
An empirical study of functional complexity as an

indicator of overfitting in Genetic Programming

Leonardo Trujillo a, Sara Silva b,c,
Pierrick Legrand d,e and Leonardo Vanneschi f,b

a Instituto Tecnológico de Tijuana, Av. Tecnológico S/N, Tijuana, BC, México
b INESC-ID Lisboa, KDBIO group, Lisbon, Portugal

c CISUC, ECOS group, University of Coimbra, Portugal
d IMB, Institut de Mathématiques de Bordeaux, UMR CNRS 5251, France

e ALEA Team at INRIA Bordeaux Sud-Ouest, France
f Department of Informatics, Systems and Communication (D.I.S.Co.), University of

Milano-Bicocca, Milan, Italy
leonardo.trujillo.ttl@gmail.com,sara@kdbio.inesc-id.pt,

pierrick.legrand@u-bordeaux2.fr,vanneschi@disco.unimib.it

Abstract. Recently, it has been stated that the complexity of a solution is
a good indicator of the amount of overfitting it incurs. However, measur-
ing the complexity of a program, in Genetic Programming, is not a trivial
task. In this paper, we study the functional complexity and how it relates
with overfitting on symbolic regression problems. We consider two mea-
sures of complexity, Slope-based Functional Complexity, inspired by the
concept of curvature, and Regularity-based Functional Complexity based
on the concept of Hölderian regularity. In general, both complexity mea-
sures appear to be poor indicators of program overfitting. However, re-
sults suggest that Regularity-based Functional Complexity could provide
a good indication of overfitting in extreme cases.

1 Introduction

In the field of Genetic Programming (GP), a substantial amount of research fo-
cuses on the bloat phenomenon Bloat is an excess of code growth without a
corresponding improvement in fitness [10], and it can cause several types of
problems during a GP run. For instance, bloat can stagnate a GP search because
when program trees become excessively large then fitness evaluation can turn
into a computational bottleneck. Moreover, it is also assumed that bloat is re-
lated to overfitting, one of the most important problems in machine learning.
It is often stated that simpler solutions will be more robust and will general-
ize better than complex ones, with the latter being more likely to overfit the
training data [6, 14]. The GP community has tacitly assumed that simple solu-
tions can be equated with small program trees, and that very large programs
correspond to complex solutions [8]. Therefore, bloat was assumed to be a good
indicator of program overfitting. However, recent experimental work suggests
that this assumption is not reliable [14]. In particular, [14] showed that a causal

link between bloat and overfitting did not exist on three test cases. From this
it follows that bloated programs should not be a priori regarded as complex.
This leads us towards two important questions. First, how can program com-
plexity be measured? And second, can program complexity be used as an indi-
cator of program overfitting? Here, we study the measure of functional complex-
ity proposed in [14], which we call Slope-based Functional Complexity (SFC).
SFC in inspired by the concept of curvature, and represents the first measure of
complexity that is explicitly intended to be an indicator of program overfitting.
While SFC is based on a reasonable intuition, the methodological approach it
requires can become complicated for multidimensional problems. Therefore,
we propose a measure of complexity based on the concept of Hölderian reg-
ularity, and we call it Regularity-based Functional Complexity (RFC), which
captures the underlying justification of SFC without being hampered by some
of its practical difficulties. Both measures are experimentally tested on two real
world problems and compared based on their correlation with overfitting [14].

2 Overfitting

Based on [6, 14], for a GP search in program space P an individual program
p ∈ P overfits the training data if an alternative program p′ ∈ P exists such
that p has a smaller error than p′ over the training samples, but p′ has a smaller
error over the entire distribution of instances. In the above terms, overfitting
is practically impossible to measure because it requires an exhaustive search
over P and the entire distribution of instances. Nevertheless, [14] argues that
a good approximation can be obtained with the relationship between fitness
computed on the training set and fitness computed on an independent test set.
In our work, we use the measure for overfitting proposed in [14]; which pro-
ceeds as follows for a minimization problem. If at generation g test fitness is
better than training fitness, then (overfitting(g) = 0); if test fitness is better
than the best test fitness obtained thus far then (overfitting(g) = 0); otherwise,
overfitting is quantified by the difference of the distance between training and
test fitness at generation g and the distance between training and test fitness at
the generation when the best test fitness was obtained. In this procedure, test
fitness is computed only for the best individual of the population, the individ-
ual with the best training fitness. This individual is chosen because we want to
measure the overfitting of the best GP solution, since this is the individual that
will be returned at the end of the search. If elitism is used then training fitness
will be monotonically decreasing, thus overfitting(g) ≥ 0 ∀g.

