
 i

Designing Platform Emulation

 ii

 iii

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Designing Platform Emulation

Daniel Rudmark

Department of Applied Information Technology
 University of Gothenburg

Gothenburg 2021

 ii

 iii

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Designing Platform Emulation

Daniel Rudmark

Department of Applied Information Technology
 University of Gothenburg

Gothenburg 2021

 iv

Cover illustration: Catharina Jerkbrant

Designing Platform Emulation

© Daniel Rudmark 2021

daniel.rudmark@ri.se

ISBN 978-91-8009-392-7

Printed in Borås, Sweden 2021

Stema Specialtryck AB

 iv

Cover illustration: Catharina Jerkbrant

Designing Platform Emulation

© Daniel Rudmark 2021

daniel.rudmark@ri.se

ISBN 978-91-8009-392-7

Printed in Borås, Sweden 2021

Stema Specialtryck AB

 v

To my family

Trycksak
3041 0234

SV
ANENMÄRKET

Trycksak
3041 0234

SV
ANENMÄRKET

 iv

Cover illustration: Catharina Jerkbrant

Designing Platform Emulation

© Daniel Rudmark 2021

daniel.rudmark@ri.se

ISBN 978-91-8009-392-7

Printed in Borås, Sweden 2021

Stema Specialtryck AB

 iv

Cover illustration: Catharina Jerkbrant

Designing Platform Emulation

© Daniel Rudmark 2021

daniel.rudmark@ri.se

ISBN 978-91-8009-392-7

Printed in Borås, Sweden 2021

Stema Specialtryck AB

 v

To my family

 vi

 vii

Designing Platform Emulation

Daniel Rudmark

Department of Applied Information Technology

 University of Gothenburg

Göteborg, Sweden

ABSTRACT

Many contemporary firms and public agencies seek to engage

external third-party developers to supply complementary

applications. However, this type of development sometimes occurs

without organizational consent, which creates problems for subjected

organizations at both the technical and organizational levels.

In this thesis, I have developed a theoretical perspective called open
platform emulation. This perspective builds on emulation logics,

where designers use an external model as a basis for developing

compatible platform capabilities superior to the original model. In

this thesis, this model has been external unsanctioned development.

In open platform emulation, such capabilities include governance

decisions enabling coherence with previously proven solutions, the

flexibility to accommodate new development trajectories, and

strategies for applying openness to a digital resource. The means to

achieve these capabilities involves design rules’ architecture,

interfaces, and integration protocols, which convey the capabilities to

third-party developers. This way, a platform owner can draw on

governance and architectural configurations to emulate self-

resourcing behavior through the platform core.

I generated the contributions from this thesis by materializing open

platform emulation in a clinical setting. More specifically, I used

action design research (ADR) together with the Swedish Transport

Administration (STA). Starting in early 2012, I led a platform initiative

that, in collaboration with the STA, sought to emulate self-resourcing

to design an open platform. Here, I conducted two full ADR cycles

that resulted in a currently active production platform used by both

 vi

 vii

Designing Platform Emulation

Daniel Rudmark

Department of Applied Information Technology

 University of Gothenburg

Göteborg, Sweden

ABSTRACT

Many contemporary firms and public agencies seek to engage

external third-party developers to supply complementary

applications. However, this type of development sometimes occurs

without organizational consent, which creates problems for subjected

organizations at both the technical and organizational levels.

In this thesis, I have developed a theoretical perspective called open
platform emulation. This perspective builds on emulation logics,

where designers use an external model as a basis for developing

compatible platform capabilities superior to the original model. In

this thesis, this model has been external unsanctioned development.

In open platform emulation, such capabilities include governance

decisions enabling coherence with previously proven solutions, the

flexibility to accommodate new development trajectories, and

strategies for applying openness to a digital resource. The means to

achieve these capabilities involves design rules’ architecture,

interfaces, and integration protocols, which convey the capabilities to

third-party developers. This way, a platform owner can draw on

governance and architectural configurations to emulate self-

resourcing behavior through the platform core.

I generated the contributions from this thesis by materializing open

platform emulation in a clinical setting. More specifically, I used

action design research (ADR) together with the Swedish Transport

Administration (STA). Starting in early 2012, I led a platform initiative

that, in collaboration with the STA, sought to emulate self-resourcing

to design an open platform. Here, I conducted two full ADR cycles

that resulted in a currently active production platform used by both

 viii

the STA and external third-party developers. Before this engagement,

I also conducted studies of related phenomena within the Swedish

public transport industry, and I have continued to follow the STA’s

platform trajectory since its release in 2014.

The theoretical contributions from this thesis include design

principles that seek to guide the designers of open platforms in

situations where digital resources are subject to self-resourcing.

These design principles cover both product and process aspects

throughout the open platform’s developmental trajectory. Also, I offer

additional theoretical implications based on this work. These include

extensions to current theories on open platforms, different types of

platform emulation, an enunciated influence response to outlaw

innovation, and methodological implications for guided emergence

in ADR.

Keywords: open platforms, platform emulation, outlaw innovation,

action design research, guided emergence

ISBN: 978-91-8009-392-7

 ix

Många företag och offentliga aktörer försöker engagera externa

tredjepartsutvecklare för att utveckla appar och andra digital tjänster.

Ibland sker dock sådan extern utveckling utan organisationens

medgivande, vilket kan innebära problem för utsatta organisationer

på både teknisk och organisatorisk nivå.

I den här avhandlingen har jag utvecklat ett teoretiskt perspektiv, som

jag kallar öppen plattformsemulering. Detta perspektiv bygger på

emuleringslogik, där designers använder en extern modell som grund

för att materialisera plattformsförmågor som blir överlägsna

modellen. Öppen plattformsemulering inkluderar förmågor för att

kan möjliggöra för externa utvecklare att återskapa populära

lösningar, men också tillräcklig flexibilitet för att tillåta mer

banbrytande innovation, tillsammans med strategier för att tillämpa

öppenhet på en digital resurs. Medlet för att uppnå detta är

plattformens designregler, d.v.s. arkitektur, gränssnitt och

integrationsprotokoll som förmedlar funktionerna till

tredjepartsutvecklare.

Empiriskt har jag använt mig av action design research (ADR)

tillsammans med Trafikverket. Med start 2012 har vi tillsammans

designat en öppen plattform, som till dags dato nyttjas som

produktionsplattform av både Trafikverket och externa utvecklare.

Före denna intervention genomförde jag också studier av relaterade

fenomen inom den svenska kollektivtrafikbranschen, och jag har

fortsatt att följa Trafikverket sedan plattformen lanserades 2014.

De teoretiska bidragen från denna avhandling inkluderar design-

principer för öppna plattformar vars digitala resurser används i icke-

sanktionerad extern utveckling. Designprinciperna täcker både

produkt- och processaspekter i den öppna plattformens hela

utvecklingscykel. Avhandlingen bidrar också till teorier om öppna

plattformar, beskriver olika typer av plattformsemulering, hur man

kan hantera s.k. outlaw innovation samt ger ett metodbidrag till ADR.

SAMMANFATTNING PÅ SVENSKA

 viii

the STA and external third-party developers. Before this engagement,

I also conducted studies of related phenomena within the Swedish

public transport industry, and I have continued to follow the STA’s

platform trajectory since its release in 2014.

The theoretical contributions from this thesis include design

principles that seek to guide the designers of open platforms in

situations where digital resources are subject to self-resourcing.

These design principles cover both product and process aspects

throughout the open platform’s developmental trajectory. Also, I offer

additional theoretical implications based on this work. These include

extensions to current theories on open platforms, different types of

platform emulation, an enunciated influence response to outlaw

innovation, and methodological implications for guided emergence

in ADR.

Keywords: open platforms, platform emulation, outlaw innovation,

action design research, guided emergence

ISBN: 978-91-8009-392-7

 ix

Många företag och offentliga aktörer försöker engagera externa

tredjepartsutvecklare för att utveckla appar och andra digital tjänster.

Ibland sker dock sådan extern utveckling utan organisationens

medgivande, vilket kan innebära problem för utsatta organisationer

på både teknisk och organisatorisk nivå.

I den här avhandlingen har jag utvecklat ett teoretiskt perspektiv, som

jag kallar öppen plattformsemulering. Detta perspektiv bygger på

emuleringslogik, där designers använder en extern modell som grund

för att materialisera plattformsförmågor som blir överlägsna

modellen. Öppen plattformsemulering inkluderar förmågor för att

kan möjliggöra för externa utvecklare att återskapa populära

lösningar, men också tillräcklig flexibilitet för att tillåta mer

banbrytande innovation, tillsammans med strategier för att tillämpa

öppenhet på en digital resurs. Medlet för att uppnå detta är

plattformens designregler, d.v.s. arkitektur, gränssnitt och

integrationsprotokoll som förmedlar funktionerna till

tredjepartsutvecklare.

Empiriskt har jag använt mig av action design research (ADR)

tillsammans med Trafikverket. Med start 2012 har vi tillsammans

designat en öppen plattform, som till dags dato nyttjas som

produktionsplattform av både Trafikverket och externa utvecklare.

Före denna intervention genomförde jag också studier av relaterade

fenomen inom den svenska kollektivtrafikbranschen, och jag har

fortsatt att följa Trafikverket sedan plattformen lanserades 2014.

De teoretiska bidragen från denna avhandling inkluderar design-

principer för öppna plattformar vars digitala resurser används i icke-

sanktionerad extern utveckling. Designprinciperna täcker både

produkt- och processaspekter i den öppna plattformens hela

utvecklingscykel. Avhandlingen bidrar också till teorier om öppna

plattformar, beskriver olika typer av plattformsemulering, hur man

kan hantera s.k. outlaw innovation samt ger ett metodbidrag till ADR.

SAMMANFATTNING PÅ SVENSKA

 x

Daniel Rudmark

 xi

I. Koutsikouri, D., Lindgren, R., Henfridsson, O., and

Rudmark, D. 2018. “Extending Digital

Infrastructures: A Typology of Growth Tactics,”

Journal of the Association for Information Systems
(19:10), pp. 1001–1019

II. Rudmark, D., and M. Lind. 2011. "Design Science

Research Demonstrators for Punctuation – The

Establishment of a Service Ecosystem," in Service-
Oriented Perspectives in Design Science Research, H.

