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Abstract. The Next Generation Air Traffic System (NGATS) is aiming
to provide substantial computer support for the air traffic controllers. Al-
gorithms for the accurate prediction of aircraft movements are of central
importance for such software systems but trajectory prediction has to
work reliably in the presence of unknown parameters and uncertainties.
We are using the AutoBayes program synthesis system to generate cus-
tomized data analysis algorithms that process large sets of aircraft radar
track data in order to estimate parameters and uncertainties. In this pa-
per, we present, how the tasks of finding structure in track data, estima-
tion of important parameters in climb trajectories, and the detection of
continuous descent approaches can be accomplished with compact task-
specific AutoBayes specifications. We present an overview of the Au-
toBayes architecture and describe, how its schema-based approach gen-
erates customized analysis algorithms, documented C/C++ code, and
detailed mathematical derivations. Results of experiments with actual
air traffic control data are discussed.

1 Introduction

Commercial Air Traffic Control (ATC) has coped with the strongly increasing
volume of commercial passenger and freight air traffic that causes more and more
crowded airways, delays, and canceled flights. The current ATC systems rely on
radar data to measure the position of the aircraft; the communication between
air traffic controllers and the pilots is handled via voice communication. The
Next Generation Air Traffic System (NGATS) is aiming to provide substantial
computer support for the air traffic controllers in the form of alert and advisory
systems as well pave the way for computerized data links between ATC and the
aircraft itself.

The NASA Ames Research Center has developed the software system CTAS
(Center Tracon Advisory System) [1,2], which is used as a research and devel-
opment platform for many projects, e.g., the automatic recognition/prediction
of separation violations, or the En-route Descent Advisory system (EDA) [3].

A central software component of the CTAS system is the Trajectory Synthe-
sizer (TS) [4]. Based upon the current state of the aircraft (position, altitude,
heading, speed), the current atmospheric data like wind speed and direction,



and the intent (e.g., flight plan), the TS will calculate a prediction of the air-
craft’s future movements (trajectory). The TS utilizes aerodynamic equations of
motion, weather forecasts, aircraft performance models, as well the intent of the
current flight segment (e.g., “climb with constant speed to 30,000ft”) to generate
these predictions. It is obvious that the predictions of the trajectory synthesiz-
er should be as accurate as possible, because many other ATC algorithms use
the TS and base their decision upon the predicted trajectories. On the other
hand, the accuracy of a trajectory prediction depends on many factors of un-
certainty: weather forecast, surveillance data (radar, ADS-B), intent (controller
instruction, pilot procedures), pilot inputs (delays in reaction and erroneous pi-
lot actions), navigation, as well as aircraft performance modeling, all of which
are often unknown.

In order to obtain realistic estimates for unknown parameters, data mining
and analysis can be performed on large data sets of actual aircraft trajectories.
All movements of commercial aircraft are registered by land-based radar sys-
tems and recorded approximately every 12 seconds. Thus huge data sets become
available, even for a restricted region or even a single airport. Such trajectory
data can also be used for testing the TS software: how close is the predicted tra-
jectory to the actual one, compared after the fact. Such tests can reveal strength
and weaknesses of the TS algorithm. However, there is a catch: almost all of
the recorded trajectories comprise nominal flights (e.g., a straight overflight or
a standard approach). Thus a high test coverage can only be obtained when an
infeasible number of trajectories are exercised. For testing purposes, therefore,
data sets with a well-balanced mixture of nominal and off-nominal trajectories
are desirable. Extracting such a set from a huge set of actual air traffic data
again is a data mining task.