Therefore, overfitting depends on the performance of a program on the test
dataset. In the best case scenario, the test set is a representative sample of the
unseen data that a program might encounter during on-line operation. How-
ever, it might also be true that an independent test set could be difficult to
produce or might be unavailable. Therefore, an indicator of program overfit-
ting would be a useful practical tool. In this sense, [14] suggests that program
complexity could indicate if overfitting is present during a GP run.

3 Program complexity

Program complexity could be measured in different ways. For instance, [15]
proposed two measures. The first is to equate complexity with tree size, based
on the assumption that bloated programs are also complex. The second ad-
dresses the complexity of the program output or functional complexity, mea-
sured as the degree of the Chebyshev polynomial that approximates the out-
put. In [15] complexity is studied as an objective that should be optimized, not
as an indicator of program overfitting, which could be studied in future work.

3.1 Functional complexity

If we are describing the complexity of a program, focusing on the functional
output seems to be the best approach for several reasons. First, the size and
shape of a program might be misleading if many nodes are introns, in which
case they have no bearing on program output. Moreover, even a large program
might be simplified and expressed as a compact expression. The size of the
program influences the dynamics of the evolutionary process, but tells us little
with respect to the output of each program. Secondly, the genotype-phenotype
distinction is not clear in GP, where an explicit phenotype is normally not de-
fined [5]. Therefore, it is easier to focus on the functional output of a program
in order to describe its behavior. Here, we describe two measures of functional
complexity. We begin with the SFC measure proposed in [14], and afterwards
present our proposed RFC measure. It is important to state that despite the dif-
ferences between SFC and RFC, it should become clear that both are concerned
with measuring the same underlying characteristic of functional behavior.

Slope-based Functional Complexity The complexity measure proposed in [14]
is inspired by the concept of function curvature. Curvature is the amount by
which the geometric representation of a function deviates from being flat or
straight. In [14], the authors correctly point out that a program tree with a re-
sponse that tends to be flat, or smooth, should be characterized as having a low
functional complexity, and that such a function will tend to have a lower curva-
ture at each sampled point. Conversely, a complex functional output would ex-
hibit a larger amount of curvature at each point. This basic intuition seems rea-
sonable, but computing a measure of curvature is not trivial [7], especially for
multidimensional real-world problems. In order to overcome this, [14] proposes
a heuristic measure based on the slope of the line segments that join each pair of
adjacent points. Consider a bi-dimensional regression problem, for which the
graphical representation of the output of a program is a polyline. This poly-
line is produced by plotting the points that have fitness cases in the abscissa,
the corresponding values of the program output as ordinates, and sorting the
points based on the fitness cases. Then, these points are joined by straight line
segments and the slope of each segment is computed. The SFC is calculated by
summing the differences of adjacent line segments. If the slopes are identical,

the value of the measure is zero, thus a low complexity score. Conversely, if the
sign of the slope of all adjacent segments changes then complexity is high.

The intuition behind SFC seems to be a reasonable first approximation of a
complexity measure that could serve as a predictor of GP overfitting. However,
the formal definition of SFC can become complicated for multidimensional
problems and require a somewhat heuristic implementation for the following
reasons [14]. First, the SFC considers each problem dimensions independently
by projecting the output of a function onto each dimension and obtaining a
complexity measure for each dimension separately. In [14] the final SFC was the
average of all such measures, while in this paper we test the average, median,
max and min values. The decision to consider each dimension separately might
be problematic since the complexity of a function in a multidimensional space
could be different from the complexity of the function as projected onto each
individual dimension. Second, by employing such a strategy, the data might
become inconsistent. Namely, if we order the data based on a single dimension
then the case might arise in which multiple values at the ordinates (program
output) correspond with a single value on the abscissa (fitness cases). In such a
case a slope measure cannot be computed, and an ad-hoc heuristic is required.