Jain, A. Sinha and P. Vitharana (eds.), Berlin:

Springer, pp. 153–165.

III. Rudmark, D., E. Arnestrand, and M. Avital. 2012.

"Crowdpushing: The Flipside of Crowdsourcing," in

Proceedings of the 20th European Conference on
Information Systems (ECIS 2012).

IV. Rudmark, D. 2013. "The Practices of Unpaid Third-

Party Developers – Implications for API Design," in

Proceedings of the 19th Americas Conference on
Information Systems (AMCIS 2013).

V. Rudmark, D. 2021. "Designing Open Platform

Emulation," Under review at the 42nd International
Conference on Information Systems (ICIS 2021).

LIST OF PAPERS

 x

Daniel Rudmark

 xi

I. Koutsikouri, D., Lindgren, R., Henfridsson, O., and

Rudmark, D. 2018. “Extending Digital

Infrastructures: A Typology of Growth Tactics,”

Journal of the Association for Information Systems
(19:10), pp. 1001–1019

II. Rudmark, D., and M. Lind. 2011. "Design Science

Research Demonstrators for Punctuation – The

Establishment of a Service Ecosystem," in Service-
Oriented Perspectives in Design Science Research, H.

Jain, A. Sinha and P. Vitharana (eds.), Berlin:

Springer, pp. 153–165.

III. Rudmark, D., E. Arnestrand, and M. Avital. 2012.

"Crowdpushing: The Flipside of Crowdsourcing," in

Proceedings of the 20th European Conference on
Information Systems (ECIS 2012).

IV. Rudmark, D. 2013. "The Practices of Unpaid Third-

Party Developers – Implications for API Design," in

Proceedings of the 19th Americas Conference on
Information Systems (AMCIS 2013).

V. Rudmark, D. 2021. "Designing Open Platform

Emulation," Under review at the 42nd International
Conference on Information Systems (ICIS 2021).

LIST OF PAPERS

Designing Platform Emulation

 xii

Although completing a Ph.D. hinges on the student, the direction and
content of this thesis have been anything but a solo project. In terms
of my academic journey, I am forever thankful for the energy,
perseverance, appreciation, and skillful guidance provided by my
advisor, Rikard Lindgren. Thank you so much, Rikard. My sincere
gratitude also goes to Mikael Lind for introducing me to the craft of
research as well as the transportation setting, in which I am still
active.

Besides this guidance, the present work would not have been possible
without financial support. In this regard, the University of Borås, RISE
Research Institutes of Sweden, Vinnova, the Swedish Transport
Administration (STA), Region Västra Götaland, Sjuhärads
kommunalförbund, and the University of Gothenburg have all helped
to fund work related to this thesis. Thank you for your generous
support!

Next, I would like to wholeheartedly thank all of the co-authors
involved in the papers appended in this thesis: Mikael Lind, Elias
Arnestrand, Michel Avital, Dina Koutsikouri, Ola Henfridsson, and
Rikard Lindgren. It has been a true privilege to write with and learn
from you all. I also thank my co-authors for the papers that were not
included here but have still been instrumental in my learning. Thank
you, Anders Hjalmarsson Jordanius, Ahmad Ghazawneh, Gustaf Juell-
Skielse, Paul Johannesson, Workneh Ayele, Stefan Cronholm, Hannes
Göbel, Amir Mohagheghzadeh, Per-Erik Holmberg, Johan Sandberg,
and Magnus Andersson.

The academic side is but half of this journey. I want to thank two
people that made working with real-world platform design possible
for me. First, my sincerest gratitude goes to Elias Arnestrand. In 2010,
you generously invited me to be part of what came to be Trafiklab.
Ever since, you have helped me understand the public transport
industry, been an invaluable sounding board, and a continuous
source of insight. Second, my thanks go out to Lars-Olof Hjärp at the

ACKNOWLEDGMENTS

Daniel Rudmark

 xiii

STA. Without your continuous support, perceptivity, and teamwork,

the content of this thesis would not have been possible.

I also want to thank the two ADR teams that made the development

of various platforms possible. In 2012, I had the pleasure of working

with Andreas Krohn, Lars Löfquist, Per Gidlund Montén, Henrik

Hammarström, Lars-Olof Hjärp, and Elias Arnestrand. Then, in

2013/2014, the team consisted of Magnus Pettersson and Lars-Olof

Hjärp. Thank you all! Also, extra thanks are due to Magnus Pettersson

for his generosity in explaining and digging up data on what has

happened since the platform was launched. Moreover, thanks to all

of the transport organizations involved in this work (including

especially helpful contact persons): the STA (Clas Roberg),

Samtrafiken (Håkan Östlund and Vojislav Marinkovic), Västtrafik

(Mikael Faleke), AB Storstockholms Lokaltrafik (Robert Fromell), and

the City of Gothenburg (Noel Alldritt and Christer Erlandsson).

Importantly, thank you to all of the developers (72!) that so

generously shared their expertise on what constitutes attractive

platforms in a multitude of ways. Special thanks are due to Teodor

Storm, Erik Eng, Rickard Nordström Pettersson, and Anders Granåker

for their active and continuous participation in shaping the open API

at the STA. I also want to thank the teams Kreativ Stuga, Mobisleapps,

Hemliga Byrån, and Krawaller for allowing me to video record them

for 24 hours. These recordings have been indispensable in

understanding what does and does not make up useful APIs.

I want to thank the InnovationLab research group at the University

of Borås for their important feedback and for providing a setting for

conducting design-oriented IS research. Thanks also to Department

of Applied Information Technology, University of Gothenburg, and

their faculty, for hosting an excellent doctoral education. Thanks to

Ulrike Schultze shedding new, insightful light on this research as

discussant at my final seminar. Moreover, Mobility and Systems, and

especially all Fellow Innovators of the Digital at RISE, thanks for the

encouragement and being such great colleagues. Special thanks to

Taline Jadaan for your support during (and before) my final write-up.

Also, to Anders Hjalmarsson Jordanius, thank you for being such a

great co-pilot in ISET (and after) and for going the extra mile for me

Designing Platform Emulation

 xii

Although completing a Ph.D. hinges on the student, the direction and
content of this thesis have been anything but a solo project. In terms
of my academic journey, I am forever thankful for the energy,
perseverance, appreciation, and skillful guidance provided by my
advisor, Rikard Lindgren. Thank you so much, Rikard. My sincere
gratitude also goes to Mikael Lind for introducing me to the craft of
research as well as the transportation setting, in which I am still
active.

Besides this guidance, the present work would not have been possible
without financial support. In this regard, the University of Borås, RISE
Research Institutes of Sweden, Vinnova, the Swedish Transport
Administration (STA), Region Västra Götaland, Sjuhärads
kommunalförbund, and the University of Gothenburg have all helped
to fund work related to this thesis. Thank you for your generous
support!

Next, I would like to wholeheartedly thank all of the co-authors
involved in the papers appended in this thesis: Mikael Lind, Elias
Arnestrand, Michel Avital, Dina Koutsikouri, Ola Henfridsson, and
Rikard Lindgren. It has been a true privilege to write with and learn
from you all. I also thank my co-authors for the papers that were not
included here but have still been instrumental in my learning. Thank
you, Anders Hjalmarsson Jordanius, Ahmad Ghazawneh, Gustaf Juell-
Skielse, Paul Johannesson, Workneh Ayele, Stefan Cronholm, Hannes
Göbel, Amir Mohagheghzadeh, Per-Erik Holmberg, Johan Sandberg,
and Magnus Andersson.

The academic side is but half of this journey. I want to thank two
people that made working with real-world platform design possible
for me. First, my sincerest gratitude goes to Elias Arnestrand. In 2010,
you generously invited me to be part of what came to be Trafiklab.
Ever since, you have helped me understand the public transport
industry, been an invaluable sounding board, and a continuous
source of insight. Second, my thanks go out to Lars-Olof Hjärp at the

ACKNOWLEDGMENTS

Daniel Rudmark

 xiii

STA. Without your continuous support, perceptivity, and teamwork,

the content of this thesis would not have been possible.

I also want to thank the two ADR teams that made the development

of various platforms possible. In 2012, I had the pleasure of working

with Andreas Krohn, Lars Löfquist, Per Gidlund Montén, Henrik

Hammarström, Lars-Olof Hjärp, and Elias Arnestrand. Then, in

2013/2014, the team consisted of Magnus Pettersson and Lars-Olof

Hjärp. Thank you all! Also, extra thanks are due to Magnus Pettersson

for his generosity in explaining and digging up data on what has

happened since the platform was launched. Moreover, thanks to all

of the transport organizations involved in this work (including

especially helpful contact persons): the STA (Clas Roberg),

Samtrafiken (Håkan Östlund and Vojislav Marinkovic), Västtrafik

(Mikael Faleke), AB Storstockholms Lokaltrafik (Robert Fromell), and

the City of Gothenburg (Noel Alldritt and Christer Erlandsson).

Importantly, thank you to all of the developers (72!) that so

generously shared their expertise on what constitutes attractive

platforms in a multitude of ways. Special thanks are due to Teodor

Storm, Erik Eng, Rickard Nordström Pettersson, and Anders Granåker

for their active and continuous participation in shaping the open API

at the STA. I also want to thank the teams Kreativ Stuga, Mobisleapps,

Hemliga Byrån, and Krawaller for allowing me to video record them

for 24 hours. These recordings have been indispensable in

understanding what does and does not make up useful APIs.

I want to thank the InnovationLab research group at the University

of Borås for their important feedback and for providing a setting for

conducting design-oriented IS research. Thanks also to Department

of Applied Information Technology, University of Gothenburg, and

their faculty, for hosting an excellent doctoral education. Thanks to

Ulrike Schultze shedding new, insightful light on this research as

discussant at my final seminar. Moreover, Mobility and Systems, and

especially all Fellow Innovators of the Digital at RISE, thanks for the

encouragement and being such great colleagues. Special thanks to

Taline Jadaan for your support during (and before) my final write-up.

Also, to Anders Hjalmarsson Jordanius, thank you for being such a

great co-pilot in ISET (and after) and for going the extra mile for me

Designing Platform Emulation

 xiv

to finish this thesis. To Khruangbin and Eric Schüldt, thanks for

providing the soundtrack for the writing of this thesis frame.

