Model-Driven Development of Adaptable
Service-Oriented Business Processes*

C. Montangero', S. Reiff-Marganiec?, and L. Semini!
! Dipartimento di Informatica, Universita di Pisa, {monta,semini}@di.unipi.it
2 Department of Computer Science, University of Leicester, stm13@le.ac.uk

Abstract. Businesses typically structure their activities with workflows,
which are often implemented in a rather static fashion in their I'T sys-
tems. Nowadays, system requirements change rapidly as businesses try to
maintain their competitive edge, calling for similar agility of the I'T sys-
tems. To this end, we present STPOWLA, an approach that marries service
oriented architecture, policies and workflows to support the agile execu-
tion of business workflows. In STPOWLA, the business is modelled by
workflows, whose tasks are eventually carried out by services. Adapata-
tion is obtained by allowing the stakeholders to define policies that estab-
lish the quality levels required of the services. The prototype STPOWLA
support architecture comprizes the transformation of the workflow model
into executable WS—-BPEL to be deployed in the ODE-BPEL execution
engine, the generation of default policies from the model, and the en-
actment of the policies by the APPEL policy server. The SENSORIA
Finance Case Study is used throughout the paper.

1 Introduction

It is common practice, to reduce time-to-market, that enterprises federate their
operations by networking via Web services, and these federations can change to
follow evolving business goals. On a smaller scale, processes may need to adapt
to temporary shortage of resources by simplifying, or even skipping, some steps.
These environmental changes need to be supported while the software system is
operating. The integration of Business Process Management (BPM) and Service
Oriented Architecture (SOA) has been recognized as a promising approach in
this respect [17].

However, the integration of BPM and SOA still requires large efforts by
highly skilled personnel. Currently, the business rules introduced by business
roles like sales or technical managers need to be mediated by business analysts
who, thanks to their knowledge of the business processes, transforms them into
directives to the programmers for updating the workflows, e.g. in WS-BPEL.

* This work has been partially sponsored by the project SENSORIA, IST-2005-016004.
The authors would also like to thank Hong Qing (Harry) Yu for his contributions
towards the implementation of the approach and his input to a draft of section 4.

Charfi and Mezini [10] discussed the integration of rule-based languages and
process—based service composition, considering either “to adapt one of the lan-
guages to be more compatible with the other by extending e.g., the rule-based
language with process-oriented features, or the other way around”, or “to en-
hance one of the languages with an interface to the other language, so that the
features of the latter can be used in programs written in the former”. They con-
cluded that both approaches suffer from the lack of seamless integration due to
the paradigm mismatch which the programmer is confronted with, and privilege
an Aspect Oriented approach [11].

In the Service-Targeted Policy-Oriented WorkfLow Approach (STPOWLA — to
be read like “Saint Paula”) [12], we have integrated the two paradigms seamlessly,
via the SOA: the workflow composes coarse—grain business tasks, and the policies
control the fine—grain variations in the service level of each task. The integration
occurs at the conceptual level and in the supporting environment, rather than
at the linguistic level.

Being policy based, the approach naturally distinguishes between a core de-
scription of the process and its variations, which can be specified by declarative
rules, and can be dynamically deployed or removed. This fosters Business Process
flexibility, by raising the abstraction level at which the variations are specified,
while at the same time providing an efficient implementation technique.

In the approach, business tasks are ultimately carried out by services, i.e. com-
putational entities that are characterized by two series of parameters: the invo-
cation parameters (related to their functionalities), and the Service Level (SL)
parameters, related to the resources they exploit to carry out their job: Stake-
holders can adapt the core workflows by requiring higher or lower quality of
service (QoS), therefore consuming more or less resources.

The kind and granularity of the ‘resources’ that are identified in the business
domain are often more abstract than bandwidth and power, i.e. those usually
addressed in service level agreements. For instance, a task of a given type may
need higher levels of authorization in given circumstances, and lower levels in
others. In STPOWLA, the authorizing business roles are seen as resources, ordered
along an AuthorizationLevel dimension: the identification of these dimensions is
a key design activity in the approach.

The combination of workflows, SOA, and policies can be exploited at its best,
if a coherent design strategy is adopted to foster flexibility. In a nutshell, such
a strategy is to find the best balance between (i) keeping the workflows simple,
i.e. without explicit choices that depend on the quantity/quality of resources
available to the tasks, and (ii) providing large and foreseeing ranges of choices
to the policies, to support modelling the business rules as they emerge.

In this paper we present the embodiments of the STPOWLA concepts in
UML4SOA [18], the UML profile that introduces stereotypes for the relevant
concepts (workflow, tasks, service level, etc.) in the standard framework of UML
(classes, interfaces, activities, etc). The main contribution of the paper is the
design of an environment to model, deploy, and run STPOWLA business pro-
cesses. Note that, besides supporting the use of services with different service

levels in the business process, the environment itself is based on a service ori-
ented architecture, orchestrating a workflow engine, a policy server and a service
broker.

2 The Modelling Concepts

STPoOwLA is a workflow based approach to business process modelling that in-
tegrates:

— a standard graphical notation, to ease the presentation of the core business
process;

— policies, to provide the desired adaptation to the varied expectations of all
the business stakeholders;

— the SOA, to coordinate the available services in a business process.