Regularity-based Functional Complexity Following the basic intuition behind
the SFC measure, we propose a similar measure of complexity that focuses on
the same functional behavior. Another way to interpret the output we expect
from an overfitted function, is to use the concept of Hölderian regularity. In
the areas of signal processing and image analysis it is quite clear that the most
prominent and informative regions of a signal correspond with those portions
where signal variation is highest [13]. It is therefore useful to be able to char-
acterize the amount of variation, or regularity, that is present at each point on
signal. One way to accomplish this is to use the concept of Hölderian regularity,
which characterizes the singular or irregular signal patterns [11]. The regularity
of a signal at each point can be quantified using the pointwise Hölder exponent.

Definition 1: Let f : R → R, s ∈ R
+∗ \ N and x0 ∈ R. f ∈ Cs(x0) if and only

if ∃η ∈ R
+∗, and a polynomial Pn of degree n < s and a constant c such that

∀x ∈ B(x0, η), |f(x) − Pn(x − x0)| ≤ c|x − x0|
s , (1)

where B(x0, η) is the local neighborhood around x0 with a radius η. The point-
wise Hölder exponent of f at x0 is αp(x0) = sups {f ∈ Cs(x0)}.

In the above definition, Pn represents the Taylor series approximation of
function f . When a singularity (or irregularity) is present at x0 then f is non-
differentiable at that point, and Pn represents the function itself. In this case,
Eq. 1 describes a bound on the amount by which a signal varies, or oscillates,
around point x0 within an arbitrary local neighborhood B(x0, η). Hence, when
the singularity is large at x0, with a large variation of the signal, then αp → 0 as
x → x0. Conversely, αp → 1 when the variation of the signal (f(x) − Pn) → 0

Fig. 1. Hölderian envelope of signal f at point x0.

as x → x0, the point is smoother or more regular. Figure 1 shows the envelope
that bounds the oscillations of f expressed by the Hölder exponent αp at x0.

The basic intuition of SFC is that a complex functional output should exhibit
an irregular behavior (high curvature). Conversely, a simple function should
produce a smoother, or more regular, output. Therefore, we propose to use the
Hölder exponent as the basis for a complexity measure which we call Regularity-
based Functional Complexity, or RFC. The idea is to compute the Hölder ex-
ponent at each fitness case and use these measures to characterize the overall
regularity of the functional output. The final RFC measure could be a variety of
statistics computed from the set of Hölder exponents obtained from each fitness
case; here, as for SFC, we test the average, median, max and min values. There
are several estimators for the Hölder exponent [1, 12]; however, here we use the
oscillations method, which can be derived directly from Definition 1 [11].

Estimation of the pointwise Hölder exponent through oscillations The Hölder
exponent of function f(x) at point x0 is the sup(αp) ∈ [0, 1], for which a constant
c exists such that ∀x′ in a neighborhood of x0,

|f(x0) − f(x′)| ≤ c|x0 − x′|αp . (2)

In terms of signal oscillations, a function f(x) is Hölderian with exponent αp ∈
[0, 1] at x0 if ∃c ∀τ such that oscτ (t) ≤ cταp , with

oscτ (x0) = sup
x′,x′′∈[x0−τ,x0+τ]

|f(x′) − f(x′′)| . (3)

Now, since x′ = x0 + h in Eq. 2, we can also write that

αp(x0) = lim inf
h→0

log |f(x0 + h) − f(x0)|

log |h|
. (4)

Therefore, the problem is that of finding an αp that satisfies 2 and 3, and in order
to simplify this process we can set τ = βr. Then, we can write oscτ ≈ cτα

p =

β(αpr+b), which is equivalent to logβ(oscτ) ≈ αpr + b.
Therefore, an estimation of the regularity can be built at each point by com-

puting the slope of the regression between the logarithm of the oscillations oscτ

Table 1. GP parameters used for real world experiments.