On a personal note, I would like to thank my parents Anders and

Gunnel Rudmark for your unconditional support and encouraging me

to both start and complete this journey—thank you! Also, thanks to

my sisters Sara and Anna and their families for always being there for

me. I also want to thank Siri and Edit for the blessing of having you

as a part of my life. Frida, words cannot express the magnitude of your

support—without you, there would simply be no thesis. Thank you

for showing me that just as for a thesis, life can benefit from a new

beginning. Axel and Albin, you mean everything to me, and you have

grown into star models that I now can emulate. With this thesis done,

I look forward to more time for us to laugh and be together.

Buskeröd, Kullahalvön

2021-05-14

Daniel Rudmark

 xv

1 INTRODUCTION ... 1
1.1 OUTLAW INNOVATION ... 2
1.2 DATA SCRAPING .. 4
1.3 SELF-RESOURCING EMULATION .. 6
1.4 RESEARCH OBJECTIVE ... 7
1.5 THESIS STRUCTURE ... 7

2 OPEN PLATFORM EMULATION ... 9
2.1 EMULATION LOGICS .. 9
2.2 PLATFORM EMULATION .. 11
2.3 OPEN PLATFORMS ... 12
2.4 GOVERNANCE MECHANISMS .. 14
2.5 TECHNOLOGY ARCHITECTURES .. 19

3 RESEARCH METHOD .. 23
3.1 DESIGN ANTECEDENT ... 24
3.2 ADR CYCLE 1 ... 32
3.3 ADR CYCLE 2 .. 34
3.4 DESIGN OUTCOME ... 37

4 GUIDED EMERGENCE .. 40
4.1 ARTIFICIAL PLATFORM DEMONSTRATION ... 44
4.2 AUTHENTIC PLATFORM DEVELOPMENT .. 50
4.3 TARGET PLATFORM IMPLEMENTATION .. 53
4.4 ENSEMBLE PLATFORM MANIFESTATION .. 56

5 PAPER CONTRIBUTIONS .. 60
5.1 PAPER 1 ... 60
5.2 PAPER 2 .. 61
5.3 PAPER 3 ... 62
5.4 PAPER 4 .. 63
5.5 PAPER 5 ... 64

6 DESIGN PRINCIPLE DEVELOPMENT ... 65
6.1 ALPHA VERSION PRINCIPLES ... 67
6.2 BETA VERSION PRINCIPLES .. 68
6.3 RELEASE VERSION PRINCIPLES .. 69
6.4 MAINTENANCE VERSION PRINCIPLES .. 70

7 DISCUSSION .. 71
7.1 PLATFORM EMULATION .. 72
7.2 OUTLAW INNOVATION ... 77
7.3 GUIDED EMERGENCE .. 78

CONTENT

Designing Platform Emulation

 xiv

to finish this thesis. To Khruangbin and Eric Schüldt, thanks for

providing the soundtrack for the writing of this thesis frame.

On a personal note, I would like to thank my parents Anders and

Gunnel Rudmark for your unconditional support and encouraging me

to both start and complete this journey—thank you! Also, thanks to

my sisters Sara and Anna and their families for always being there for

me. I also want to thank Siri and Edit for the blessing of having you

as a part of my life. Frida, words cannot express the magnitude of your

support—without you, there would simply be no thesis. Thank you

for showing me that just as for a thesis, life can benefit from a new

beginning. Axel and Albin, you mean everything to me, and you have

grown into star models that I now can emulate. With this thesis done,

I look forward to more time for us to laugh and be together.

Buskeröd, Kullahalvön

2021-05-14

Daniel Rudmark

 xv

1 INTRODUCTION ... 1
1.1 OUTLAW INNOVATION ... 2
1.2 DATA SCRAPING .. 4
1.3 SELF-RESOURCING EMULATION .. 6
1.4 RESEARCH OBJECTIVE ... 7
1.5 THESIS STRUCTURE ... 7

2 OPEN PLATFORM EMULATION ... 9
2.1 EMULATION LOGICS .. 9
2.2 PLATFORM EMULATION .. 11
2.3 OPEN PLATFORMS ... 12
2.4 GOVERNANCE MECHANISMS .. 14
2.5 TECHNOLOGY ARCHITECTURES .. 19

3 RESEARCH METHOD .. 23
3.1 DESIGN ANTECEDENT ... 24
3.2 ADR CYCLE 1 ... 32
3.3 ADR CYCLE 2 .. 34
3.4 DESIGN OUTCOME ... 37

4 GUIDED EMERGENCE .. 40
4.1 ARTIFICIAL PLATFORM DEMONSTRATION ... 44
4.2 AUTHENTIC PLATFORM DEVELOPMENT .. 50
4.3 TARGET PLATFORM IMPLEMENTATION .. 53
4.4 ENSEMBLE PLATFORM MANIFESTATION .. 56

5 PAPER CONTRIBUTIONS .. 60
5.1 PAPER 1 ... 60
5.2 PAPER 2 .. 61
5.3 PAPER 3 ... 62
5.4 PAPER 4 .. 63
5.5 PAPER 5 ... 64

6 DESIGN PRINCIPLE DEVELOPMENT ... 65
6.1 ALPHA VERSION PRINCIPLES ... 67
6.2 BETA VERSION PRINCIPLES .. 68
6.3 RELEASE VERSION PRINCIPLES .. 69
6.4 MAINTENANCE VERSION PRINCIPLES .. 70

7 DISCUSSION .. 71
7.1 PLATFORM EMULATION .. 72
7.2 OUTLAW INNOVATION ... 77
7.3 GUIDED EMERGENCE .. 78

CONTENT

Designing Platform Emulation

 xvi

7.4 LIMITATIONS AND FUTURE RESEARCH OPPORTUNITIES 91
REFERENCES .. 96
APPENDIX A. CODE EXAMPLES DART GROUP 106
APPENDIX B. TRAVELHACK CODE EXAMPLE ... 107
APPENDIX C. INTERVIEW GUIDE THE STA ... 108
APPENDIX D. INTERVIEW TEMPLATE DEVELOPERS ALPHA VERSION 110
APPENDIX E. EVALUATION INTERVIEW PROTOCOL BETA VERSION 112
APPENDIX F. EVALUATION INTERVIEW PROTOCOL RELEASE VERSION .. 117
APPENDIX G. DESIGN INTERVENTIONS AND OUTCOME 123

Daniel Rudmark

 1

It's my fault
I never learned a trade
So I just scrape all day.

The Lemonheads

While innovation is imperative to surviving in today’s fierce

competition, external innovation sometimes occurs without

organizational consent. A contemporary example concerns vehicles

produced by Tesla. Although these cars are highly digitalized

products, they currently lack official open application programming

interfaces (henceforth API) that allow for external innovation.

However, a vibrant community of technology enthusiasts has

reverse-engineered Tesla’s internal APIs and currently provides both

hands-on instructions
1
 and documentation

2
 for how private

individuals may go about using these unofficial interfaces. As a

consequence, an array of innovative applications has been

showcased. These include sending a text message as the car

approaches a specific destination
3
 and remotely unlocking the

1 https://medium.com/@jhuang5132/a-beginners-guide-to-the-unofficial-
tesla-api-a5b3edfe1467
2 https://tesla-api.timdorr.com/ and https://www.teslaapi.io/ are two
alternatives.
3 https://medium.com/initial-state/how-to-build-a-tesla-data-dashboard-
with-the-tesla-api-4ebee4b9827c

1 INTRODUCTION

Designing Platform Emulation

 xvi

7.4 LIMITATIONS AND FUTURE RESEARCH OPPORTUNITIES 91
REFERENCES .. 96
APPENDIX A. CODE EXAMPLES DART GROUP 106
APPENDIX B. TRAVELHACK CODE EXAMPLE ... 107
APPENDIX C. INTERVIEW GUIDE THE STA ... 108
APPENDIX D. INTERVIEW TEMPLATE DEVELOPERS ALPHA VERSION 110
APPENDIX E. EVALUATION INTERVIEW PROTOCOL BETA VERSION 112
APPENDIX F. EVALUATION INTERVIEW PROTOCOL RELEASE VERSION .. 117
APPENDIX G. DESIGN INTERVENTIONS AND OUTCOME 123

Daniel Rudmark

 1

It's my fault
I never learned a trade
So I just scrape all day.

The Lemonheads

While innovation is imperative to surviving in today’s fierce

competition, external innovation sometimes occurs without

organizational consent. A contemporary example concerns vehicles

produced by Tesla. Although these cars are highly digitalized

products, they currently lack official open application programming

interfaces (henceforth API) that allow for external innovation.

However, a vibrant community of technology enthusiasts has

reverse-engineered Tesla’s internal APIs and currently provides both

hands-on instructions
1
 and documentation

2
 for how private

individuals may go about using these unofficial interfaces. As a

consequence, an array of innovative applications has been

showcased. These include sending a text message as the car

approaches a specific destination
3
 and remotely unlocking the

1 https://medium.com/@jhuang5132/a-beginners-guide-to-the-unofficial-
tesla-api-a5b3edfe1467
2 https://tesla-api.timdorr.com/ and https://www.teslaapi.io/ are two
alternatives.
3 https://medium.com/initial-state/how-to-build-a-tesla-data-dashboard-
with-the-tesla-api-4ebee4b9827c

1 INTRODUCTION

Designing Platform Emulation

 2

charger from the car’s socket
4
. A more spectacular form of API usage

includes integrating Amazon Alexa with unofficial Tesla APIs to

enable the execution of a voice command that automatically moves

a car out of a garage
5
.

Although Tesla maintains all rights regarding the use of their

software, they have not engaged in any legal action against these

unsolicited uses to date. However, since Tesla’s position on third-

party developers remains unclear, Apple has banned most Tesla apps

from its App Store in the spring of 2020
6
. To keep their apps

published in the App Store, developers must provide written

permission from Tesla.

1.1 Outlaw Innovation
This form of unsanctioned development has been coined outlaw
innovation (Flowers, 2008). The term refers to innovation with “non-

cooperative, non-consensual relationships in which the user may be

unknown to the supplier and in which there is likely to be no free

flow of information between the two parties” (Flowers, 2008, p. 178).