More specifically, workflows are used in STPOWLA to define the business process
core as the composition of building blocks called tasks, a la BPMN. Each task
performs a meaningful step in the business, whose purpose is well understood
at an abstract level by the stakeholders. That is, a task is understood as to its
effects in the business, regardless of the many details that need to be fixed in its
actual enactment.

Policies are used to express finer details of the business process, by defining
Service Level (SL) requirements of task ezecutions. The added value is that
policies can be updated dynamically, to adapt the core workflow to the changing
needs of the stakeholders.

Tasks are the STPOWLA units where BPM, SOA and policies converge, and
adaptation occurs: the intuitive notion of task is revisited to offer the novel
combination of services and policies.

When the control reaches the task, a service is looked for, bound and invoked,
to perform the main functionality of the task. Functional requirements of the task
are described in the task specification. Conversely, service invocation is always
local to task execution, i.e., a service is invoked to satisfy the requirements of a
task, not to satisfy some overarching business requirement.

A task can be associated to a policy. Indeed, the principal means to adapt a
workflow to the needs of a stakeholder, is by intervening on the behaviour of the
tasks using policies. To define a policy STPOWLA users can refer to the state of
the execution of the workflow, as described by task and workflow specification.

In the following, terms in “guillemets” are the UML4SOA stereotypes for the
STPOWLA concepts: A <workflows is an activity action that calls the specified
behavior, i.e., a lower level workflow; A <«Task> is an activity action that calls
the specified main operation.

Next, we present the STPOWLA concepts with the support of a loan negoti-
ation process, part of the Finance Portal case study (Chapter 0-3).

2.1 Model Specification

In STPOWLA a «Task> is characterized by a <Taskspecification> via a name,
a description, an interface, and a set of service level dimensions. The name
and description convey the purpose of the «Task>: in well established domains,
they identify precise, even if informal, functional requirements for the task. The
interface provides the formal signature of the operation carried out by the task.
As already mentioned, a task is actually carried out by a service: the interface
includes an operation called main, with the same parameters and return type of
the required service.

The <«Taskspecification> can specify a number of service level dimensions
(«NFDimension>) that specify the non-functional dimensions that characterize
the service to invoke. Besides specifying the type of each dimension, the de-
signer can define:

— the ranges within which the service level can vary. In the case study the non
functional dimensions are specified as enumerations, and the ranges are the
enumeration literals: manual and automatic; supervisor and branchManager
(see Fig. 1).

— a default value. For instance, manual and supervisor in Fig. 1.

Then, the stakeholders can specify the service levels they require along each
dimension, by installing policies for a given task, overriding the default value,
as discussed below.

Finally, a <Taskspecification> can have attributes: they define properties of a
<Task> that depend on the state of the workflow, and can be used in the policies
to access the execution state and select the most appropriate service levels when
the «Task> is activated. Attributes are specified at design—time and bound at
run—time, e.g. on task/workflow entry, as a function of the inputs, and of the
other attributes.

To sum up, from a behavioural perspective, when the control reaches the
task, operation main is executed. The execution of main triggers the search and
invocation of a suitable service, and returns the computed result. The search
identifies a service implementation that satisfies the current policies, i.e., the
policies to be applied in the current state of the workflow, or the default values
for the service level, when not overridden.

Just like tasks, <workflow>s have a «WfSpecification> defining their attributes
and signature. Moreover, differently from tasks, their behaviour is defined explic-
itly, via an associated UML activity, whose nodes are either tasks or workflows.

2.2 Case Study: Loan Approval

In this scenario, a customer uses a web portal to request a loan from a bank. The
request is forwarded to and handled by the local branch, i.e. the closest one to
the customer’s residence. At the local branch, to process the loan request, and

<<WrSpecification> >
LoanRequest B ankE valuation
amount : Integer managerAvailable : Boolean
status © LoanRequestStatus main(Req : LoanReguest) : LoanR equest
<< Servicelmerface>> <<Servicelnterfacex>
Assessment Vetting
assess(lRey : LoanReguest) ; LoanReguest vetting(lReq : LoanReguest) : LoanReguest
7, i
[[
<<Reguires>> «<Requires=>
| i
1]
<< TaskSpecification> > <« TaskSpecification>>
Assessment Vetting
mainfReq: LoanReguest) : LoanRequest main{iReq : LoanRequest) | LoanRequest
T T T
<=Dim== : : <<Dim=x : <<Dim==
{defaultvValue = supervisor) : : {defaulivalue = manual} \:/ {defaulivalue = manual}
_ _ ! <<NFDimension=» : <<NFDimension=>
{a;}pllcab_ra only if 3 | “<en ation>> | <<en ation>>
automationLeval = manual} | _3 assesseriole = Automationl evel
suUpervisor manual
branchiManager autem atic

Fig. 1. The specification of BankEvaluation.

before a contract proposal is sent to the customer, there are two necessary steps:
a preliminary evaluation (wvetting), to ensure that the customer is credible, and
a subsequent step (assessment), where the contract proposal can be approved
or rejected.

We concentrate on an inner workflow of the LoanApproval business process,
Bank Ewvaluation. The diagrams in Figures 1 and 2 specify this workflow. As
indicated by the main operation in the «WfSpecification>, the Bank Fvaluation
workflow processes a LoanRequest, that is, the document collecting all the in-
formation on the loan being worked on . The actual process is in Figure 2, and
shows the steps to accept or reject the request. The attribute managerAvailable
reflects part of the state of the bank’s branch enacting the workflow, and can be
used to state the business policies.

