From a pragmatic point of view, we expect
the number of parameters to be very small in practice. This exponential factor
is mainly due to the policy instantiation step above, which is non-deterministic.

5 Conclusions

We have reported on four tools that have been developed within the SENSO-
RIA project, providing practical support for the application of SENSORIA tech-
niques to service oriented systems, including the SENSORIA case studies. The
tools tackle, in particular, the problems of model checking service oriented sys-
tems, including multiparty systems, of checking conformance of orchestrations
w.r.t. choreographic descriptions, and of ensuring that systems access resources
according to specified policies.

The tools are at different stages of development. The CMC/UMC framework
is more mature, and has been integrated in the SENSORIA Development Envi-
ronment (see Chapter 6-5), thus allowing to use it in an integrated way inside
the software development process. The other tools are less mature, and their in-
tegration is part of our future plans. However all the tools are publicly available:
CMC and UMC at http://fmt.isti.cnr.it/cmc and http://fmt.isti.cnr.
it/umc respectively, ChorSLMC at http://ctp.di.fct.unl.pt/SLMC/ and Lo-
cUsT at http://www.di.unipi.it/"zunino/software/locust.

References

[AT06] A. Alves et al. Web Services Business Process Execution Language Version
2.0. Technical report, OASIS, 2006.

[BCCZ99]

[BCGY5]

[BDF05a]

[BDFO5b]

[BDFZ07]

[BDFZ08]

[BDFZ09)

[BZ07]

[Cai04]
[CCO3]

[CHY T 06]

[CHY07]

[CV09]

[FGL™08]

[GMO4]

[GMO5]

[HYCO08]
[KMH']

[LPT07a]

A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking
without bdds. In Proc. of TACAS’99, volume 1579 of LNCS, pages 193—
207. Springer, 1999.

G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model
checking for CTL*. In Proc. of LICS’95, pages 388-397. IEEE Computer
Society, 1995.

M. Bartoletti, P. Degano, and G.L. Ferrari. Enforcing secure service com-
position. In Proc. of CSFW-18 2005, pages 211-223. IEEE Computer
Society, 2005.

M. Bartoletti, P. Degano, and G.L. Ferrari. History-based access control
with local policies. In Proc. of FoSSaCS’05, volume 3441 of LNCS, pages
316-332. Springer, 2005.

M. Bartoletti, P. Degano, G.L. Ferrari, and R. Zunino. Types and effects
for resource usage analysis. In Proc. of Fo$SSaCS’07, volume 4423 of LNCS,
pages 32-47. Springer, 2007.

M. Bartoletti, P. Degano, G.L. Ferrari, and R. Zunino. Model checking
usage policies. In Proc. of TGC’08, volume 5474 of LNCS, pages 19-35.
Springer, 2008.

M. Bartoletti, P. Degano, G.L. Ferrari, and R. Zunino. Local policies for
resource usage analysis. ACM Trans. Program. Lang. Syst., 31(6), 2009.
M. Bravetti and G. Zavattaro. Towards a unifying theory for choreogra-
phy conformance and contract compliance. In Proc. of Software Composi-
tion’07, volume 4829 of LNCS, pages 34-50. Springer, 2007.

L. Caires. Behavioral and spatial observations in a logic for the pi-calculus.
In Proc. of FoS8aCS’04, volume 2987 of LNCS. Springer, 2004.

L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). In-
formation and Computation, 186(2):194-235, 2003.

M. Carbone, K. Honda, N. Yoshida, R. Milner, G. Brown, and S. Ross-
Talbot. A theoretical basis of communication—centred concurrent program-
ming. Technical report, W3C, 2006.

M. Carbone, K. Honda, and N. Yoshida. Structured communication-
centred programming for web services. In Proc. of ESOP’07, volume 4421
of LNCS, pages 2-17. Springer, 2007.