Outlaw innovation may thus infringe on an organization’s

intellectual property, which is governed by a product’s terms of use

or ruling laws. While outlaw innovation may take different forms, the

outlaw innovator category of interest for this thesis is the product
hacker (Flowers, 2008). These innovators typically seek to expand the

boundaries of a product or service by reverse-engineering the

underlying technology, as per the aforementioned Tesla API

example
7
.

4 https://medium.com/@mattjeanes23/tesla-auto-charge-port-unlock-
604101b25403
5 https://www.teslarati.com/tesla-model-s-voice-command-amazon-echo/
6 https://www.evword.com/2020/04/24/apple-bans-3rd-party-tesla-apps/

7 Additional examples of such product hacking include modifying
consumer products such as gaming consoles (Flowers, 2008; Kartas &
Goode, 2012; Schulz & Wagner, 2008), video games (Mollick, 2005; Postigo,
2003), digital video recorders (Mollick, 2005), and toys (Lessig, 2004, p.
165). Product hacking has also been observed in more professional
contexts, such as dentistry (Braun & Herstatt, 2008).

Daniel Rudmark

 3

Since outlaw innovation may challenge existing and future revenue

streams, brand image, and intellectual property governance, many

organizations tend to take action against such unsanctioned hacking.

According to Flowers (2008), there are several possible measures that

organizations may take (often in combination) to mitigate outlaw

innovation activities.

The most hostile response to outlaw innovators is an attack. Such a

move is typically executed through legal measures, where the

organizations subjected to outlaw innovation litigate either the

outlaw users themselves, their distribution channels, or both (Braun

& Herstatt, 2008).

However, organizations may instead take less confrontative

measures against unsanctioned innovation. According to Flowers

(2008), a typical response is to merely monitor these uninvited

activities. Such monitoring may later be used to better understand

flaws in a product’s security architecture or possible unfulfilled

customer demand. In other cases, a host organization may choose to

adapt the outlaw innovation to their advantage. In this regard,

Flowers (2008) refers to organizations incorporating their version of

outlaw innovation into the product or service.

When the skills and capacities of the user innovation community are

relevant to the company, Flowers (2008) described two remaining

responses. The most far-reaching is to absorb the community by

actively incorporating (parts of) the innovator ecology into the

organization’s offering. This response has been prevalent in the

gaming industry, where many game users engage in developing

derivatives, or mods (Schäfer, 2011). Moreover, Apple has exercised a

far-reaching absorption response to jailbroken iPhones and

succeeded to incorporate (and subsequentially further grow) the

jailbreak developer ecology into the smartphone’s offering (Eaton,

Elaluf-Calderwood, Sørensen, & Yoo, 2015). However, as noted by

Schäfer (2011) and Eaton et al. (2015), while absorption responses may

funnel existing external development efforts and enable the

substantial growth of additional innovators, such responses are often

rife with tensions. Therefore, absorption responses are typically

achieved in parallel with attack responses (e.g., through litigation)

Designing Platform Emulation

 2

charger from the car’s socket
4
. A more spectacular form of API usage

includes integrating Amazon Alexa with unofficial Tesla APIs to

enable the execution of a voice command that automatically moves

a car out of a garage
5
.

Although Tesla maintains all rights regarding the use of their

software, they have not engaged in any legal action against these

unsolicited uses to date. However, since Tesla’s position on third-

party developers remains unclear, Apple has banned most Tesla apps

from its App Store in the spring of 2020
6
. To keep their apps

published in the App Store, developers must provide written

permission from Tesla.

1.1 Outlaw Innovation
This form of unsanctioned development has been coined outlaw
innovation (Flowers, 2008). The term refers to innovation with “non-

cooperative, non-consensual relationships in which the user may be

unknown to the supplier and in which there is likely to be no free

flow of information between the two parties” (Flowers, 2008, p. 178).

Outlaw innovation may thus infringe on an organization’s

intellectual property, which is governed by a product’s terms of use

or ruling laws. While outlaw innovation may take different forms, the

outlaw innovator category of interest for this thesis is the product
hacker (Flowers, 2008). These innovators typically seek to expand the

boundaries of a product or service by reverse-engineering the

underlying technology, as per the aforementioned Tesla API

example
7
.

4 https://medium.com/@mattjeanes23/tesla-auto-charge-port-unlock-
604101b25403
5 https://www.teslarati.com/tesla-model-s-voice-command-amazon-echo/
6 https://www.evword.com/2020/04/24/apple-bans-3rd-party-tesla-apps/

7 Additional examples of such product hacking include modifying
consumer products such as gaming consoles (Flowers, 2008; Kartas &
Goode, 2012; Schulz & Wagner, 2008), video games (Mollick, 2005; Postigo,
2003), digital video recorders (Mollick, 2005), and toys (Lessig, 2004, p.
165). Product hacking has also been observed in more professional
contexts, such as dentistry (Braun & Herstatt, 2008).

Daniel Rudmark

 3

Since outlaw innovation may challenge existing and future revenue

streams, brand image, and intellectual property governance, many

organizations tend to take action against such unsanctioned hacking.

According to Flowers (2008), there are several possible measures that

organizations may take (often in combination) to mitigate outlaw

innovation activities.

The most hostile response to outlaw innovators is an attack. Such a

move is typically executed through legal measures, where the

organizations subjected to outlaw innovation litigate either the

outlaw users themselves, their distribution channels, or both (Braun

& Herstatt, 2008).

However, organizations may instead take less confrontative

measures against unsanctioned innovation. According to Flowers

(2008), a typical response is to merely monitor these uninvited

activities. Such monitoring may later be used to better understand

flaws in a product’s security architecture or possible unfulfilled

customer demand. In other cases, a host organization may choose to

adapt the outlaw innovation to their advantage. In this regard,

Flowers (2008) refers to organizations incorporating their version of

outlaw innovation into the product or service.

When the skills and capacities of the user innovation community are

relevant to the company, Flowers (2008) described two remaining

responses. The most far-reaching is to absorb the community by

actively incorporating (parts of) the innovator ecology into the

organization’s offering. This response has been prevalent in the

gaming industry, where many game users engage in developing

derivatives, or mods (Schäfer, 2011). Moreover, Apple has exercised a

far-reaching absorption response to jailbroken iPhones and

succeeded to incorporate (and subsequentially further grow) the

jailbreak developer ecology into the smartphone’s offering (Eaton,

Elaluf-Calderwood, Sørensen, & Yoo, 2015). However, as noted by

Schäfer (2011) and Eaton et al. (2015), while absorption responses may

funnel existing external development efforts and enable the

substantial growth of additional innovators, such responses are often

rife with tensions. Therefore, absorption responses are typically

achieved in parallel with attack responses (e.g., through litigation)

Designing Platform Emulation

 4

and monitoring (e.g., where product or service is rearchitected to

curtail future unsanctioned innovation).

Furthermore, an organization may seek to influence the outlaw

innovators instead. This tactic aims to persuade underground

innovators to modify their innovations and pursue activities in a

sanctioned manner. Such innovator behavior can be achieved by

softer measures such as recognizing outlaw innovator work and

refraining from litigation against innovators. Other means may

include revealing the source code of a hacked product more openly

while offering different types of software tools that lower

participation barriers and encourage alignment with organizational

objectives, which represents the focus of this thesis.

1.2 Data Scraping
A prevailing challenge for the Swedish public transport industry

involves providing timely and correct information to its passengers.

Since traveling via public transport requires the traveler to be at a

specific place at a particular time, travelers have a pressing need for

relevant and accurate real-time information about route alternatives,

delays, and departure platforms. Following the societal adoption of

smartphones and wireless internet, the IT infrastructure mediating

such business-critical information to travelers has undergone a

drastic transformation. More specifically, this transformation moved

a significant proportion of public transport users away from

information services developed by public transport agencies to

services developed by external (and mostly unknown) actors

developing top-rated smartphone apps.

This development came as a surprise to most public transport actors

since they did not provide third-party developer resources (e.g., APIs

and associated administrative legislation). Instead, these external

developers have relied on a technique known as scraping to fuel their

apps. Scraping can be described as application development based on

resources designed for purposes other than application development.

Scraping can be directed toward a multitude of official sources of

available information, such as web pages, PDF documents, or

reverse-engineered programmable interfaces (as per the

aforementioned case of Tesla). By using scraped data, third-party

Daniel Rudmark

 5

developers may fuel applications in the absence of official third-party

resources.

Since third-party development based on scraping occurs without

organizational consent, some organizations view such development

as malicious and infringing on their intellectual property rights.

Thus, to safeguard against scraping, many public transport actors

have implemented a technical layer of protection on top of their web

servers to curtail such unsolicited data retrieval. Some public

transport actors have gone even further and taken legal measures

against third-party development based on scraping
8
.

However, some organizations have taken less confrontative

measures toward scrapers. In late 2011, I conducted two studies

investigating scraping and related developer practices (Rudmark,

2013; Rudmark, Arnestrand, & Avital, 2012) and was subsequently

offered to lead a team of experts in developing a new real-time

railway data API platform at the Swedish Transport Administration

(henceforth the STA). At that time, the STA did not grant third-party

developers access to railway-related real-time data. However, despite

this lack of official third-party resources for train data, several rail-

related apps that relied on scraping had emerged. These apps were

written by independent developers and primarily driven by self-

experienced needs. Notably, a handful of these apps gained a high

number of downloads in app marketplaces (e.g., Google Play, Apple

App Store).

At that point in time, the STA was interested in designing resources

that would fit the needs of these developers. Early on in our

cooperation, two central ideas stood out in their approach. First, in

the spirit of the open data movement, the platform should be open

for anyone to use. Second, the STA did not seek to coerce anyone to

8 In 2010 the Belgian National Railway Company (NMBS/SNCB) sent a
cease-and-desist letter to the non-profit initiative iRail urging them to stop
scrape data from the NMBS/SNCB web site (https://yeri.be/stopping-irail-
be). Moreover, New York’s Metropolitan Transportation Authority (MTA)
took legal actions towards the scraping-based iPhone app StationStops in
2009
(http://readwrite.com/2009/08/20/ny_transportation_authority_cites_sch
edules_as_cop)

Designing Platform Emulation

 4

and monitoring (e.g., where product or service is rearchitected to

curtail future unsanctioned innovation).