Let us now have a look at «Taskspecification> Assessment, which character-
izes the second step of this workflow. Its <Servicelnterfaces> identified by the
<requires> association specifies that this task needs a service able to transform
a LoanRequest®. This <«Servicelnterface> is implemented by a service invoked by
the task and can be adapted along two dimensions: AutomationLevel and Assesser-
Role. The former is a standard dimension that roughly distinguishes two kinds
of implementations: those that exploit only machine resources, automatic, and
those that need human resources, manual. The second dimension may vary from

3 The description of the transformation is not shown in the diagram, but should appear
in the report containing it, or in a suitable pane in the supporting environment (for
instance, in the property pane in the IBM Rational Software Architect —-RSA— where
the figure comes from).

[accepted] <<Task>>

5 [
(Assessment::main)

<<Task>>
1
(Vetting::main)

[rejected | updateNeeded]

Fig. 2. The BankEvaluation activity.

one <Taskspecification> to another, since it classifies the different roles that, in
different situations, can be involved in the «Task>. Here, we have two such roles,
branchManager and supervisor, defined as the default.

To deal with service levels, another stereotype has been introduced, <Dim>,
with a tagged value default to specify the default level. In the figure it is shown
how the default values can be set in the model. Two dimensions of the same
«Taskspecification> need not be independent: for instance, in our example, As-
sesserRole makes sense only if AutomationLevel is set to manual.

Besides its <Taskspecification>, a <Task> also has a name, which is only used
to distinguish different occurrences of the same task type in the same workflow.
Therefore, we simply use integers as names for «Task>s. The BankEvaluation work-
flow simply states that the request is first subject to Vetting and then, if accepted,
to Assessment. In either step, the request may be rejected; after Vetting, more in-
formation may be requested from the applicant. The default service levels imply
that a supervisor will perform Assessment. Similarly, a clerk will vet the request by
default — not shown here. Variations can be specified by policies, as shown next.

2.3 Policies

A task may have associated policies, which come in two flavours: those that
adapt the workflow by constraining the task behaviour along its SL dimensions,
and those that modify the workflow structure, adding and/or deleting tasks.
The latters are discussed in [7]; here we concentrate on the formers, and call
them simply policies. For instance, the generic BankFEvaluation process can be
adapted to specific situations via policies, like:

P1: In case of loans of small amount, both vetting and assessment are performed
automatically.

P2: In a small branch, the branch manager has to approve all applications.

P3: If the branch manager of a small branch is out of office, loan applications
are approved by the manager’s representative.

In STPOWLA, the policies act on the process by specifying the requested ser-
vice levels as a function of the state of execution as expressed in the attributes.
To this purpose, we use is APPEL [36]. Developed in the context of telecom-
munications, APPEL is a general language for expressing policies in a variety of
application domains: It is conceived with a clear separation between the core
language and its specialization for concrete domains, a separation which turns
out very useful for our purposes.

In APPEL a policy consists of a number of policy rules, grouped using a
number of operators (sequential, parallel, guarded and unguarded choice). A
policy rule has the following syntax

[when trigger] [if condition] do action (1)

The core language defines the structure but not the details of these parts, which
are defined in specific application domains. Base triggers and actions are domain-
specific atoms. An atomic condition is either a domain-specific or a more generic
(e.g. time) predicate. This allows the core language to be used for different
purposes.

The applicability of a rule depends on whether its trigger has occurred and
whether its conditions are satisfied. Triggers are caused by external events. Trig-
gers may be combined using or, with the obvious meaning that either is sufficient
to apply the rule. Conditions may be negated as well as combined with and and
or with the expected meaning. A condition expresses properties of the state and
of the trigger parameters. Finally, actions have an effect on the system in which
the policies are applied. A few operators (and, andthen, or and orelse) have
been defined to create composite actions.

In STPOWLA, to specify tasks, we specialize APPEL. In this paper we only
consider the specializations relevant to refinement policies, additional extensions
exists for reconfiguration policies and they are introduced in [7]. The only pos-
sible trigger of a policy is the activation of the associated task (reconfiguration
policies allow for a number of other triggers). To deal with services, we intro-
duce a special action, req(-, -, -), for service discovery and invocation. The
semantics of this action is to find a service as described by the first and third
arguments (specifying service type and SLA constraints), bind it, and invoke it
with the values in the second argument (the invocation parameters).

A default policy is associated with each task. It states that when the control
reaches the task, a service is looked for, bound and invoked, to perform the
functionality of the task (denoted by main):

when taskEntry(<args>)
do req(main, <args>, [])

where taskEntry denotes the policy trigger, whose arguments are the task pa-
rameters, if any. Adaptation occurs by overriding the default policy. For instance,
to satisfy the requirements expressed by policy P2, we associate the following
policy to task Assessment:

P2: when taskEntry([]) if thisWF.branchSize = small

do req(main, [], [AutomationLevel = manual,
AssessorRole = branchManager])

To ease the policy designer task, policies can also be defined by tables, whose
structure is derived from the UML4SOA model of the workflow. A default table
is automatically derived, which corresponds to the default policy: no discrimina-
tor appears, and the default value is assigned to each SL, as in Table 1. Then, the
designer can redefine the default policy, by adding discriminators and SL values.
For each new discriminator, the table is automatically extended, by building the
decision tree, and by assigning the default value to the SLs. Finally, the designer
can override any SL with the intended value. An example, relative to <Task> 2

Policies for BankEvaluation.2: Assessment
Requested SLs
Automation level AssesserRole
default: manual default: supervisor

Table 1. The policy table for task 2 — automatically derived from the workflow model.