In this paper, we describe, how the AutoBayes program synthesis system
can be used for the estimation of unknown parameters and the extraction of
a wide variety of flight scenarios. The AutoBayes system [5,6] is a schema-
based synthesis system, which takes a high-level statistical model as its input.
From that, AutoBayes generates a customized data analysis algorithm and
produces C or C++ code, which can be directly invoked from Matlab or Octave
to actually process the data. The AutoBayes system is well suited for mining
of ATC data, because each different mining task requires a different statistical
model, which would require the implementation of specific algorithms or existing
code and libraries must be adapted accordingly—usually a very time-consuming
task. The ability of AutoBayes to quickly synthesize customized algorithms
from compact declarative specifications facilitates a quick exploration of different
models.

AutoBayes has been used to support data analysis tasks on sets of actual
aircraft trajectories. We will describe AutoBayes models for the unsupervised
clustering of track data based upon sets of features. Such structuring of a large
set of aircraft movements can be used to isolate specific trajectories of interest
(e.g., some unusual flight profile), or to find representative trajectories in large
sets of very similar trajectories. We will also report on the use of AutoBayes



models for time series analysis to estimate elements of the flight profile such
as the CAS-mach speed transition, as well as for the detection of continuous
descent approaches (CDA). For each of the applications, a short, fully declara-
tive statistical specification of the problem was given to the AutoBayes pro-
gram synthesis system, which in turn generated customized C/C++ algorithms,
specifically tailored toward the analysis problem at hand.

There are several approaches in the literature for the automated analysis
of air traffic control data using different statistical approaches. For example, [7]
uses clustering algorithms to separate out nominal trajectories from those, which
do not follow a usual profile and thus could be a potential source for problems.
[8] performs statistical time series analysis on air traffic data.

For our analysis, we could have directly used one of the available EM-
implementations, like Autoclass [9], EMMIX [10], MCLUST [11], or WEKA
[12]. However, such tools are usually designed for Gaussian distributed data
only and only allow little customization. Refining the statistical model (e.g., by
incorporating other probability distributions for certain variables or to introduce
domain knowledge), the analysis algorithms need to be modified substantially
for each problem variant, making experimentation a time-consuming and error-
prone undertaking with such tools.

The rest of this paper is structured as follows: In Section 2, we give an
overview of the AutoBayes program synthesis system and its architecture.
Section 3 discusses how AutoBayes has been used to generate clustering al-
gorithms for the analysis of aircraft track data. We discuss the entire Auto-

Bayes specification, describe, how AutoBayes automatically derives solutions
for clustering of non-Gaussian distributions and present experimental results. In
Section 4, we describe, how change-point time series models, have been used to
estimate parameters or detect profiles. Section 5 summarizes our approach and
concludes.

2 The AutoBayes Program Synthesis System

AutoBayes [5,6] is a fully automatic program synthesis system that generates
efficient and documented C/C++ code from abstract statistical model specifica-
tions. Developed at NASA Ames, AutoBayes is implemented in approximately
90,000 lines of documented SWI Prolog (http://www.swi-prolog.org) code. From
the outside, AutoBayes looks similar to a compiler for a very high-level pro-
gramming language (Figure 1): it takes an abstract problem specification in the
form of a (Bayesian) statistical model and translates it into executable C/C++
code that can be called from Matlab or Octave.

Once, a specification (for examples see Sections 3 and 4) has been converted
into an internal representation by the input parser, a Bayesian network [13], rep-
resenting the essential information of the specification is created. The synthesis
kernel uses a schema-based approach to generate a customized algorithm that
solves the statistical task at hand in an imperative intermediate language. This
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Fig. 1. The AutoBayes system architecture

program is then optimized and the code generator finally produces the desired
code (currently C++ for Octave, C for Matlab, or stand-alone C).

AutoBayes uses a schema-based approach, because of the large and com-
plex synthesis tasks, for which pure deductive synthesis (e.g., [14,15,16]) would
not scale up. Each schema inside the schema library consists of applicability
constraints and a template (parameterized code fragment with holes, which are
Prolog variables). When a schema is applicable for the task at hand, Auto-

Bayes tries to instantiate these parameters by direct calculations or by recur-
sive calls to other schemas, which in turn solve the occurring subtasks. Using
this mechanism, we not only generate code, but also comments and mathemat-
ical derivations, which can be automatically typeset in LATEX (for an example
see the appendix). All schemas are implemented as Prolog clauses; for guiding
the search we use Prolog’s backtracking mechanism and the constraints in the
schemas. The constraints are formulated as conditions over the Bayesian network
or as properties about the underlying model.