Furthermore, an organization may seek to influence the outlaw

innovators instead. This tactic aims to persuade underground

innovators to modify their innovations and pursue activities in a

sanctioned manner. Such innovator behavior can be achieved by

softer measures such as recognizing outlaw innovator work and

refraining from litigation against innovators. Other means may

include revealing the source code of a hacked product more openly

while offering different types of software tools that lower

participation barriers and encourage alignment with organizational

objectives, which represents the focus of this thesis.

1.2 Data Scraping
A prevailing challenge for the Swedish public transport industry

involves providing timely and correct information to its passengers.

Since traveling via public transport requires the traveler to be at a

specific place at a particular time, travelers have a pressing need for

relevant and accurate real-time information about route alternatives,

delays, and departure platforms. Following the societal adoption of

smartphones and wireless internet, the IT infrastructure mediating

such business-critical information to travelers has undergone a

drastic transformation. More specifically, this transformation moved

a significant proportion of public transport users away from

information services developed by public transport agencies to

services developed by external (and mostly unknown) actors

developing top-rated smartphone apps.

This development came as a surprise to most public transport actors

since they did not provide third-party developer resources (e.g., APIs

and associated administrative legislation). Instead, these external

developers have relied on a technique known as scraping to fuel their

apps. Scraping can be described as application development based on

resources designed for purposes other than application development.

Scraping can be directed toward a multitude of official sources of

available information, such as web pages, PDF documents, or

reverse-engineered programmable interfaces (as per the

aforementioned case of Tesla). By using scraped data, third-party

Daniel Rudmark

 5

developers may fuel applications in the absence of official third-party

resources.

Since third-party development based on scraping occurs without

organizational consent, some organizations view such development

as malicious and infringing on their intellectual property rights.

Thus, to safeguard against scraping, many public transport actors

have implemented a technical layer of protection on top of their web

servers to curtail such unsolicited data retrieval. Some public

transport actors have gone even further and taken legal measures

against third-party development based on scraping
8
.

However, some organizations have taken less confrontative

measures toward scrapers. In late 2011, I conducted two studies

investigating scraping and related developer practices (Rudmark,

2013; Rudmark, Arnestrand, & Avital, 2012) and was subsequently

offered to lead a team of experts in developing a new real-time

railway data API platform at the Swedish Transport Administration

(henceforth the STA). At that time, the STA did not grant third-party

developers access to railway-related real-time data. However, despite

this lack of official third-party resources for train data, several rail-

related apps that relied on scraping had emerged. These apps were

written by independent developers and primarily driven by self-

experienced needs. Notably, a handful of these apps gained a high

number of downloads in app marketplaces (e.g., Google Play, Apple

App Store).

At that point in time, the STA was interested in designing resources

that would fit the needs of these developers. Early on in our

cooperation, two central ideas stood out in their approach. First, in

the spirit of the open data movement, the platform should be open

for anyone to use. Second, the STA did not seek to coerce anyone to

8 In 2010 the Belgian National Railway Company (NMBS/SNCB) sent a
cease-and-desist letter to the non-profit initiative iRail urging them to stop
scrape data from the NMBS/SNCB web site (https://yeri.be/stopping-irail-
be). Moreover, New York’s Metropolitan Transportation Authority (MTA)
took legal actions towards the scraping-based iPhone app StationStops in
2009
(http://readwrite.com/2009/08/20/ny_transportation_authority_cites_sch
edules_as_cop)

Designing Platform Emulation

 6

use their resources. Instead, they sought to design resources so that

third-party developers voluntarily chose to use these resources rather

than any other forced measures. With these ideas as a starting point,

we embarked on a joint journey resulting in the concepts presented

in this thesis.

1.3 Self-Resourcing Emulation
Starting in early 2012, I began to develop and materialize an initial

theoretical perspective using action design research (henceforth

ADR) (Sein, Henfridsson, Purao, Rossi, & Lindgren, 2011). This

perspective integrates and extends the existing platform literature by

emulating self-resourcing
9
 behavior through the platform core,

which I gradually shaped through the execution of two full ADR

cycles together with the STA. Since mid-2014, the platform has been

fully operational and is currently serving external and internal API

clients.

The theoretical perspective developed over these two ADR iterations

has been coined open platform emulation. Open refers to the platform

offering the same capabilities and restrictions to any user, including

the platform owner (de Reuver, Sørensen, & Basole, 2018; Eisenmann,

Parker, & van Alstyne, 2009). Platform emulation refers to when an

organization uses an external model to design a compatible platform

with capabilities superior to the model. In this thesis, these external

cues originate from self-resourcing. Moreover, platform emulation

entails that the improved capabilities, is being achieved via the

reorganization of an organization’s digital recourses (Teece, Pisano,

& Shuen, 1997, pp. 524-525).

Congruent with current platform theories (Gawer, 2014; Saadatmand,

Lindgren, & Schultze, 2019; Tiwana, 2014), open platform emulation

recognizes the interplay between a platform’s governance and

architecture. In the context of open platform emulation, governance

refers to the desired platform capabilities. In open platform

emulation these capabilities include coherence with past, proven

9 Self-resourcing refers to “third-party developers’ act of developing new
boundary resources as a response to perceived limitations in existing
boundary resources” (Ghazawneh & Henfridsson, 2013, p. 186).

Daniel Rudmark

 7

solutions, as well as the flexibility to accommodate new development

trajectories (Brunswicker & Schecter, 2019), alongside the strategies

for applying openness to a digital resource (Karhu, Gustafsson, &

Lyytinen, 2018). Consequently, architecture constitutes the means to

achieve these desirable capabilities by reorganizing incumbent

digital resources and creating design rules (Baldwin & Clark, 2000)

that conveys these capabilities to third-party developers.

1.4 Research Objective
Based on the problematic situation at hand, I developed and

materialized design knowledge for open platforms in an authentic

setting within the STA. Thus, the research presented in this thesis

has sprung from the following research question:

How can organizations emulate self-resourcing
activities of third-party developers to design open
platforms?

Answering this research question using ADR adds to theory and

practice in three ways (Sein et al., 2011, p. 42; Westin & Sein, 2015, p.

24). First, this thesis generates design knowledge. Such knowledge

should convey both the process and product aspects in a sufficiently

generalized form to allow for usage in other similar design contexts.

Second, this thesis should generate ensemble-specific contributions.

This type of contribution concerns an actual, sustained ensemble

encompassing the IT artifact (ingrained by initial theoretical

hypotheses and contextual structures) as well as modified

organizational structures in which the ensemble artifact resides.

Finally, this research should generate end-user utility. In the context

of this research, such utility concerns superior platform capabilities,

compared to self-resourcing, that influences outlaw innovators to

choose sanctioned resources over unsanctioned ones.

1.5 Thesis Structure
This thesis is structured as follows. Chapter 2 details the theoretical

framework underpinning open platform emulation. In Chapter 3, I

provide a contextualizing overview of the research method of this

thesis. Chapter 4 provides a process view on how the platform

Designing Platform Emulation

 6

use their resources. Instead, they sought to design resources so that

third-party developers voluntarily chose to use these resources rather

than any other forced measures. With these ideas as a starting point,

we embarked on a joint journey resulting in the concepts presented

in this thesis.

1.3 Self-Resourcing Emulation
Starting in early 2012, I began to develop and materialize an initial

theoretical perspective using action design research (henceforth

ADR) (Sein, Henfridsson, Purao, Rossi, & Lindgren, 2011). This

perspective integrates and extends the existing platform literature by

emulating self-resourcing
9
 behavior through the platform core,

which I gradually shaped through the execution of two full ADR

cycles together with the STA. Since mid-2014, the platform has been

fully operational and is currently serving external and internal API

clients.

The theoretical perspective developed over these two ADR iterations

has been coined open platform emulation. Open refers to the platform

offering the same capabilities and restrictions to any user, including

the platform owner (de Reuver, Sørensen, & Basole, 2018; Eisenmann,

Parker, & van Alstyne, 2009). Platform emulation refers to when an

organization uses an external model to design a compatible platform

with capabilities superior to the model. In this thesis, these external

cues originate from self-resourcing. Moreover, platform emulation

entails that the improved capabilities, is being achieved via the

reorganization of an organization’s digital recourses (Teece, Pisano,

& Shuen, 1997, pp. 524-525).

Congruent with current platform theories (Gawer, 2014; Saadatmand,

Lindgren, & Schultze, 2019; Tiwana, 2014), open platform emulation

recognizes the interplay between a platform’s governance and

architecture. In the context of open platform emulation, governance

refers to the desired platform capabilities. In open platform

emulation these capabilities include coherence with past, proven

9 Self-resourcing refers to “third-party developers’ act of developing new
boundary resources as a response to perceived limitations in existing
boundary resources” (Ghazawneh & Henfridsson, 2013, p. 186).

Daniel Rudmark

 7

solutions, as well as the flexibility to accommodate new development

trajectories (Brunswicker & Schecter, 2019), alongside the strategies

for applying openness to a digital resource (Karhu, Gustafsson, &

Lyytinen, 2018). Consequently, architecture constitutes the means to

achieve these desirable capabilities by reorganizing incumbent

digital resources and creating design rules (Baldwin & Clark, 2000)

that conveys these capabilities to third-party developers.

1.4 Research Objective
Based on the problematic situation at hand, I developed and

materialized design knowledge for open platforms in an authentic

setting within the STA. Thus, the research presented in this thesis

has sprung from the following research question:

How can organizations emulate self-resourcing
activities of third-party developers to design open
platforms?

Answering this research question using ADR adds to theory and

practice in three ways (Sein et al., 2011, p. 42; Westin & Sein, 2015, p.

24). First, this thesis generates design knowledge. Such knowledge

should convey both the process and product aspects in a sufficiently

generalized form to allow for usage in other similar design contexts.

Second, this thesis should generate ensemble-specific contributions.

This type of contribution concerns an actual, sustained ensemble

encompassing the IT artifact (ingrained by initial theoretical

hypotheses and contextual structures) as well as modified

organizational structures in which the ensemble artifact resides.

Finally, this research should generate end-user utility. In the context

of this research, such utility concerns superior platform capabilities,

compared to self-resourcing, that influences outlaw innovators to

choose sanctioned resources over unsanctioned ones.