Policies for BankEvaluation.2: Assessment

Discriminators Requested SLs
iReqAmount< 5000 x| branchSize=small x| Automation level AssesserRole
true true P1: automatic * N/A
true false P1: automatic = N/A
false true default: manual [P2: branchManager
false false default: manual default:supervisor

Table 2. The policy table for task 2 — interactively extended by the designer.

of the BankFvaluation workflow, is given in Table 2, which reflects the informal
policies P1 and P2 of Section 2. In a policy, task and workflow attributes are ac-
cessed by name, while the usual OO dot notation allows accessing the attributes
of the task data, like in [Req.amount. The left side columns encode a decision
tree, for the two discriminators [Req.amount < 5000 and branchSize = small:
each row on the right side lists the required service level for each dimension (one
per column on the right). For instance, if neither condition holds, the default
values are requested for the service levels. The policy names are there for trace-
ability, and the stars denote the only parts of the table that are input by the
stakeholders.

3 Design and Deployment

We distinguish two roles in the design of a system integrating BPM and SOA:
the BP Designer dealing with workflow and policy specification, and the Ser-
vice Producer, who is in charge of designing, implementing, and registering the
services. We can also distinguish between Workflow and Policy Designer, since
they deal with different aspects of the business process. However, we note that
they normally work in the same organization, they both specify the requirements
from a business point of view, they share the modelling of the task types like
the one in Figure 1, and often they are the same person, namely the Business
Analyst.

In this section we describe the process to apply the STPOWLA approach, and
the tools we propose to support the designers job.

3.1 Workflow Design

The Workflow Designer defines the task types and orchestrates different tasks
into an executable process to achieve a business goal which is requested by the
end-users. To do that, he uses the UML4SOA profile as notation and the IBM
Rational Software Architect (RSA) as editor. Once the workflow model is created
(or updated), it is transformed into executable WS-BPEL [29] and deployed in
the ODE BPEL execution engine [25]. Besides, policy tables templates, with the
adaptable service levels and the default values are automatically derived from
the workflow model, as discussed in the last part of the previous sections. The
policy definition is also supported by RSA, which has been extended via the
PolicyDesign plug—in, This way the designer is naturally offered the context for
policy definition, that is task types definitions, including attributes and service
level dimensions. Once specified and deployed, the policies affect all subsequent
workflow enactments.

3.2 Service Design

For the moment being, STPOWLA makes a sort of “closed world” assumption:
whenever a new task or dimension is introduced, new refinement services need
be designed, implemented and deployed. The discussion that follows describes a
method to specify these services.

Any service refining a <«Taskspecification> implements the same <Serviceln-
terface> interface, but offers a specific kind of QoS, defined in an associated
capability document (capDoc). For instance, an “automatic” implementation,
and one that involves the BranchManager can be specified as shown in Figure 3
for Assessment. The «Servicelnterface> interface of the «Taskspecification> is re-
fined respectively by the interfaces AutomaticAssessment and BranchManager-
ManalAssessment. The capDoc tag of «TaskRefinement> specifies the capDoc de-
scribing which service levels the implementation must offer, that is it constrains
the possible implementations. For instance, Table 3 shows the two documents
referred to in Figure 3. So, the implementer has all the information he needs:

whaskRefinement:
_AutomaticAssessment

o .
i gngsgﬁfsxt {rapDoc=AutomaticAssessmentCapt
g2 main [Req : LoanRequest) © LoanRequest «taskRefinements

_BranchManagerManualassessment
{capDoc=BranchManager AzsessmentCapk

Fig. 3. Service specifications to refine «Task> 2: Assessment.

<capDoc name="AutomaticAssessmentCap" serviceType="Assessment"> <and>
<qos name="AutomationLevel" enum="automatic" confidence="1"/>

</and> </capDoc>

<capDoc name="BranchManagerAssessmentCap" serviceType="Assessment"> <and>
<qos name="AutomationLevel" enum="manual" confidence="1"/>
<gos name="AssesserRole" enum="BranchManager" confidence="1"/>

</and> </capDoc>

Table 3. Service capabilities.

functionality from domain knowledge and enterprise standards, service <Servi-
celnterface>, and capabilities from the capDoc.

Note that the scenario we assume in STPOWLA entails a strict co-operation
between task specifier, policy specifier and service implementer: this is possible
since they all share the same UML4SOA model of the business.

3.3 Deployment

The workflow and policy deployment targets three components of the run—time
support, namely the three rightmost ones in Figure 4. Steps 1 to 3 occur when
a new UML model is deployed: The BPEL representation of the workflow is
generated by the central deployment service, the StPowlaDeployEngine, and
downloaded to the workflow engine: We currently use Apache ODE (Orches-
tration Director Engine) [25] to execute WS-BPEL [29] representations of the

—> 1; UML4SOAmodel —== 3 BPELmodel

JWFENGine
<—— 2: policy TableTemplates E

—==5; accessPaths
= :RSA 2] :StPowlaDeployEngine I I 2 1:StPowlaEngine

4 policy — & ¥MLpolicy | -
| =] AppelPolicyServer

Fig. 4. Workflow and policy deployment.