Parameter Description

Population size 500 individuals
Iterations 100 generations
Initialization Ramped Half-and-Half
Crossover probability pc = 0.5
Mutation probability pµ = 0.5
Initial max. depth Six levels
Selection Lexicographic Parsimony Tournament
Survival Elitism
Runs 30

and the logarithm of the dimension of the neighborhood at which the oscilla-
tions τ are computed. Here, we use least squares regression to compute the
slope, with β = 2.1 and r = 0.1, 0.2, . . . , 9. Also, it is preferable not to use all
sizes of neighborhoods between two values τmin and τmax. Hence, we calculate
the oscillation at point x0 only on intervals of the form [x0 − τr : x0 + τr]. For a
function in R

D , τr is defines a hyper-volume around x0, such that d(x′, x0) ≤ τr

and d(x′′, x0) ≤ τr, where d(a, b) is the Euclidean distance between a and b.
The implicit difficulties of applying SFC are not an issue for RFC, since it is

not necessary to consider each problem dimension separately. Moreover, unlike
the concept of curvature, estimating signal regularity does not require deriva-
tives in a multidimensional space. Therefore, the RFC provides a straightfor-
ward measure of the intuitive functional behavior that SFC attempts to capture.

4 Experiments

Test problems and experimental setup In order to test both SFC and RFC
we use the same two real world problems as [14]. They consist on predict-
ing the value of two pharmacokinetic parameters for a set of candidate drug
compounds based on their molecular structure. The first data set relates to the
parameter of human oral bioavailability, and contains 260 samples in a 241 di-
mensional space. The second data set relates to the median lethal those of a
drug, or toxicity, and contains 234 samples from a 626 dimensional space. The
experimental setup for our GP is summarized in Table 1. Most parameters are
the same as those in [14], except for the probabilities of each genetic opera-
tor. The reason for this is that we want a GP system that does not bloat, how-
ever the Operator Equalisation technique used in [14] was considered to be too
computationally costly. Therefore, we combine simple one-point crossover with
standard subtree mutation in order to avoid code bloat and still achieve good
fitness scores. The choice of a GP without bloat instead of a typical GP was
made because we want to confirm that a causal relationship between bloat and
overfitting is not a general one.

In Section 3 we presented SFC and RFC, however there is one more impor-
tant consideration that must be accounted for before computing these scores.
Since we are to compute a complexity score for any program tree, it will some-
times be the case that a particular program will use only a fraction of the total

0 20 40 60 80 100
30

35

40

45

50

Generations

T
ra

in
in

g
F

itn
es

s

Median
Avg

(a) Training

0 20 40 60 80 100
30

35

40

45

50

Generations

T
es

t F
itn

es
s

Median
Avg

(b) Testing

0 20 40 60 80 100
−0.6

−0.4

−0.2

0

0.2

0.4

Generations

B
lo

at

Median
Avg

(c) Bloat

0 20 40 60 80 100
0

0.5

1

1.5

Generations

O
ve

rf
itt

in
g

Median
Avg

(d) Overfitting

Fig. 2. Evolution of the bioavailability problem.

0 20 40 60 80 100
1900

1950

2000

2050

2100

2150

2200

Generations

T
ra

in
in

g
F

itn
es

s

Median
Avg

(a) Training

0 20 40 60 80 100
2150

2200

2250

2300

2350

2400

Generations

T
es

t F
itn

es
s

Median
Avg

(b) Testing

0 20 40 60 80 100
−0.4

−0.3

−0.2

−0.1

0

0.1

Generations

B
lo

at

Median
Avg

(c) Bloat

0 20 40 60 80 100
0

50

100

150

200

250

300

Generations

O
ve

rf
itt

in
g

Median
Avg

(d) Overfitting

Fig. 3. Evolution of the toxicity problem.

dimensions (expressed as terminals) of the problem. Therefore, a decision must
be made regarding which dimensions to include when either SFC or RFC are
computed. In this case we only use those dimensions that are part of a pro-
grams computations. Finally, we point out that all of our code was developed
using Matlab 2009a, using the GPLAB toolbox for our GP system [9], and the
FracLab toolbox to compute the Hölder exponents of the RFC measure [4].