The schema library is organized in layers: top-level schemas comprise Bayesian
network decomposition schemas, which are based upon independence theorems
for Bayesian networks [13] as well as other statistical transformations. On the
next layer contains schemas with statistical algorithm skeletons, like, for exam-
ple the EM algorithm (expectation maximization) [17] or k-means for nearest-
neighbor clustering. The bottom layer contains calls to symbolic solvers and
standard numeric optimization methods, for example a Nelder-Mead simplex
algorithm [18].

The schema-based synthesis system heavily relies on a powerful symbolic
system. Based upon a small rewriting engine implemented in PROLOG, a large
set of symbolic simplification rules, support for symbolic differentiation, as well
as a number of symbolic equation solvers has been implemented. For details on
the symbolic system see, e.g., [19].



3 Multivariate Clustering of Aircraft Track Data

The aircraft track data set used for this analysis is derived from radar track data.
Every 12 seconds, position, altitude, heading, speeds, as well as numerous other
data are recorded for each aircraft flying though a specific sector in the air space.
Thus, a recording of an air traffic control center for one day usually contains the
track data of thousands of aircraft; the data for each aircraft are stored as time
series data. Additionally, data about wind speed and wind direction at different
altitudes have been provided.

We are interested into automatically finding structure in these large data sets.
Obvious categories for flight scenarios are departures and ascends, descents, or
high altitude overflights. However, there is a multitude of other categories, which
cannot be described as easily. We have been using multivariate clustering with
AutoBayes to find such categories. As we did not want to perform a detailed
time series analysis, we described each trajectory by a set of features, which were
calculated from the track data (see Section 3.2) and used the feature vector as
the input for multivariate clustering.

3.1 AutoBayes Clustering Models

Clustering problems can be specified as statistical mixture problems. Here, the
statistical distribution or probability density function (PDF) for each feature
must be known. In our case, several variables have discrete values (e.g., booleans
or enumeration types for the different aircraft models), which have a discrete dis-
tribution; continuous variables include distances, times, and angles. Most cluster-
ing algorithms and tools make the assumption that all (continuous and discrete)
variables are Gaussian (normal) distributed. For variables, which have a differ-
ent PDF, Gaussian noise is added to the data in order to obtain a Gaussian-like
distribution. However, such a model can be statistically very inaccurate, in par-
ticular, when dealing with angles. A noisy measurement of an angle close to 0◦

would, when considered normal distributed, yield (incorrectly) two classes with
means around 0◦ and 360◦. If arbitrary values for angles can occur, an angular
rotation does not help either.

With AutoBayes, the user can directly specify customized mixture models,
which correctly deal with variables having different probability distributions.
Listing 1.1 shows a complete AutoBayes specification for such a clustering
task. For space reasons, we focus on just three variables: heading (an angle),
altitude (Gaussian distributed), and the type of the aircraft, which has discrete
values. The actual string values (e.g., ”B747”) are converted into an enumeration
type during preprocessing.

The first lines of Listing 1.1 define the model name and the global decla-
rations for this problem. The constants N and C are instantiated when the
generated code is executed, but they are assumed to be constant within the
algorithm. Constraints are given after the where keyword. Lines 6–12 declare
all distribution parameters for the statistical variables, θ0, m for the von Mises
distribution for the heading hd, µ, and σ for the altitude and ρ for the aircraft



type (e.g., ρ0 = P(x = ”B777”)). Line 12 states that each data point actually
belongs to one of the specified types of aircraft. Since different classes will have
different parameters, these variables are vectors over the classes. Note that all
indexing is 0-based like in C. Φ is the unknown class frequency (Line 14), and c

is the most likely class assignment for each aircraft track, which will be calculat-
ed and returned by the algorithm (Line 15). Statistically speaking, c is discrete
distributed with probabilities Φ as reflected Line 17. Line 15 states that Φ is
indeed a probability vector and has to add up to 1.