L. Caires and H. T. Vieira. Conversation types. In Proc. of ESOP’09,
volume 5502 of LNCS, pages 285-300. Springer, 2009.

A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti, R. Pugliese, and F. Tiezzi.
A model checking approach for verifying COWS specifications. In Proc. of
FASE’08, volume 4961 of LNCS, pages 230—245. Springer, 2008.

S. Gnesi and F. Mazzanti. On the fly model checking of communicating
UML state machines. In Proc. of SERA’04, pages 331-338. ACIS, 2004.
S. Gnesi and F. Mazzanti. A model checking verification environment for
UML statecharts. In Proc. of XLIII Annual Italian Conference AICA.
AICA, 2005.

K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session
types. In Proc. of POPL’08, pages 273-284. ACM, 2008.

N. Koch, P. Mayer, R. Heckel, L. Goénczy, and C. Montangero. UML for
Service-Oriented Systems. SENSORIA Deliverable 1.4a, September 2007.
A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of
web services. In Proc. of ESOP’07, volume 4421 of LNCS, pages 33-47.
Springer, 2007.

[LPTO7b]

[Maz06]

[MSKO08]

A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration of
Web Services (full version). Technical report, Dipartimento di Sistemi e
Informatica, Univ. Firenze., 2007. http://rap.dsi.unifi.it/cows.

F. Mazzanti. UMC User Guide v3.3. Technical Report 2006-TR-33, Istituto
di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR, 2006. http:
//fmt.isti.cnr.it/WEBPAPER/UMC-UG33.pdf.

P. Mayer, A. Schroeder, and N. Koch. Mdd4soa: Model-driven service or-
chestration. In Proc. of EDOC’08, pages 203-212. IEEE Computer Society,
2008.

[t(BFGMO08] M.H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. An action/state-

[tGKMO8]

[tGMMO6]

[tMG09]

[Uni]
[VCS08]

[VCS09]

[VCV]

[VCV05]

[WCD06]

based model-checking approach for the analysis of communication proto-
cols for service-oriented applications. In Proc. of FMICS’07, volume 4916
of LNCS, pages 133-148. Springer, 2008.

M.H. ter Beek, S. Gnesi, N. Koch, and F. Mazzanti. Formal verification of
an automotive scenario in service-oriented computing. In Proc. of ICSE’08,
pages 613-622. ACM Press, 2008.

M.H. ter Beek, S. Gnesi, F. Mazzanti, and C. Moiso. Formal modelling and
verification of an asynchronous extension of soap. In Proc. of ECOWS’06,
pages 287-296. IEEE Computer Society, 2006.

M.H. ter Beek, F. Mazzanti, and S. Gnesi. CMC-UMC: A framework for
the verification of abstract service-oriented properties. In Proc. of SAC’09,
pages 2111-2117. ACM Press, 2009.

Unified Modeling Language. http://www.uml.org/.

H.T. Vieira, L. Caires, and J.C. Seco. The conversation calculus: A model
of service oriented computation. In Proc. of ESOP’08, volume 4960 of
LNCS, pages 269-283. Springer, 2008.

H.T. Vieira, L. Caires, and D. Sousa. Checking Services Conformance
Based on Spatial Logic Model-Checking (revised). Technical Report TR-
DI/FCT/UNL-04/2009, Departamento de Informética, Universidade Nova
de Lisboa, 2009.

H.T. Vieira, L. Caires, and R. Viegas. The Spatial Logic Model Checker.
http://ctp.di.fct.unl.pt/SLMC/.

H.T. Vieira, L. Caires, and R. Viegas. The Spatial Logic Model Checker
User’s Manual v1.0. Technical Report TR-DI/FCT/UNL-05/2005, Depar-
tamento de Informdtica, Universidade Nova de Lisboa, 2005.

Web Services Choreography Working Group WCDL. Web Services Chore-
ography Description Language: Primer. http://www.w3.org/TR/2006/
WD-ws-cdl-10-primer-20060619/, 2006.