Results We begin by presenting the results obtained for training fitness, test fit-
ness, bloat and overfitting for the bioavailability and toxicity problems, shown
in figures 2 and 3 respectively. In each case we present the median and average
performance over all runs. There are several noticeable patterns in these plots.
First, in both cases we can see that our GP systems converges to good fitness
scores [14]. Second, the GP system does not incur bloat, in fact the median val-
ues in both problems fall below zero, which means that the average population
size actually decreased with respect to the initial population. This is an inter-
esting result, where bloat is eliminated from our runs using a simple strategy.
Third, we see that in both problems there is only a small amount of overfitting
based on the median scores, with values much lower than those published in
[14]. However, the average overfitting is substantially larger than the median
value, this indicates that our runs produced outliers.

The evolution of the complexity measures are presented in figures 4 and 5
for the bioavailability and toxicity problems respectively. Each plot considers a
different representative statistics for each measure, as stated in Section 3, and
shows the median value of this statistics over all the runs. However, it is not
possible to draw a clear conclusion regarding the relationship, or correlation,
between complexity and the overfitting curves shown in figures 2(d) and 3(d).

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3x 10
6

Generations

S
F

C
 −

 a
vg

(a)

0 20 40 60 80 100
0

1

2

3

4x 10
5

Generations

S
F

C
 −

 m
ed

ia
n

(b)

0 20 40 60 80 100
0

1

2

3

4x 10
7

Generations

S
F

C
 −

 m
ax

(c)

0 20 40 60 80 100
0

50

100

150

Generations

S
F

C
 −

 m
in

(d)

0 20 40 60 80 100
0.95

1

1.05

1.1

1.15

1.2

1.25

Generations

R
F

C
 −

 a
vg

(e)

0 20 40 60 80 100
0.94

0.96

0.98

1

1.02

1.04

1.06

Generations

R
F

C
 −

 m
ed

ia
n

(f)

0 20 40 60 80 100
1.5

2

2.5

Generations

R
F

C
 −

 m
ax

(g)

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

Generations

R
F

C
 −

 m
in

(h)

Fig. 4. Evolution of both complexity measures for the bioavailabitly problem. (a)-(d) cor-
respond to the SFC measure and show the average, median, max and min of the SFC
values of all problem dimensions. (a)-(d) correspond to the RFC measure and show the
average, median, max and min of all the Hölder exponents computed for each fitness
case. All plots show the median value obtained over all 30 runs.

0 20 40 60 80 100
0.8

1

1.2

1.4

1.6x 10
7

Generations

S
F

C
 −

 a
vg

(a)

0 20 40 60 80 100
4

6

8

10

12x 10
6

Generations

S
F

C
 −

 m
ed

ia
n

(b)

0 20 40 60 80 100
2

3

4

5

6

7x 10
7

Generations

S
F

C
 −

 m
ax

(c)

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

Generations

S
F

C
 −

 m
in

(d)

0 20 40 60 80 100
0.7

0.8

0.9

1

1.1

Generations

R
F

C
 −

 a
vg

(e)

0 20 40 60 80 100
0.65

0.7

0.75

0.8

0.85

0.9

Generations

R
F

C
 −

 m
ed

ia
n

(f)

0 20 40 60 80 100

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Generations

R
F

C
 −

 m
ax

(g)

0 20 40 60 80 100

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Generations

R
F

C
 −

 m
in

(h)

Fig. 5. Evolution of both complexity measures for the toxicity problem. (a)-(d) corre-
spond to the SFC measure and show the average, median, max and min of the SFC
values of all problem dimensions. (a)-(d) correspond to the RFC measure and show the
average, median, max and min of all the Hölder exponents computed for each fitness
case. All plots show the median value obtained over all 30 runs.