1 model ac t r a ck as ’AC track analysis ’ .
2

3 const nat N as ’Nr. of data points ’ . where 0 < N.
4 const nat C as ’Nr. of classes ’ . where 0 < C. where C ≪ N.
5

6 double theta0 hd ( 0 . .C−1) . % theta 0 for angle

7 double m hd ( 0 . .C−1) . % m for angle

8 double mu alt ( 0 . .C−1) . % mean, sigma for alt

9 double s i gma a l t ( 0 . .C−1) . where 0 < s i gma a l t ( ) .
10 % AC type : {”B777” , ”B737” , ”B755” , ”other”}
11 double rho AC type ( 0 . . 3 , 0 . .C−1) .
12 where 0 = sum( i := 0 . . 3 , rho AC type ( i , ) )−1.
13

14 double phi ( 0 . .C−1) as ’ class frequency ’ .
15 where 0 = sum( i := 0 . . C−1, phi ( i ) )−1.
16 output double c ( 0 . .N−1) as ’ class assignment vector ’ .
17 c ( ) ∼ discrete ( vec to r ( i := 0 . . C−1, phi ( i ) ) ) .
18

19 data double hd ( 0 . .N−1) .
20 hd( i ) ∼ vonmises1 ( theta0 hd ( c ( i ) ) ,m hd( c ( i ) ) ) .
21 data double a l t ( 0 . .N−1) .
22 a l t ( i ) ∼ gauss ( mu alt ( c ( i ) ) , s i gma a l t ( c ( i ) ) ) .
23 data nat AC type ( 0 . .N−1) .
24 AC type ( i ) ∼ discrete ( vec to r ( j := 0 . . 3 ,
25 rho AC type ( j , c ( i ) ) ) ) .
26

27 max pr ({hd , a l t , AC type} |
28 {phi , theta0 hd , m hd , mu alt , s i gma a l t , rho AC type })
29 for {phi , theta0 hd , m hd , mu alt , s i gma a l t , rho AC type } .

Listing 1.1. AutoBayes specification for aircraft track clustering analysis

Lines 19–25 declare the data vectors and their respective distributions us-
ing the class-indexed parameters defined above. Finally, the goal statement
(Lines 27–29) triggers the AutoBayes synthesis: maximize the probability of
the data, given the distribution parameters for all distribution parameters. The
solution to this task is a set of estimated parameters (φ, θ0,m, µ, σ, ρ), which
most likely explain the data. Note that the entire specification is purely declar-
ative.



From this specification, AutoBayes generates 1032 lines of documented C
code with a Matlab Mex interface in less than 5 seconds on a Mac book. In a first
step, AutoBayes generates a Bayesian network, describing the specification is
generated. Figure 2 shows the autogenerated graph. Shaded nodes are known
variables (declared as data). Boxes around groups of nodes indicate that these
variables are identically indexed (iid) over the number of classes C or the number
of tracks N . As usual, directed arcs show the interdependency between the nodes.

N
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AC_type

discrete

alt
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m_hdtheta0_hd mu_altsigma_alt phi rho_AC_type

Fig. 2. Autogenerated Bayesian network for clustering specification (Listing 1.1)

Then, schemas are invoked, which detect that the problem can be solved using
an iterative clustering algorithm like expectation maximisation (EM, [17]), or k-
means [20]. By default, EM is selected. This algorithm schema breaks down the
model and generates new subproblems, which must be solved by the recursive
application of schemas. The code, which is produced by the schemas is used to
assemble all parts of the EM algorithm. For our example, 4 different subproblems
are produced: maxP(c | φ) for φ, maxP(AC type | c, ρAC) for ρAC , maxP(alt |
c, µalt, σalt) for µalt, σalt, and maxP(hd | c, µhd, θ