1.5 Thesis Structure
This thesis is structured as follows. Chapter 2 details the theoretical

framework underpinning open platform emulation. In Chapter 3, I

provide a contextualizing overview of the research method of this

thesis. Chapter 4 provides a process view on how the platform

Designing Platform Emulation

 8

materialized through an intricate interplay between my guidance

and emergent environmental responses. In Chapter 5, I briefly

describe the included papers, while Chapter 6 presents the design

principles that answers the research question of this thesis. Finally,

in Chapter 7, I discuss the additional theoretical implications of this

research.

Daniel Rudmark

 9

The term emulation dates back to the late 16
th

 century and is

borrowed from Latin, where the original word—aemulātus—means

to vie with, rival, or imitate. Hence, the Oxford Dictionary defines

emulation as “the endeavor to equal or surpass others in any

achievement or quality” (Oxford English Dictionary, 2019). To

illustrate a more precise meaning of emulation—albeit in a different

field to information systems—one may consider an experiment in

developmental psychology conducted by Tennie, Call, and Tomasello

(2010).

2.1 Emulation Logics
In their study of chimpanzee learning, Tennie et al. (2010) conducted

the floating peanut experiment. In this experiment, a peanut was

placed at the bottom of a plexiglass tube that was wide enough to fit

a peanut but too narrow and deep for the test subjects (chimpanzees)

to grasp the peanut by hand. However, by pouring liquid into the

tube, the peanut would start to float and ascend the tube until a

chimpanzee can grab it. This experiment compared two groups of

chimpanzees that observed a human solving this intricate peanut

problem. The first group watched a human demonstrator using their

mouth to pour water into the tube. After several such liquid-

dispensing iterations, the human was able to grasp the floating

peanut by hand. In the second group, the human demonstrator used

a bottle instead, and the vessel’s water was poured into the tube until

the same result was achieved. However, since no bottles were

available for the test subjects, the chimpanzees in the second test

group had to employ different learning mechanisms.

The first set of chimpanzees to successfully complete the floating

peanut task simply observed and copied the action itself (i.e., filling

2 OPEN PLATFORM EMULATION

Designing Platform Emulation

 8

materialized through an intricate interplay between my guidance

and emergent environmental responses. In Chapter 5, I briefly

describe the included papers, while Chapter 6 presents the design

principles that answers the research question of this thesis. Finally,

in Chapter 7, I discuss the additional theoretical implications of this

research.

Daniel Rudmark

 9

The term emulation dates back to the late 16
th

 century and is

borrowed from Latin, where the original word—aemulātus—means

to vie with, rival, or imitate. Hence, the Oxford Dictionary defines

emulation as “the endeavor to equal or surpass others in any

achievement or quality” (Oxford English Dictionary, 2019). To

illustrate a more precise meaning of emulation—albeit in a different

field to information systems—one may consider an experiment in

developmental psychology conducted by Tennie, Call, and Tomasello

(2010).

2.1 Emulation Logics
In their study of chimpanzee learning, Tennie et al. (2010) conducted

the floating peanut experiment. In this experiment, a peanut was

placed at the bottom of a plexiglass tube that was wide enough to fit

a peanut but too narrow and deep for the test subjects (chimpanzees)

to grasp the peanut by hand. However, by pouring liquid into the

tube, the peanut would start to float and ascend the tube until a

chimpanzee can grab it. This experiment compared two groups of

chimpanzees that observed a human solving this intricate peanut

problem. The first group watched a human demonstrator using their

mouth to pour water into the tube. After several such liquid-

dispensing iterations, the human was able to grasp the floating

peanut by hand. In the second group, the human demonstrator used

a bottle instead, and the vessel’s water was poured into the tube until

the same result was achieved. However, since no bottles were

available for the test subjects, the chimpanzees in the second test

group had to employ different learning mechanisms.

The first set of chimpanzees to successfully complete the floating

peanut task simply observed and copied the action itself (i.e., filling

2 OPEN PLATFORM EMULATION

Designing Platform Emulation

 10

their mouths with water) to achieve the desired result (i.e., picking

up the peanut). Developmental psychologists describe this strategy

as imitation learning. However, to successfully obtain the peanut, the

second group had to employ learning strategies that focused on

copying the environmental result of an action rather than the action

itself. In practice, this meant that these chimpanzees filled the tube

by dispensing water using their mouths despite having only seen

someone fill the tube using a bottle. Hence, the latter form of

observation learning has been conceptualized as emulation learning.

As illustrated in this example, emulation is an activity conducted vis-
à-vis a similar phenomenon that the emulator seeks to mimic or

transcend. Additionally, this example illustrates another important

aspect of this research: how emulation is related—to but inherently

distinct from—imitation. These concepts are related since both

tactics are driven by achieving a similar and desirable environmental

results. However, in imitation, the desirable results emanates from

replicating the underlying mechanisms to cause the desired result. In

contrast, emulation relies on the subject seeking alternative ways of
achieving the same, desired result.

Besides its applications in developmental psychology (e.g., the

aforementioned floating peanut example), emulation has been used

as an explanatory construct across a range of disciplines. Perhaps the

most widely known application of emulation is found in computing.

Here, emulation refers to the act of achieving software runtime

compatibility on a different set of hardware or software specifications

than what a software application was originally designed for. The key

to software emulation lies in designing software (or hardware) to

behave similarly enough to allow the execution of the original

software. When the runtime environment behaves similarly enough

while relying on different underlying mechanisms (e.g., hardware

and operating systems), software emulation can allow older

applications to run for long after the original runtime environment

has become obsolete (Tucker, 1965).

In organizational sociology, researchers have used inter-

organizational emulation to theorize how to “equal or surpass a

comparison organization or organizations on a set of strategic

qualities or features” (Labianca, Fairbank, Thomas, Gioia, &

Daniel Rudmark

 11

Umphress, 2001, p. 313). In this stream of literature, authors home in

on the forces that shape organizations, which neo-institutional

theorists refer to as isomorphic processes (DiMaggio & Powell, 1983;

Gioia & Thomas, 1996). Here, emulation can be considered an

instance of mimetic isomorphism, where the organization seeks to

both mimic and transcend a model organization.

Moreover, emulation has been used as a construct within strategic

management to explain and conceptualize interfirm mimicry. In this

type of research, the fundamental difference of causality between

imitation and emulation is stressed, as noted by Teece et al. (1997):

“Imitation occurs when firms discover and simply
copy a firm's organizational routines and
procedures. Emulation occurs when firms discover
alternative ways of achieving the same
functionality.”
Teece et al. (1997. p. 524-525)

Typically, this body of literature emphasizes how firms organize to

prevent or decelerate competitors’ emulation activities (Teece, 2007).

This is often achieved by deeply embedding contextual knowledge

into organizational routines (Coff, Coff, & Eastvold, 2006; Pil &

Cohen, 2006; Rivkin, 2001).

2.2 Platform Emulation
In this research, I use the logic of emulation as a new strategy for

platform design. I refer to platform emulation when designers use an

external model as basis for materializing platform capabilities,

compatible with, yet superior to the model. Moreover, platform

emulation hinges on using alternatives ways of achieving superior

platform capabilities, compared to the model (Hartman & Teece,

1990; Teece et al., 1997, pp. 524-525). In this way, it is distinct from

platform imitation, or platform forking (Karhu et al., 2018), since

platform emulation depends on resembling capabilities rather than

the replication of another platform’s resources, as in platform

forking. Thus, platform emulation is thus contingent on the

capability to resemble and outperform the capabilities of third-party

development resources in the organizational ecology, by

repartitioning assets that the platform owner controls.

Designing Platform Emulation

 10

their mouths with water) to achieve the desired result (i.e., picking

up the peanut). Developmental psychologists describe this strategy

as imitation learning. However, to successfully obtain the peanut, the

second group had to employ learning strategies that focused on

copying the environmental result of an action rather than the action

itself. In practice, this meant that these chimpanzees filled the tube

by dispensing water using their mouths despite having only seen

someone fill the tube using a bottle. Hence, the latter form of

observation learning has been conceptualized as emulation learning.

As illustrated in this example, emulation is an activity conducted vis-
à-vis a similar phenomenon that the emulator seeks to mimic or

transcend. Additionally, this example illustrates another important

aspect of this research: how emulation is related—to but inherently

distinct from—imitation. These concepts are related since both

tactics are driven by achieving a similar and desirable environmental

results. However, in imitation, the desirable results emanates from

replicating the underlying mechanisms to cause the desired result. In

contrast, emulation relies on the subject seeking alternative ways of
achieving the same, desired result.

Besides its applications in developmental psychology (e.g., the

aforementioned floating peanut example), emulation has been used

as an explanatory construct across a range of disciplines. Perhaps the

most widely known application of emulation is found in computing.

Here, emulation refers to the act of achieving software runtime

compatibility on a different set of hardware or software specifications

than what a software application was originally designed for. The key

to software emulation lies in designing software (or hardware) to

behave similarly enough to allow the execution of the original

software. When the runtime environment behaves similarly enough

while relying on different underlying mechanisms (e.g., hardware

and operating systems), software emulation can allow older

applications to run for long after the original runtime environment

has become obsolete (Tucker, 1965).

In organizational sociology, researchers have used inter-

organizational emulation to theorize how to “equal or surpass a

comparison organization or organizations on a set of strategic

qualities or features” (Labianca, Fairbank, Thomas, Gioia, &

Daniel Rudmark

 11

Umphress, 2001, p. 313). In this stream of literature, authors home in

on the forces that shape organizations, which neo-institutional

theorists refer to as isomorphic processes (DiMaggio & Powell, 1983;

Gioia & Thomas, 1996). Here, emulation can be considered an

instance of mimetic isomorphism, where the organization seeks to

both mimic and transcend a model organization.

Moreover, emulation has been used as a construct within strategic

management to explain and conceptualize interfirm mimicry. In this

type of research, the fundamental difference of causality between

imitation and emulation is stressed, as noted by Teece et al. (1997):

“Imitation occurs when firms discover and simply
copy a firm's organizational routines and
procedures. Emulation occurs when firms discover
alternative ways of achieving the same
functionality.”
Teece et al. (1997. p. 524-525)

Typically, this body of literature emphasizes how firms organize to

prevent or decelerate competitors’ emulation activities (Teece, 2007).

This is often achieved by deeply embedding contextual knowledge

into organizational routines (Coff, Coff, & Eastvold, 2006; Pil &

Cohen, 2006; Rivkin, 2001).