21 irmoke(eny, od)

—= 1t invoke(tn,tt,sd,cd)
g = | :StPowlaEngine |
= 5 1d \I =] :GrisuBraker

Fig. 5. Runtime STPOWLA choreography.

= |:AppelPolicyServer ‘

lB: imvoke(reqDoc, cd)

workflows. Also, the StPowlaDeployEngine generates the policy tables templates
and stores them back into the RSA. Thereafter, whenever a new table instance is
deployed, the XML representation of the policy is generated and loaded into the
APPEL Policy Engine [36,32]. The last component affected by deployment is the
StPowlaEngine, that is, the core of the run—time environment. For each policy,
it is loaded with the paths it will use to access the run—time values needed to
evaluate the policy itself (more details in Section 4).

4 Run—-Time Environment

In this section we describe the tools we propose to implement the STPOwWLA
approach. There are four cooperating services and six steps in the run-time
environment to complete a task (see Figure 5). The WFEngine interacts with the
StPowlaEngine, which coordinates the AppelPolicyServer and the GrisuBroker
to select a refinement per each task in the workflow, according to the current state
and policies, and invoke it. The AppelPolicyServer selects the requirements for
service discovery, and the GrisuBroker performs both discovery and invocation.

The WFEngine is the interpreter of the business process. All the tasks have
the same BPEL behaviour: they invoke the StPowlaEngine, to detect and invoke
the task refinement that best suits the current requirements. The StPowlaEngine
receives the task name (in), task type (it), state data (sd), and call data (cd).
The latter is the data for the invocation of the chosen service, while sd carries
the relevant information on the state of the workflow enactment, i.e., the current
values of the task and workflow attributes. In our example, the second task of
Figure 2, the WFEngine will pass as arguments “2” | “Assessment”, the current
values of the workflow and task attributes (branchSize and managerAvailable),
and the loan request, that is, the input argument to the task.

Then, the StPowlaEngine builds and sends the environment for policy eval-
uation to the AppelPolicyEngine. The environment has bindings for the task
name and type, and for all the information in the call data and attributes that
are used in the policies currently deployed for the task. In the example, the
domain of the environment will be {taskName, taskSpecification} united with
{branchSize, 1Req.amount} or {managerAvailable} according to the deployed
policy (P1 or P2, respectively). Remember that, to allow the StPowlaEngine to
build such an environment at run—time, whenever a new policy is deployed, the

<regDoc> <serviceType>Assessment</serviceType> <and>
<qos name="AutomationLevel" enum="automatic" confidence="1"/>
</and> </reqDoc>
<regDoc> <serviceType>Assessment</serviceType> <and>
<qos name="AutomationLevel" enum="manual" confidence="1"/>
<qos name="AssesserRole" enum="branchManager" confidence="1"/>
</and> </regDoc>

Table 4. The reqDocs for policies P1 and P2.

relevant information is stored in the StPowlaEngine itself (step 5 in Figure 4)).
To understand how this is done, we need to point out that i) call data are rep-
resented in XML, according to schemas that are derived from the UML4SOA
model, and ii) state data are also represented in XML in a standard format,
shared among the WFEngine, the StPowlaEngine, and the StPowlaDeployEnv.
So, the StPowlaEngine knows which data to retrieve from the state and call
data, and pairs them to the paths while building the environment.

The AppelPolicyServer determines the requirements of the task refine-
ment service to call, in the current state of workflow enactment, and according
to the policies currently installed in the policy engine. We are using the APp-
PEL policy engine [36,32] to reap the benefits of its architecture. Indeed APPEL
neatly distinguishes between the core mechanisms for policy evaluation and the
extensions mechanisms that allow tailoring the engine to particular domains.
Tailoring is done by defining the relevant triggers, predicates and actions: for
STPOWLA, we defined i) the trigger related to task entry, which reacts to the
invocation from the StPowlaEngine, and ii) the action that builds and returns
a specific requirements document (reqDoc) for the service broker. For instance,
when policy P2 above is triggered, the policy server returns the upper reqDoc
in Table 4. Similarly, the policy server generates the lower document for P1.

The GrisuBroker uses the input reqDoc to discover a matching service, i.e.
one of the correct «Taskspecification> and offering service levels that match the
request. The discovered endpoint is used to invoke the main operation, with the
call data as argument. The data returned by the service is then passed back to
the workflow engine, which carries on with the workflow. Note that the lack of
a matching service denotes a flaw in the design/deploy process. Indeed, due to
StPowLA’s “closed world” assumption, whenever a new service is deployed the
needed data access paths are stored in the StPowlaEngine.

For the two policies in our example, Grisu would discover respectively the
capDocs shown in Table 3. Grisu can discover these services by comparing re-
gDocs (like the one in Table 4) and capDocs: no other information is needed.
The format of reqDoc and capDoc is taken from the service broker DINO[26]:
For this reason, our service broker is called Grisu?.

4 Grisu is a popular Italian cartoon character, a small dragon: since DINO is a di-
nosaur, we see Grisu as DINO’s child.