0

hd) for µhd, θ
0

hd.
The first subproblem can be solved symbolically using a Lagrange multiplier

(for details see [5]). Each of the remaining subproblems can be solved indepen-
dently. The optimization of the probability terms first triggers schemas, which
replace the conditional probability by products and then attempt to optimize
the atomic probability expressions. This is done in the text-book way by setting
the partial derivatives to zero and solving for the unknown parameters. The ap-
pendix shows the detailed (autogenerated) derivation for the angle variable hd.
For a detailed derivation for the Gaussian distributed variable see [5]; for the
discrete variable see [6].

After all symbolic derivations have been performed, the top-level schema pulls
together the individual pieces of the algorithm and, after several optimization
and transformation steps, C code is generated. Please note that all schemas are
independent of the specification and are not specifically tailored toward a given
probability density. For each PDF, only symbolic expressions for the classical
defining properties have to be provided. They can be taken directly out of a
textbook.



3.2 Experiments and Results

For our clustering experiments, we used data sets containing flights around one
large airport (DFW) over a period of between one and seven days. These data
sets contained between a few hundred to more than ten thousand trajectories. In
a first step, we extracted features from each aircraft track, so that each aircraft
track was represented by a vector of features. Features included beginning or
end coordinates for a track, overall changes in altitude, changes in headings,
and much more. The features were kept as generic as possible but were selected
to describe meaningful trajectories. For example, a low value of overall altitude
changes (combined with a high altitude) can indicate a high altitude overflight.
A large amount of altitude change can, when combined with other features (e.g.,
location of the trajectory start or end), describe take-off or landing scenarios.

A large number of customized features can be defined. They can include
the straight-forward combination of information extracted from the time series,
but can also include information extracted through additional preprocessing.
For example, specific kinds of trajectories can (e.g., climb, holding, landing,
overflight). Also distances from reference trajectories or lists of way-points can
be used. The set of selected features spans a multi-dimensional hybrid space,
as different features can have different probability distributions. Then, a task-
specific AutoBayes model is set up and customized code is generated.

Figure 3 shows results that have been obtained using simple sets of features.
In the first two panels, features included altitude, mean calibrated air speed
(CAS), as well as the overall change in altitude. Trajectories belonging to differ-
ent classes are shown in shades of grey. The two selected classes show low-speed
approaches close to the airport (black) as compared to high altitude passages
shown in grey. Panel (B) show climb approaches (grey), which characterized
by increasing altitude and constant or increasing speed. The main directions
of the departing aircraft, depending on the orientation of the runways can be
seen clearly. Panels (C) and (D) shows members of a class of trajectories, which
include many turns. Typically, navigation among way-points and holding pat-
terns belong to this group (C). Panel (D) shows one selected trajectory, which
was put into a separate class due to its many changes in heading. That flight
most probably was a surveillance aircraft or a helicopter. The dots represent the
individual radar measurements.

4 Change-point Detection Models

4.1 The CAS/mach Transition

Most climb procedures for commercial aircraft utilize a climb Calibrated Air
Speed (CAS) and a climb mach speed. At low altitudes, the aircraft flies with
the constant climb CAS measured in knots. As the aircraft ascends it reaches a
particular altitude where the climb CAS is equivalent to the climb mach. This
is the CAS-mach transition altitude. At this point the speed to be maintained
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Fig. 3. Clustering results of aircraft track data

transitions from the climb CAS to the climb mach. Once the aircraft has reached
its final altitude, it will continue to measure its speed in mach.

Such climb profiles are usually executed by the flight management system
(FMS). The pilot has to enter the final altitude and speed (in mach) and the
FMS will execute the appropriate profile. The altitude, at which the FMS per-
forms the transition is usually kept constant. However, this parameter is not
published and can vary between different air carriers. For an accurate predic-
tion of trajectories as done by the CTAS TS software, however, good knowledge
about these transition points is important.