Therefore, scatter plots of complexity and overfitting are shown in figures
6 and 7 for the bioavailability and toxicity problems respectively. These plots
take the best individual from each generation and each run, and their overfit-

0 5 10 15
0

1

2

3

4

5

6x 10
71

Overfitting

S
F

C
 −

 a
vg

(a) ρ = −0.02

0 5 10 15
0

1

2

3

4

5x 10
6

Overfitting

S
F

C
 −

 m
ed

ia
n

(b) ρ = 0.07

0 5 10 15
0

1

2

3

4

5x 10
72

Overfitting

S
F

C
 −

 m
ax

(c) ρ = −0.07

0 5 10 15
0

1

2

3

4x 10
5

Overfitting

S
F

C
 −

 m
in

(d) ρ = −0.08

0 5 10 15
0

0.5

1

1.5

2

Overfitting

R
F

C
 −

 a
vg

(e) ρ = 0.15

0 5 10 15
0

0.5

1

1.5

2

Overfitting

R
F

C
 −

 m
ed

ia
n

(f) ρ = 0.10

0 5 10 15
0

2

4

6

8

Overfitting

R
F

C
 −

 m
ax

(g) ρ = 0.35

0 5 10 15
0

0.5

1

1.5

Overfitting

R
F

C
 −

 m
in

(h) ρ = −0.22

Fig. 6. Scatter plots of both complexity measures for the bioavailabitly problem. (a)-(d)
correspond to the SFC measure and show the average, median, max and min. (a)-(d)
correspond to the RFC measure and show the average, median, max and min. All plots
also show Pearson’s correlation coefficient ρ.

0 2000 4000 6000
0

1

2

3

4

5x 10
7

Overfitting

S
F

C
 −

 a
vg

(a) ρ = 0.14

0 2000 4000 6000
0

1

2

3

4x 10
7

Overfitting

S
F

C
 −

 m
ed

ia
n

(b) ρ = −0.08

0 2000 4000 6000
0

2

4

6

8

10

12x 10
7

Overfitting

S
F

C
 −

 m
ax

(c) ρ = 0.22

0 2000 4000 6000
0

2

4

6

8

10x 10
6

Overfitting

S
F

C
 −

 m
in

(d) ρ = −0.08

0 2000 4000 6000
0

0.5

1

1.5

2

2.5

3

Overfitting

R
F

C
 −

 a
vg

(e) ρ = 0.12

0 2000 4000 6000
0

0.5

1

1.5

2

2.5

Overfitting

R
F

C
 −

 m
ed

ia
n

(f) ρ = 0.15

0 2000 4000 6000
0

5

10

15

20

25

Overfitting

R
F

C
 −

 m
ax

(g) ρ = 0.00

0 2000 4000 6000
0

0.5

1

1.5

Overfitting

R
F

C
 −

 m
in

(h) ρ = −0.04

Fig. 7. Scatter plots of both complexity measures for the toxicity problem. (a)-(d) corre-
spond to the SFC measure and show the average, median, max and min. (a)-(d) corre-
spond to the RFC measure and show the average, median, max and min. All plots also
show Pearson’s correlation coefficient ρ.

ting and complexity scores as ordered pairs. Additionally, each plot shows the
Pearson’s correlation coefficient ρ between each complexity score and overfit-
ting. For analysis, we follow the empirical estimates of [2] and consider values
of ρ > 0.15 as an indication of positive correlation, ρ < −0.15 as negative corre-
lation, and −0.15 ≤ ρ ≤ 0.15 as an indication of no correlation. It is important

to point out that SFC is expected to have a positive correlation with overfitting
while RFC should have a negative one given the definition of each. Most tests
show and absence of correlation, with only SFC-max achieving the expected
result on toxicity, and RFC-min on bioavailability.

Since the best case scenario would be to have a complexity measure that pre-
dicts when a program is overfitted, then it is more informative to discard those
individuals with low overfitting, and focus on individuals with a large amount
of overfitting. In other words, if a complexity measure cannot be used as an in-
dicator of extreme cases of overfitting, then its usefulness would be quite low.
Therefore, in figures 8 and 9 we show the same scatter plots as before, however
in this case we only present the 5% of individuals with the highest amount of
overfitting. First, consider the results for the SFC measure. In most cases, SFC
shows a negative correlation with overfitting on both problems, the exact oppo-
site of what we expected. It is only SFC-min that shows the expected correlation
on the toxicity problem. Second, for RFC on the bioavailability problem, only
RFC-median and RFC-min show the expected negative correlation. However,
given the low overfitting on this problem, we should only expect to detect a
small amount of correlation in the best case scenario. On the other hand, for
the toxicity problem all RFC variants show the expected correlation. Hence, in
this case for the higher overfitting values (the top 5%), the RFC measure could
provide an indication of program overfitting.