5 Barbed Model Driven Development

When thinking of model driven development, the immediate understanding is
that models drive software development, in the sense that the software is con-
structed by transforming models from higher levels of abstraction to the point
where we reach a model which is executable with the desired degree of qual-
ity characteristics. What tends to be less evident, is that, precisely in order to
reach the desired quality, many other models are used in the verification and
assessment of the solutions under consideration at the various stages of devel-
opment. That is, looking at the development process, besides a spine of model
transformations moving from highly abstract, domain related models down to
concrete platform related models (programs), we can see a number of barbs,
relating models in the spine to specialized models that permit specific, often
very sophisticated, analysis of parts of the software under development, usu-
ally in the early stages. We called this approach Barbed Model-Driven Software
Development [24].

Within the work on STPOWLA, we applied this idea to address the detection
of possible conflicts among policies. Indeed, when several policies are composed
(or applied simultaneously) they might contradict each other: a phenomenon re-
ferred to as policy conflict. Policy conflict has been recognised as a problem [31]
and there have been some attempts to address this, mostly in the domain of
access or resource control. In the case of end-user policies the problem is signif-
icantly increased by a number of factors. To name a few:

— the application domains are much more open and hence more difficult to be
modelled,

— there will be many more end-user policies than there are system policies
(sheer number of policies),

— end-users are not necessarily aware of the wider consequences of a policy
that they formulate.

To provide the user with confidence that the rules are conflict free, we pro-
pose to filter his/her input to detect those policies that, if entered in the policy
engine, would originate conflicts. The advantages include that we can antic-
ipate conflict detection—traditionally performed at run-time—at design-time.
Indeed, the well-known advantages of early verification apply to policies as well.
In [20,21], we take a logic—based approach to this end: conflicts are detected by
deducing specific formulae in a suitable theory. A translation function has been
defined to derive the logical representation of APPEL policies in the temporal
logic ADSTL(x) [22,23]: as a side effect, this function defines a formal semantics
for APPEL, which before was only defined informally, like most of the policy lan-
guages. The translation maps a group of policies into a logical theory expressing
its meaning. The temporal features of ADSTL(x) permit the expression of the
dynamics of the rules, the event operator facilitates dealing with the triggers,
and the spatial features permit addressing the localization of the policies.
More specifically, the filter maintains a logical theory representing

1. the relevant information on the domain, that is, interesting facts and infer-

ence rules valid in the application domain,

the set of policies currently installed, i.e. contained in the Policy Base,

3. a representation of the state space of the system, restricted to the part
accessed when selecting the policies, and

4. the definition of what constitutes a conflict.

N

Then , it is sufficient to equip the filter also with a deduction engine for the logic
in use: before a new policy is added to the Policy Base, its logical representation
is added to the filter theory, and then the deduction engine is run: if one of the
formulae identifying a conflict is derived, the user is informed and he can resolve
the detected conflict.

Taking a similar direction, we designed a barb towards UML state machines
to model check whether policies are free of conflicts [5]. To this aim, we have
defined a semantics-preserving compositional mapping from APPEL to UML,
suitable for model checking with UMC [19,37]. Since UMC operates on UML
state machines, the target of the mapping happens to be a subset of UML state
machines: policies and policy groups are defined using composite states, i.e. states
with structure reflecting the one imposed by the APPEL operators onto policies
and actions.

A policy in APPEL is built with triggers, conditions, and actions, just like
state machine transitions. Indeed, triggers, conditions and basic map onto the
UML triggers, conditions and actions that decorate the machine state transitions,
in the natural way. This is fortunate, since they are domain dependent, and we
can exploit the flexibility that UML provides w.r.t the language in which to
express them, to best fit the domain peculiarities. Some more work is needed
to map combination of actions since action combinators are defined in terms
of the outcome of the actions under composition. However, this is true in a
very broad sense that need not consider the details of the action semantics, but
only an abstract notion of success and failure. Intuitively, these notions entail
that an action may complete normally (success) or may abort for some reason
(failure). Again, APPEL leaves the specifics of when an action succeeds or fails
to the domain, and simply defines the success or failure of a composed action as
a combination of the successes and failures of the actions under composition.

UMC is an on-the-fly model checker built to analyze UML state machines
for properties expressed in the action- and state-based branching-time temporal
logic UCTL [6]. In the case of policies, conflicts arise if a pair of conflicting
actions is executed. To prove conflict freeness the full state space must be checked
to exclude a path along which both actions are executed (in any order). The
approach has been validated with the SENSORIA finance case study.

6 Related Work

Much work has been published in the area of business process specifications,
ranging from natural English to structured languages used for expressing pro-

cesses. BPEL [16] is considered the de—facto standard for SOA-based business
processes, despite its initial purpose as a service composition language.

Policies are descriptive and essentially provide information that is used to
adapt the behaviour of a system. Most work deals with declarative policies.
Notable examples are the formalisms to define access control policies, and to
detect conflicts [33,15]; formalisms for modelling the more general notion for
usage control [38]; formalisms for SLA, i.e. to specify client requirements and
service guarantees, and to sign an agreement between them [9,8].

Ideas of introducing flexibility into workflows have been presented by Reichert
and Dadam [30] and in the Woklet system by Adams et al [3]. The formers discuss
a framework for dynamic process change, but do not include support for changes
to the workflow in progress. The latter is based on an extensible repertoire of sub—
processes aligned to each task, one of which is chosen at runtime. The difference
here is that our adaptation focuses on changing the Service Levels, thus providing
guidance in the design phase.