4.2 Change-point Detection with AutoBayes

The calibrated air speed vCAS and the mach number vmach for such a climb
scenario can be written as

vCAS =

{

v0
CAS t ≤ tT

v0
CAS − ∆C ∗ (t − tT ) t > tT

vmach =

{

v0

mach + ∆m ∗ (tT − t) t ≤ tT
v0

mach t > tT

where tT is the time when the flight regime changes (change-point). v0

mach, v0
CAS

denote the constant mach number and CAS speed, respectively, and ∆C ,∆m



describe the slope of the speed changes. Prior to the transition, the CAS is
kept constant, whereas the mach number increases linearly. This is due to the
decreasing air pressure at high altitudes, which lowers the speed of sound. After
this transition point, the mach number is kept constant for the remainder of the
climb. Again, due to decreasing air pressure, the CAS is now decreasing.

Of course, all data are highly noisy, because turbulence, radar inaccuracies,
and pilot maneuvers can perturb the data. Therefore, a statistical approach
for finding this choice-point is needed. In our case, we simply assume that all
measurements are Gaussian distributed, for example, vCAS = N(µvCAS , σvCAS).
Then the problem of finding the best change point can be easily formulated as
a statistical problem of change detection (e.g., [21,22]). Statistical text books
usually provide examples and algorithms for just one variable. So, a manual
development of the change-point detection algorithm and its implementation
would be non-trivial and time-consuming.

In AutoBayes, we directly can specify our problem. Listing 1.2 contains the
entire AutoBayes specification for this problem; AutoBayes then generates
684 lines of commented C code within a few seconds.

1 model c l imb t r a n s i t i o n .
2 const nat n . where 0 < n .
3 nat t T as ’Transition time ’ . where t T in 3 . . n−3.
4 double v mach 0 . double d mach .
5 double v CAS 0 . double d CAS .
6 const double s igma sq . where 0 < s igma sq .
7 data double cas ( 0 . . n−1) as ’ time series data : air speed ’ .
8 data double mach ( 0 . . n−1) as ’ time series data : mach ’ .
9

10 cas (T) ∼ gauss ( cond(T < t T ,
11 v CAS 0 ,
12 v CAS 0 − ( I−t T ) ∗d CAS
13 ) , s q r t ( s igma sq ) ) .
14 mach(T) ∼ gauss ( cond(T < t T ,
15 v mach 0 − (T−t T ) ∗d mach ,
16 v mach 0
17 ) , s q r t ( s igma sq ) ) .
18 max pr ({mach , cas } |{ d mach , v mach 0 , v CAS 0 , d CAS , t T })
19 for {v mach 0 , d mach , v CAS 0 , d CAS , t T } .

Listing 1.2. AutoBayes specification for CAS-mach transition

Lines 1–6 declare model name and all constants and unknown parameters.
Here, we assume that the uncertainty σ2 is known, but all other parameters must
be estimated. Lines 8–9 declare the known data vectors, which are time-series
data here. Lines 10–17 are the core of the specification, where the probability
distributions of each of the statistical variables are declared. This formulation
is directly derived from the formulas shown above and uses C-style conditional
expressions (cond(E,T,F) corresponds to E?T:F). Finally, lines 18–19 contains
the goal statement.



Figure 4 shows results for three different climb scenarios: the mach num-
ber (top panel), the calibrated air speed (CAS, middle panel), and the altitude
over time. The thin curves show actual aircraft data. The lines indicate the lin-
ear approximations. The location of the change point and the other unknown
parameters have been estimated closely.
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Fig. 4. Results of analysis with AutoBayes for three climb scenarios.