2.2 Platform Emulation
In this research, I use the logic of emulation as a new strategy for

platform design. I refer to platform emulation when designers use an

external model as basis for materializing platform capabilities,

compatible with, yet superior to the model. Moreover, platform

emulation hinges on using alternatives ways of achieving superior

platform capabilities, compared to the model (Hartman & Teece,

1990; Teece et al., 1997, pp. 524-525). In this way, it is distinct from

platform imitation, or platform forking (Karhu et al., 2018), since

platform emulation depends on resembling capabilities rather than

the replication of another platform’s resources, as in platform

forking. Thus, platform emulation is thus contingent on the

capability to resemble and outperform the capabilities of third-party

development resources in the organizational ecology, by

repartitioning assets that the platform owner controls.

Designing Platform Emulation

 12

In line with current platform theories (Gawer, 2014; Saadatmand et

al., 2019; Tiwana, 2014, p. 47; Tiwana, Konsynski, & Bush, 2010), I

argue that successful platform emulation requires paying close

attention to platform governance (since this regulates the platform’s

capabilities) and architecture (since this constitutes the possible

ways of achieving these desirable capabilities), as well as the interplay

between these two factors. However, a platform’s openness is

fundamental to its governance and architecture decisions (de Reuver

et al., 2018; Eisenmann et al., 2009; Ondrus, Gannamaneni, &

Lyytinen, 2015; Parker & Van Alstyne, 2017; West, 2003). Since this

thesis investigates open platforms, I next expand on the more precise

meaning of this phenomena.

2.3 Open Platforms
In the digital platform context, openness is not a Boolean construct.

Instead, it is a choice regarding the extent and dimensions to which

the platform should be open (West, 2003). Notably, this decision

entails a critical trade-off (Parker & Van Alstyne, 2017).

More restricted openness may increase the platform owner’s capacity

to appropriate rent from complementary innovation and deter

competition. On the other hand, organizations opting for more full-

fledged openness (Brunswicker & Schecter, 2019; Karhu et al., 2018)

may value complementary innovation and application output over

rent appropriation potential. This position can be beneficial for

organizations within the public sector (Bonina & Eaton, 2020;

Mukhopadhyay, Bouwman, & Jaiswal, 2019), scientific research

communities (Brunswicker & Schecter, 2019), and commercial

platforms in early, formative phases (Karhu et al., 2018; Parker, Van

Alstyne, & Choudary, 2016). Henceforth, I focus on platforms that

have chosen to be fully open.

Platform openness is a complex construct that applies to several

dimensions of a platform (Eisenmann et al., 2009; Ondrus et al.,

2015). When a platform is open in the sponsor dimension, this implies

that any actor can influence the platform’s roadmap and engagement

rules, often through providing additional development resources. If

a platform is open in the provider dimension, this means that any

actor may erect an instance of a particular platform that allows for

Daniel Rudmark

 13

user interactions. Finally, a platform can be open in the user

dimension, which implies that any user can choose to use the

platform in any way s/he chooses
10

. Notably, this thesis is concerned

with openness in the user dimension. For the remainder of this

thesis, I will refer to platforms open at the user level as open
platforms.

In this research, I merge and augment two existing definitions of

open platforms. First, de Reuver et al. (2018, p. 127) defined platform

openness as “the extent to which platform boundary resources

support complements.” Using this definition of an open platform

would approximately correspond to “a platform whose boundary

resources are completely open to complements.” Second, Eisenmann

et al. (2009, p. 131) posited that “[a] platform is ‘open’ to the extent

that: (1) no restrictions are placed on participation in its

development, commercialization or use (access); and (2) any

restrictions (authority) are reasonable and non-discriminatory

regarding entry requirements, requirements to conform with

technical standards or payment of licensing fees.”

In their definition of open platforms, de Reuver et al. (2018)

emphasize boundary resources (Ghazawneh & Henfridsson, 2013).

Following the theoretical development of boundary resources by

Ghazawneh and Henfridsson (2013), their definition includes both

the restrictions (as emphasized by Eisenmann et al. (2009)) and the

design capabilities transferred to users (von Hippel & Katz, 2002). In

other words, I argue that the definition of de Reuver et al. (2018)

highlights that platform openness does not only concern the scope

of permissible innovation (restrictions) but also possible innovation

(design capabilities). On the other hand, Eisenmann et al. (2009)

stress the non-discriminatory aspects of platforms that are open at

the user level, which represents a fundamental aspect of open

10 In their typology of roles and platform openness, Eisenmann et al. (2009)
also distinguish between demand-side users and supply-side users. While
this division is pertinent to two-sided platforms, this research is concerned
with product platforms (Boudreau & Lakhani, 2009, p. 73), where the
third-party developer is also the (only type of) first-hand user from the
platform provider perspective.

Designing Platform Emulation

 12

In line with current platform theories (Gawer, 2014; Saadatmand et

al., 2019; Tiwana, 2014, p. 47; Tiwana, Konsynski, & Bush, 2010), I

argue that successful platform emulation requires paying close

attention to platform governance (since this regulates the platform’s

capabilities) and architecture (since this constitutes the possible

ways of achieving these desirable capabilities), as well as the interplay

between these two factors. However, a platform’s openness is

fundamental to its governance and architecture decisions (de Reuver

et al., 2018; Eisenmann et al., 2009; Ondrus, Gannamaneni, &

Lyytinen, 2015; Parker & Van Alstyne, 2017; West, 2003). Since this

thesis investigates open platforms, I next expand on the more precise

meaning of this phenomena.

2.3 Open Platforms
In the digital platform context, openness is not a Boolean construct.

Instead, it is a choice regarding the extent and dimensions to which

the platform should be open (West, 2003). Notably, this decision

entails a critical trade-off (Parker & Van Alstyne, 2017).

More restricted openness may increase the platform owner’s capacity

to appropriate rent from complementary innovation and deter

competition. On the other hand, organizations opting for more full-

fledged openness (Brunswicker & Schecter, 2019; Karhu et al., 2018)

may value complementary innovation and application output over

rent appropriation potential. This position can be beneficial for

organizations within the public sector (Bonina & Eaton, 2020;

Mukhopadhyay, Bouwman, & Jaiswal, 2019), scientific research

communities (Brunswicker & Schecter, 2019), and commercial

platforms in early, formative phases (Karhu et al., 2018; Parker, Van

Alstyne, & Choudary, 2016). Henceforth, I focus on platforms that

have chosen to be fully open.

Platform openness is a complex construct that applies to several

dimensions of a platform (Eisenmann et al., 2009; Ondrus et al.,

2015). When a platform is open in the sponsor dimension, this implies

that any actor can influence the platform’s roadmap and engagement

rules, often through providing additional development resources. If

a platform is open in the provider dimension, this means that any

actor may erect an instance of a particular platform that allows for

Daniel Rudmark

 13

user interactions. Finally, a platform can be open in the user

dimension, which implies that any user can choose to use the

platform in any way s/he chooses
10

. Notably, this thesis is concerned

with openness in the user dimension. For the remainder of this

thesis, I will refer to platforms open at the user level as open
platforms.

In this research, I merge and augment two existing definitions of

open platforms. First, de Reuver et al. (2018, p. 127) defined platform

openness as “the extent to which platform boundary resources

support complements.” Using this definition of an open platform

would approximately correspond to “a platform whose boundary

resources are completely open to complements.” Second, Eisenmann

et al. (2009, p. 131) posited that “[a] platform is ‘open’ to the extent

that: (1) no restrictions are placed on participation in its

development, commercialization or use (access); and (2) any

restrictions (authority) are reasonable and non-discriminatory

regarding entry requirements, requirements to conform with

technical standards or payment of licensing fees.”

In their definition of open platforms, de Reuver et al. (2018)

emphasize boundary resources (Ghazawneh & Henfridsson, 2013).

Following the theoretical development of boundary resources by

Ghazawneh and Henfridsson (2013), their definition includes both

the restrictions (as emphasized by Eisenmann et al. (2009)) and the

design capabilities transferred to users (von Hippel & Katz, 2002). In

other words, I argue that the definition of de Reuver et al. (2018)

highlights that platform openness does not only concern the scope

of permissible innovation (restrictions) but also possible innovation

(design capabilities). On the other hand, Eisenmann et al. (2009)

stress the non-discriminatory aspects of platforms that are open at

the user level, which represents a fundamental aspect of open

10 In their typology of roles and platform openness, Eisenmann et al. (2009)
also distinguish between demand-side users and supply-side users. While
this division is pertinent to two-sided platforms, this research is concerned
with product platforms (Boudreau & Lakhani, 2009, p. 73), where the
third-party developer is also the (only type of) first-hand user from the
platform provider perspective.

Designing Platform Emulation

 14

platforms that is lacking in the openness definition of de Reuver et

al. (2018).

In addition to the non-discriminatory transfer of both design

capabilities under the same restrictions, a currently overlooked—or

at least not explicit—issue of platform openness concerns platform

usage by the platform owner vis-a-vis the platform’s complementors.

Current definitions of open platforms do not explicitly recognize that

there should be no difference in what the platform owner and

external third parties are allowed to do in a truly open platform. In

summation, given the definitions of de Reuver et al. (2018) and

Eisenmann et al. (2009) alongside the hitherto unmentioned aspect

of equal platform usage by the platform owner and third parties, I

use the following definition of open platforms in this thesis:

A platform that offers the same capabilities and
restrictions to any user, including the platform
owner.

As previously mentioned in this thesis, I follow current theories on

platforms that argue for the need to pay close attention to both

platform governance and architecture when designing platforms.

Therefore, in what follows, I present the prevalent aspects of

governance and architecture in open platform emulation
11
.

2.4 Governance Mechanisms
In platform emulation, platform owners focus on understanding and

resembling the distinct capabilities that the platform must

encompass. To successfully design emulated boundary resources,

information on the non-negotiable features of used outlaw resources

is critical. Here, the emulator must be cognizant of de facto usage and

practices around these incumbent resources. Such issues include

path dependence, the degree of compatibility with existing protocols

11 Saadatmand et al. (2019) conducted a literature of papers taking a
configurational perspectives, where Brunswicker and Schecter (2019) and
Karhu et al. (2018) were the sole examples of open platforms. Since this
publication, we identified O'Mahony and Karp (2020) to use a
configurational perspective on open platforms. However, given their focus
on collective governance, I did not include this study in our kernel theory.