In AgentWork [27], rules can be used to drop or add individual tasks to
workflows. This is close to our reconfiguration policies [13,14]. However, there
is no notion of tasks being linked to services in this work, and the policies are
concerned with task replacement rather than task implementation or service
selection.

A policy-driven approach is proposed in [34], to extend BPEL definitions with
transactional behaviour, as the one offered by WS-Coordination. To actually
enforce the coordination behaviour for the BPEL processes, as specified by the
policies, a separate middleware system has been integrated in the architecture.

Among the various types of software tools available in the marketplace for
BPM support, several business rules management tools (BR tools) became avail-
able in recent years. Among the most complete and promising solutions are Blaze
Advisor [1] and JRules [2]. Recently BR tools have been including SOA integra-
tion features, such as deploying rule services as part of an SOA [28].

It is worthwhile to locate STPOWLA in the grid provided by two popular clas-
sification of the BR tools [4,35]. Being aimed at business analysts, STPOWLA
falls in the knowledge—based BR tools, and can benefit the people/document
intensive processes, which it can support with respect to workflow agility and
resource management via its reconfiguration/refinement mechanisms. Histori-
cally, the knowledge-based BR tools have been targeted to decision intensive
business processes. They foster ‘rule-driven programming’, with no clear differ-
ence between the rules driving the high level behavior of the workflow and those
governing the application low level, such as computation and inference rules. In
this respect, STPOWLA improves the overall structure of process representation
with its distinction between core process and variations along the SL dimensions.

7 Conclusions and Future Work

STPOWLA introduces a novel combination of policies and workflows that allows
the designer to capture the essence of a business process as workflow and to
express variations in a descriptive way.

In this paper we have only considered static QoS requests, which involve no
run-time assessment of the resources. Consider now P4: “In a big branch, the
request should be vetted and approved by different members of staff”. With-
out introducing cross-task requirements, the reqDoc for Assessment cannot be
completed at design time, that is, it must be parametric and instantiated at
run—time as a function of the identity of the vetter. On the capDocs side, one
way is to introduce as many different task refinements as assessors, specify each
one statically, and let Grisu make the choice. Alternatively, one should change
the <Servicelnterface> of the «TaskRefinement>, adding as a parameter the needed
info (the assessor, for P4). In terms of service level, this amounts to characterize
the refinement as being able to use any specific resource of the requested type.

We already mentioned that in STPOWLA we assume a strict co-operation
between task specifiers, policy specifiers and service implementers, which share
the same UML4SOA model of the business process. Looking for task refinements
made available by independent providers, involving e.g. interface adaptation, is
left for future work.

References

1. http://www.fico.com/en/Products/DMTools/Pages/Fair-Isaac-Blaze-Advisor-
System.aspx. Last visited: March 2009.

2. http://www.ilog.com/products/businessrules/index.cfm. Last visited: March 2009.

3. M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Worklets:
A service-oriented implementation of dynamic flexibility in workflows. In R. Meers-
man and Z. Tari, editors, On the Move to Meaningful Internet Systems 2006, vol-
ume 4275 of LNCS, pages 291-308. Springer, 2006.

4. M. Bajech and M. Krisper. A methodology and tool support for managing business
rules in organizations. Information Systems, 30:423-443, 2005.

5. M. ter Beek, S. Gnesi, C. Montangero, and L. Semini. Detecting policy conflicts
by model checking UML state machines. In S. Reiff-Marganiec and M. Nakamura,
editors, Feature Interactions in Software and Communication System X, pages 59—
74. 10S Press, 2009.

6. M.H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. An Action/State-
Based Model-Checking Approach for the Analysis of Communication Protocols
for Service-Oriented Applications. In Revised Selected Papers of Formal Methods
for Industrial Critical Systems (FMICS’07), volume 4916 of LNCS, pages 133-148.
Springer, 2007.

7. L. Bocchi, S. Gorton, and S. Reiff-Marganiec. Engineering Service Oriented Appli-
cations: From STPOWLA Processes to SRML Models. In J.L. Fiadeiro and P. In-
verardi, editors, Fundamental Approaches to Software Engineering, volume 4961 of
Lecture Notes in Computer Science, pages 163—-178. Springer Verlag, 2008.

8. M.G. Buscemi, L. Ferrari, C. Moiso, and U. Montanari. Constraint-Based Policy
Negotiation and Enforcement for Telco Services. In TASE 2007, pages 463—472.
IEEE Computer Society, 2007.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

M.G. Buscemi and U. Montanari. Cc-pi: A constraint-based language for specifying
service level agreements. In R. De Nicola, editor, Programming Languages and
Systems (ESOP 2007), pages 18-32, 2007.

A. Charfi and M. Mezini. Hybrid web service composition: business processes
meet business rules. In M. Aiello, M. Aoyama, F. Curbera, and M. P. Papazoglou,
editors, ICSOC, pages 30-38. ACM, 2004.

A. Charfi and M. Mezini. AO4BPEL: An Aspect-oriented Extension to BPEL. In
World Wide Web, pages 309-344, 2007.

S. Gorton, C. Montangero, S. Reiff-Marganiec, and L. Semini. STPOwLA: SOA,
Policies and Workflows. In Revised Selected Papers of Workshops, 1CSOC"07,
volume 4907 of LNCS, pages 351-362. Springer, 2007.