In a further analysis step, we analyzed more than 10,000 climb scenarios and
recorded the altitude and speed at which the estimated CAS-mach transition
took place. Figure 5 (left) shows the likelihood of the transition in an altitude
over mach coordinate system as a set of contour lines (darker areas indicate
larger likelihood). Two major transition altitudes could be detected, one at ap-
proximately 26,000ft, the other at around 31,000ft.
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Figure 5 (right) shows the results of the analysis displayed as the likelihood of
the transition in a CAS over mach coordinate system. This figure indicates that
in most trajectories the climbs are initially performed with a CAS of 275 knots.
Then the climb is continued most likely with mach 0.78 or mach 0.7. These two
panels only show data for the B737 aircraft. Results for other types of aircraft
show a similar behavior, but with different parameters.

4.3 CDA Detection

A continuous descent approach (CDA) is a flight profile where the aircraft con-
tinuously descends without any level-off segments. The benefits of this approach
over a standard approach are a reduction in noise, emissions, fuel consumption,
and flight time. For the detection of CDA-like scenarios, another AutoBayes

change-point model has been used. One of the main characteristics of a CDA de-
scent is a long stretch of almost constant vertical speed. In the data we analyzed
[23], that speed was around -2,000ft/min. Figure 6 shows the horizontal profile
in x-y coordinates and the altitude during the descent. Note that the long linear
stretch during the descent (from appr. 35,000ft to appr. 12,000ft) indicates a
constant descent speed.
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The AutoBayes specification of a CDA model entirely focuses on the time-
series representing the vertical speed vvert and has three distinct phases. In
Phase 1, the descent has not yet started. The values of vvert are around zero,
but very indeterminate. Phase 2 comprises the CDA phase. Here, we assume that
the vertical speed is Gaussian distributed around v̄cda (in our case -2,000ft/min)
with a reasonably σ2 to accommodate for the noise. In Phase 3, again, only very
vague assumptions about the vertical speed can be made. The time-points t12
and t23 represent the transitions. Formally, we have

vvert =







N(v̄, σ2

high) for t < t12
N(v̄cda, σ2

low) for t12 ≤ t < t23
N(v̄, σ2

high) for t23 ≤ t



Figure 6 shows the vertical speed of the aircraft for one CDA approach. The
different phases of the descent are marked. The thick horizontal lines show mean
speeds for each segment (v̄, v̄cda); the dashed lines show ±σ2 values around the
means. Note that the actual vertical speed stays within these boundaries. It is
obvious that this model is very primitive, yet it can capture the major vertical
speed characteristics of a CDA approach. Listing 1.3 shows an excerpt of the
AutoBayes specification containing the distribution of the time-series data and
the goal statement. The rest of the specification is very similar to Listing 1.2.
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Fig. 7. Vertical speed over time for a CDA scenario.

1 v ve r t ( I ) ∼ gauss ( cond( I < t 12 , v bar ,
2 cond ( ( I ≥ t 12 ) and ( I< t 23 ) ,
3 v bar cda , v bar ) ) ,
4 cond( I < t 12 , s igma sq high ,
5 cond ( ( I ≥ t 12 ) and ( I< t 23 ) ,
6 s igma sq low , s igma sq h igh ) ) ) .
7 max pr ({ v ve r t } |{ t 12 , t 23 }) for { t 12 , t 23 } .

Listing 1.3. AutoBayes specification for detection of CDA (excerpts)

In our analysis, we tested descent scenarios over the period of one week
to find out scenarios, which were likely flown as actual CDA approaches. In a
preprocessing phase, we eliminated all tracks that had longer horizontal stretches
flown at low altitude. Then, we used our AutoBayes model to find the longest
stretches with constant vertical speed. The length of these stretches related to
the overall duration of the descent was taken as metric on how CDA-like an
approach was. In the given data set, we were able to identify a number of likely
CDA approaches. Many of them involved cargo or business jets and most were
flown between during the night. Since standard procedures do not offer CDA
approaches, this finding is consistent with the fact that approach procedures are
handled more flexible during times with low traffic density.