It appears that the above results are not very strong, given low correlation
values achieved even in the best cases. Nonetheless, we would like to stress the
difficulty of the problem at hand. In both test cases we have a small sample
of data that lies within a highly multidimensional space. Therefore, extracting
a proper description of program behavior, and thus functional complexity, is
not trivial. For instance, the RFC measures relies on the pointwise Hölder ex-
ponent, and in order to estimate it at any point it is necessary to consider how
the function oscillates within a series of progressively larger and concentric lo-
cal neighborhoods. However, in both of our test cases it becomes extremely
difficult to correctly estimate the oscillations of the function, and sometimes
it cannot be done, because of the sparseness of the data. One possible way to
solve this problem is to generate or interpolate the missing data in a way that
preserves the regularity of the function [3], however this is left as future work.
In summary, if any measure can produce, even a slight indication of overfitting,
this should suggest that we are proceeding in a promising direction.

5 Summary and concluding remarks

This work presents an empirical study of functional complexity in GP. It is com-
monly stated that simpler solutions to a problem should be preferred because
they are less likely to be overfitted to the training examples. In this work, we
study two complexity measures, Slope-based Functional Complexity [14], and
Regularity-based Functional Complexity derived from the concept of Hölderian
regularity. We measure the evolution of SFC and RFC on a bloat-free GP sys-
tem using two real-world problems, in order to evaluate if they can serve as

0 5 10 15
0

2

4

6

8

10x 10
6

Overfitting

S
F

C
 −

 a
vg

(a) ρ = −0.33

0 5 10 15
0

2

4

6

8

10x 10
5

Overfitting

S
F

C
 −

 m
ed

ia
n

(b) ρ = −0.26

0 5 10 15
0

2

4

6

8x 10
7

Overfitting

S
F

C
 −

 m
ax

(c) ρ = −0.35

0 5 10 15
0

50

100

150

200

250

300

Overfitting

S
F

C
 −

 m
in

(d) ρ = −0.01

0 5 10 15
0.5

1

1.5

2

Overfitting

R
F

C
 −

 a
vg

(e) ρ = −0.12

0 5 10 15

0.7

0.8

0.9

1

1.1

1.2

1.3

Overfitting

R
F

C
 −

 m
ed

ia
n

(f) ρ = −0.20

0 5 10 15
0

2

4

6

8

Overfitting

R
F

C
 −

 m
ax

(g) ρ = −0.05

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Overfitting

R
F

C
 −

 m
in

(h) ρ = −0.41

Fig. 8. Scatter plots of both complexity measures for the bioavailabitly problem with the
5% of individuals that have the highest overfitting scores. (a)-(d) SFC measure, showing
the average, median, max and min. (a)-(d) RFC measure, showing the average, median,
max and min. All plots also show Pearson’s correlation coefficient ρ.

0 2000 4000 6000
0.5

1

1.5

2

2.5

3

3.5x 10
7

Overfitting

S
F

C
 −

 a
vg

(a) ρ = −0.84

0 2000 4000 6000
0

1

2

3

4x 10
7

Overfitting

S
F

C
 −

 m
ed

ia
n

(b) ρ = −0.70

0 2000 4000 6000
2

4

6

8

10x 10
7

Overfitting

S
F

C
 −

 m
ax

(c) ρ = −0.62

0 2000 4000 6000
0

500

1000

1500

2000

Overfitting

S
F

C
 −

 m
in

(d) ρ = 0.59

0 2000 4000 6000
0

0.5

1

1.5

2

Overfitting

R
F

C
 −

 a
vg

(e) ρ = −0.58

0 2000 4000 6000
0

0.5

1

1.5

2

Overfitting

R
F

C
 −

 m
ed

ia
n

(f) ρ = −0.40

0 2000 4000 6000
0

2

4

6

8

Overfitting

R
F

C
 −

 m
ax

(g) ρ = −0.71

0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1

Overfitting

R
F

C
 −

 m
in

(h) ρ = −0.44

Fig. 9. Scatter plots of both complexity measures for the toxicity problem with the 5%
of individuals that have the highest overfitting scores. (a)-(d) SFC measure, showing the
average, median, max and min. (a)-(d) RFC measure, showing the average, median, max
and min. All plots also show Pearson’s correlation coefficient ρ.