S. Gorton and S. Reiff-Marganiec. Policy support for business-oriented web service
management. In Web Congress, 2006. LA-Web ’06. Fourth Latin American, pages
199-202, Los Alamitos, CA, USA, Oct. 2006. IEEE Computer Society.

S. Gorton and S. Reiff-Marganiec. Towards a task-oriented, policy-driven business
requirements specification for web services. In S. Dustdar, J. L. Fiadeiro, and
A. P. Sheth, editors, Business Process Management, volume 4102 of LNCS, pages
465-470. Springer, 2006.

J. Y. Halpern and V. Weissman. Using first-order logic to reason about policies. In
Proceedings of the Computer Security Foundations Workshop (CSFW’03), pages
187-201, Los Alamitos, CA, USA, 2003. IEEE Computer Society.

IBM. BPEL4WS, Business Process Execution Language for Web Services, version
1.1, 2003.

F. Kamoun. A roadmap towards the convergence of business process management
and service oriented architecture. Ubiquity, 8(14), 2007. ACM Press.

N. Koch, P. Mayer, R. Heckel, L. Gonczy, and C. Montangero. UML
for service-oriented systems, SENSORIA EU-IST 016004 Deliverable D1.4.a.
http://www.pst.ifi.lmu.de/projekte/Sensoria/del 24/ D1.4.a.pdf, 2007.

F. Mazzanti. UMC User Guide v3.3. Technical Report 2006-TR-33, Istituto di
Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR, 2006.

C. Montangero, S. Reiff-Marganiec, and L. Semini. Logic-based detection of con-
flicts in APPEL policies. In F. Arbab and M. Sirjani, editors, Int. Symp. on
Fundamentals of Software Engineering, FSEN 2007, Tehran, Iran, volume 4767 of
LNCS, pages 257—-271. Springer, 2007.

C. Montangero, S. Reiff-Marganiec, and L. Semini. Logic-based conflict detection
for distributed policies. Fundamenta Informaticae, 89(4):511-538, 2008.

C. Montangero and L. Semini. Distributed states logic. In 9* International Sym-
posium on Temporal Representation and Reasoning (TIME’02), Manchester, UK,
July 2002. IEEE CS Press.

C. Montangero, L. Semini, and S. Semprini. Logic Based Coordination for Event—
Driven Self-Healing Distributed Systems. In R.De Nicola, G.Ferrari, and G. Mered-
ith, editors, Proc. 6th Int. Conf. on Coordination Models and Languages, CO-
ORDINATION’0/, volume 2949 of LNCS, pages 248-262, Pisa, Italy, Feb. 2004.
Springer-Verlag.

Carlo Montangero and Laura Semini. Barbed model-driven software development:
A case study. FElectron. Notes Theor. Comput. Sci., 207:171-186, 2008.

S. Moser and T. van Lessen. Developing, deploying and running a hello
world BPEL process with the Eclipse BPEL designer and Apache ODE,
people.apache.org/~vanto/helloworld-bpeldesignerandode.pdf.

A. Mukhija, D. S. Rosenblum, and A. Dingwall-Smith. Dino: Dynamic and adap-
tive composition of autonomous services. www.cs.ucl.ac.uk/research/dino/, 2007.

27

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

R. Miiller, U. Greiner, and E. Rahm. Agent work: a workflow system supporting
rule-based workflow adaptation. Data Knowl. Eng., 51(2):223-256, 2004.

S. Nunez. ILOG JRules 6.5 brings rules to SOA. InfoWorld: Product Guide: ILOG
JRules 2007: Review, 2007.

Oasis Organization. Web services business process execution language version 2.0
- primer, 2007.

M. Reichert and Peter Dadam. ADEPT flex -supporting dynamic changes of work-
flows without losing control. J. Intell. Inf. Syst., 10(2):93-129, 1998.

S. Reiff-Marganiec and K. J. Turner. Feature interaction in policies. Comput.
Networks, 45(5):569-584, 2004.

S. Reiff-Marganiec, K.J. Turner, and L. Blair. Appel: The accent project policy
environment/language. Technical Report TR-161, University of Stirling, Dec. 2005.
F. Siewe, A. Cau, and H. Zedan. A compositional framework for access control
policies enforcement. In FMSFE 03, pages 32-42. ACM Press, 2003.

S. Tai. Composing web services specifications: Experiences in implementing policy-
driven transactional processes. In BTW, volume 65 of LNI, pages 547-559. GI,
2005.

C. Teubner. The Forrester Wave: Human Centric BPM for Java Plat-
forms, Q3 2007. http://www.forrester.com/Research/Document /Excerpt /-
0,7211,38886,00.html, 2007.

K. J. Turner, S. Reiff-Marganiec, L. Blair, J. Pang, T. Gray, P. Perry, and J. Ireland.
Policy support for call control. Computer Standards and Interfaces, 28(6):635-649,
2006.

UMC v3.5. Online: http://fmt.isti.cnr.it/umc.

X. Zhang, F. Parisi-Presicce, R. Sandhu, and J. Park. Formal model and policy
specification of usage control. ACM Trans. Inf. Syst. Secur., 8(4):351-387, 2005.