5 Conclusions

In this paper, we discussed how the program synthesis tool AutoBayes can be
used for the statistical analysis of aircraft track data. We presented experiments
on multivariate clustering on trajectories, which have been represented as vec-
tors of features, and on change-point models to estimate unknown parameters
like the CAS-mach transition and the detection of constant descent approach-
es (CDA). For each of these tasks, we presented the AutoBayes specification,
which comprises a compact, fully declarative statistical model. From that, Au-

toBayes generates a customized algorithm implemented in C or C++ within
a few seconds run time. The schema-based synthesis approach used in Auto-

Bayes together with its powerful symbolic system with enable the system to
fully automatically synthesize complicated, but highly documented code of up
to several thousand lines of C/C++.

The schema library of AutoBayes can be extended to handle different kinds
of probability density functions and to incorporate different algorithm skeletons
[24]. However, such extensions usually require a substantial understanding of the
internal workings of AutoBayes and detailed knowledge of Prolog.

By using AutoBayes to generate customized algorithms for each individ-
ual task, a lot of otherwise necessary implementation effort can be saved, in
particular as AutoBayes is capable of handling statistical models with many
non-Gaussian distributions as well as incorporating domain knowledge and ad-
ditional constraints in the form of (Bayesian) priors. With the generated code
interfacing to Octave and Matlab, AutoBayes thus can be used to quickly and
effectively explore a variety of statistical models for advanced data analysis tasks
as are necessary for the analysis of Air Traffic data.
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Appendix

This appendix shows how AutoBayes solves maxP(hd | c, µhd, θ
0

hd) for µhd, θ
0

hd,
from Listing 1.1. AutoBayes automatically generated the detailed derivation
typeset in LATEX. We only added a few line-breaks and abbreviated theta0 hd by
θ and m hd by m. The solution uses a function solve B to solve the Bessel func-
tion. As no closed-form solution exists, we chose to approximate this function by
solve B(x) ≈ tan(0.5πx) (see [25]). If necessary, an AutoBayes schema could
be developed to instantiate an iterative numerical algorithm.

The conditional probability P(hd | c, m, θ) is under the dependencies given in the
model equivalent to

−1+N
Y

i=0

P(hdi |ci ,m, θ)

The probability occurring here is atomic and can thus be replaced by the respective
probability density function given in the model. Summing out the expected variable
cpv16 yields the log-likelihood function

Xi=0...−1+N

j ∈ dom ci∼q(i,j)
log

−1+N
Y

k=0

exp (cos(hdk − θck
) mck

)
1

2 π Bi(0, mck
)

which can be simplified to

(−1N log 2) + (−1N log π) +

(−1

−1+C
X

i=0

log Bi(0, mi)

−1+N
X

j=0

q(j , i)) +

−1+C
X

i=0

mi

−1+N
X

j=0

cos((−1 θi) + hdj ) q(j , i)

This function is then optimized w.r.t. the goal variables m and θ.
. . .
The function

(−1 log B i(0, ml)

−1+N
X

i=0

q(i , l)) + (ml

−1+N
X

i=0

cos((−1 θl) + hdi) q(i , l))

is then symbolically maximized w.r.t. the goal variables ml and θl . The partial differ-
entials

∂f

∂ml

= (−1 B i(0, ml)
−1

B i(1, ml)

−1+N
X

i=0

q(i , l)) +

−1+N
X
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cos((−1 θl) + hdi) q(i , l)

∂f

∂θl

= (−1 ml sin(θl)

−1+N
X

i=0

cos(hdi) q(i , l)) + (cos(θl) ml

−1+N
X

i=0

sin(hdi) q(i , l))

are set to zero; these equations yield the solutions

ml = solve B(

−1+N
X

i=0

q(i , l)−1
−1+N
X

i=0

cos((−1 θl) + hdi) q(i , l))

θl = atan2(

−1+N
X

i=0

sin(hdi) q(i , l),

−1+N
X

i=0

cos(hdi) q(i , l))