indicators of overfitting during a GP run. Overall, the results show almost no
correlation between both complexity measures and program overfitting. How-
ever, when we consider only highly overfitted solutions, then the RFC mea-
sures does appear to provide a somewhat useful indicator of overfitting. On
the other hand, the SFC measure fails to achieve any useful correlation with

program overfitting, and in some cases it produces the opposite of what is ex-
pected. Nonetheless, it is important to stress that this should be taken as an
initial, and partial, empirical study of functional complexity in GP. Therefore,
further research should focus on a more comprehensive evaluation of these,
and possibly other, measures of complexity as indicators of GP overfitting.

Acknowledgements This work was partially supported by FCT (INESC-ID multian-

nual funding) through the PIDDAC Program funds. Sara Silva and Leonardo Vanneschi

acknowledge project PTDC/EIA-CCO/103363/2008 from FCT, Portugal.

References

1. S. Jaffard. Wavelet techniques in multifractal analysis. In Fractal Geometry and Appli-
cations: A Jubilee of Benoit Mandelbrot, Proceedings of Symposium in Pure Mathematics,
volume 72, pages 91–151, 2004.

2. T. Jones and S. Forrest. Fitness distance correlation as a measure of problem dif-
ficulty for genetic algorithms. In Proceedings of the Sixth International Conference on
Genetic Algorithms, pages 184–192. Morgan Kaufmann, 1995.

3. P. Legrand and J. Lévy-Véhel. Local regularity-based interpolation. In WAVELET X,
Part of SPIE’s Symposium on Optical Science and Technology, volume 5207, 2003.

4. J. Lévy-Véhel and P. Legrand. Thinking in Patterns, chapter Sig-
nal and Image Processing with FRACLAB, pages 321–322. 2004.
http://fraclab.saclay.inria.fr/homepage.html.

5. J. McDermott, E. Galvan-Lopez, and M. O’Neill. A fine-grained view of GP locality
with binary decision diagrams as ant phenotypes. In R. Schaefer et al., editors, Pro-
ceedings of PPSN 2010, volume 6238 of LNCS, pages 164–173, Krakow, Poland, 2010.
Springer.

6. T. Mitchell. Machine Learning. McGraw-Hill, 1997.
7. J.-M. Morvan. Generalized Curvatures. Springer, 1st edition, 2008.
8. J. Rosca. Generality versus size in genetic programming. In Proceedings of Genetic

Programming 1996, pages 381–387. MIT Press, 1996.
9. S. Silva and J. Almeida. Gplab: A genetic programming toolbox for matlab. In

Proceedings of the Nordic MATLAB conference, pages 273–278, 2003.
10. S. Silva and E. Costa. Dynamic limits for bloat control in genetic programming

and a review of past and current bloat theories. Genetic Programming and Evolvable
Machines, 10(2):141–179, 2009.

11. C. Tricot. Curves and Fractal Dimension. Springer-Verlag, 1995.
12. L. Trujillo, P. Legrand, and J. Lévy-Véhel. The estimation of hölderian regularity

using genetic programming. In Proceedings of GECCO 2010, pages 861–868, New
York, NY, USA, 2010. ACM.

13. L. Trujillo, P. Legrand, G. Olague, and C. Pérez. Optimization of the hölder image
descriptor using a genetic algorithm. In Proceedings of GECCO 2010, pages 1147–
1154, New York, NY, USA, 2010. ACM.

14. L. Vanneschi, M. Castelli, and S. Silva. Measuring bloat, overfitting and functional
complexity in genetic programming. In Proceedings of GECCO 2010, pages 877–884,
New York, NY, USA, 2010. ACM.

15. E. J. Vladislavleva, G. F. Smits, and D. Den Hertog. Order of nonlinearity as a com-
plexity measure for models generated by symbolic regression via pareto genetic pro-
gramming. IEEE Trans. Evol. Comp, 13:333–349, April 2009.