Daniel Rudmark

 15

and other technologies, and the community values surrounding

third-party development. The emulator must also mindfully carve

out room for superior capabilities that can convince complementors

to switch platforms. A fundamental determinant of creating such

capabilities is the associated governance principles.

In terms of the more precise meaning of governance, I follow the

definition of Foerderer, Kude, Schuetz, and Heinzl (2019), who

defined platform governance as:

"the fundamental decisions of platform owners
with regards to the ecosystem of complementors."
(Foerderer et al., 2019, p. 121)

Among these, I elaborate on two governance aspects critical to

platform emulation: a) platform capabilities in terms of solution

search mechanisms and b) how an emulator chooses to open a

platform to third-party developers.

2.4.1 Flexible and Coherent Searches
The first decision concerns how a platform can reconcile tensions

that emerge from the need to both maintain stability (to decrease

coordination and enable value capture by complementors) and

simultaneously allow the platform to expand into new territories

(Dattée, Alexy, & Autio, 2018; Kapoor & Agarwal, 2017; Saadatmand

et al., 2019; Tilson, Lyytinen, & Sørensen, 2010; Wareham, Fox, &

Cano Giner, 2014),

In their study of the platform nanoHub, Brunswicker and Schecter

(2019) found promising paths to reconcile this dilemma on open

platforms. They argued that individual developers may mitigate the

stability-change tension in the platform periphery. By platform

periphery, Brunswicker and Schecter (2019) refer to a platform

ecosystem with a stable core and a periphery of complements. The

platform core contains a set of central components with stable

interfaces, while the complements should exhibit variety (Baldwin &

Woodard, 2009). As an example, consider the setting of a traveler

information platform ecosystem within the public transport industry

(as per this research). Such a platform typically consists of core

functions such as geocoding (e.g., the ability to transform an address

or point of interest into geographical coordinates), travel planning

Designing Platform Emulation

 14

platforms that is lacking in the openness definition of de Reuver et

al. (2018).

In addition to the non-discriminatory transfer of both design

capabilities under the same restrictions, a currently overlooked—or

at least not explicit—issue of platform openness concerns platform

usage by the platform owner vis-a-vis the platform’s complementors.

Current definitions of open platforms do not explicitly recognize that

there should be no difference in what the platform owner and

external third parties are allowed to do in a truly open platform. In

summation, given the definitions of de Reuver et al. (2018) and

Eisenmann et al. (2009) alongside the hitherto unmentioned aspect

of equal platform usage by the platform owner and third parties, I

use the following definition of open platforms in this thesis:

A platform that offers the same capabilities and
restrictions to any user, including the platform
owner.

As previously mentioned in this thesis, I follow current theories on

platforms that argue for the need to pay close attention to both

platform governance and architecture when designing platforms.

Therefore, in what follows, I present the prevalent aspects of

governance and architecture in open platform emulation
11
.

2.4 Governance Mechanisms
In platform emulation, platform owners focus on understanding and

resembling the distinct capabilities that the platform must

encompass. To successfully design emulated boundary resources,

information on the non-negotiable features of used outlaw resources

is critical. Here, the emulator must be cognizant of de facto usage and

practices around these incumbent resources. Such issues include

path dependence, the degree of compatibility with existing protocols

11 Saadatmand et al. (2019) conducted a literature of papers taking a
configurational perspectives, where Brunswicker and Schecter (2019) and
Karhu et al. (2018) were the sole examples of open platforms. Since this
publication, we identified O'Mahony and Karp (2020) to use a
configurational perspective on open platforms. However, given their focus
on collective governance, I did not include this study in our kernel theory.

Daniel Rudmark

 15

and other technologies, and the community values surrounding

third-party development. The emulator must also mindfully carve

out room for superior capabilities that can convince complementors

to switch platforms. A fundamental determinant of creating such

capabilities is the associated governance principles.

In terms of the more precise meaning of governance, I follow the

definition of Foerderer, Kude, Schuetz, and Heinzl (2019), who

defined platform governance as:

"the fundamental decisions of platform owners
with regards to the ecosystem of complementors."
(Foerderer et al., 2019, p. 121)

Among these, I elaborate on two governance aspects critical to

platform emulation: a) platform capabilities in terms of solution

search mechanisms and b) how an emulator chooses to open a

platform to third-party developers.

2.4.1 Flexible and Coherent Searches
The first decision concerns how a platform can reconcile tensions

that emerge from the need to both maintain stability (to decrease

coordination and enable value capture by complementors) and

simultaneously allow the platform to expand into new territories

(Dattée, Alexy, & Autio, 2018; Kapoor & Agarwal, 2017; Saadatmand

et al., 2019; Tilson, Lyytinen, & Sørensen, 2010; Wareham, Fox, &

Cano Giner, 2014),

In their study of the platform nanoHub, Brunswicker and Schecter

(2019) found promising paths to reconcile this dilemma on open

platforms. They argued that individual developers may mitigate the

stability-change tension in the platform periphery. By platform

periphery, Brunswicker and Schecter (2019) refer to a platform

ecosystem with a stable core and a periphery of complements. The

platform core contains a set of central components with stable

interfaces, while the complements should exhibit variety (Baldwin &

Woodard, 2009). As an example, consider the setting of a traveler

information platform ecosystem within the public transport industry

(as per this research). Such a platform typically consists of core

functions such as geocoding (e.g., the ability to transform an address

or point of interest into geographical coordinates), travel planning

Designing Platform Emulation

 16

functionality (e.g., present travel routes based on origin and

destination information), and real-time departure information (for a

specific stop or station). These functions are likely to remain stable

over time, and the interfaces can remain untouched even if the

underlying traveler information system is replaced. However, the

complements are likely to vary significantly over time. In this

example, such variety could manifest itself in applications on

different platforms (e.g., smartphones, watches, web pages), user

groups (e.g., everyday travelers, tourists, riders with disabilities), and

contexts (e.g., travel planning, waiting for a connection, en route). In

some platform ecosystems, this periphery of complements is open

(i.e., it is possible for developers to both contribute to and inspect

the apps). Under such circumstances, Brunswicker and Schecter

(2019) found that two types of developer search strategies unfold as

third parties develop apps to meet user needs.

First, developers typically enact a coherent search strategy. By

coherent search, Brunswicker and Schecter (2019) refer to a

developer being guided by past experiences and known solutions to

prevalent problems. By searching for solutions that are coherent with

past experiences, developers are likely to identify solutions

characterized by stability and reuse potential. Hence, to continue the

public transport example, consider a tailored departure board as a

complement. Such displays are typically found in venues like bus

stops, shopping malls, and station restaurants. To achieve a

consistent user experience, developers seek to present information in

a similar fashion. If a hypothetical platform ecosystem within public

transport was open in the periphery, this would entail having the

most widely used departure board app(s) being licensed as open

source. Consequently, any developer could simply copy that proven

solution and rework the code into his/her app. Accordingly, together

with the coherent search enactments, the open periphery helps to

maintain the platform's stability. However, while such coherent

searches can help maintain a platform's stability, an excessively one-

sided focus on coherent searches will hamper changes in the

platform ecosystems that are necessary for the platform to remain

attractive.

Thus, Brunswicker and Schecter (2019) point to a flexible search

strategy as a second strategy. This type of search strategy involves a

Daniel Rudmark

 17

developer exploring unexploited solution spaces to meet anticipated

user needs. Flexible searches may be triggered by new user needs,

emerging technological capabilities, or market trends. While the

flexible search strategy explores new territory, Brunswicker and

Schecter (2019) posit that flexible searches branching out of solutions

coherent with the past are more likely to be successful than those

lacking such a connection with the past. To exemplify this type of

flexible search in the public transport example, one could consider a

developer attempting to bring the departure board concept to a

much more technologically constrained environment, such as an

LED/OLED display
12

. These types of displays typically require more

low-level manipulation than a web-based equivalent. Consequently,

to resolve this challenge, a developer cannot merely reuse an existing

departure board layout code but will need to seek novel solutions.

However, while code reuse may be limited, the developer may take

inspiration from some of the layout used in existing complements

and branch out from coherent searches.

Since coherent-flexible searches occur at the platform periphery,

these search mechanisms unfold within the micro-architecture of an

app. Therefore, the architectural implications from this work suggest

that platform designers should facilitate developer movement across

complements, maintain complement openness, and promote

technology reuse across apps.

2.4.2 Access and Resource Openness
The second core aspect of open platform emulation governance

concerns how to open up a platform for outside access. Here, the

literature offers two principal strategies to achieve platform

openness: access openness and resource openness (Boudreau, 2010;

Karhu et al., 2018).

In access openness, a platform is opened by granting access to

selected parts of the platform’s core. Thus, Karhu et al. (2018) refer to

access openness as:

12 Some model railway enthusiasts like to incorporate live train departure
information into their models.

Designing Platform Emulation

 16

functionality (e.g., present travel routes based on origin and

destination information), and real-time departure information (for a

specific stop or station). These functions are likely to remain stable

over time, and the interfaces can remain untouched even if the

underlying traveler information system is replaced. However, the

complements are likely to vary significantly over time. In this

example, such variety could manifest itself in applications on

different platforms (e.g., smartphones, watches, web pages), user

groups (e.g., everyday travelers, tourists, riders with disabilities), and

contexts (e.g., travel planning, waiting for a connection, en route). In

some platform ecosystems, this periphery of complements is open

(i.e., it is possible for developers to both contribute to and inspect

the apps). Under such circumstances, Brunswicker and Schecter

(2019) found that two types of developer search strategies unfold as

third parties develop apps to meet user needs.

First, developers typically enact a coherent search strategy. By

coherent search, Brunswicker and Schecter (2019) refer to a

developer being guided by past experiences and known solutions to

prevalent problems. By searching for solutions that are coherent with

past experiences, developers are likely to identify solutions

characterized by stability and reuse potential. Hence, to continue the

public transport example, consider a tailored departure board as a

complement. Such displays are typically found in venues like bus

stops, shopping malls, and station restaurants. To achieve a

consistent user experience, developers seek to present information in

a similar fashion. If a hypothetical platform ecosystem within public

transport was open in the periphery, this would entail having the

most widely used departure board app(s) being licensed as open

source. Consequently, any developer could simply copy that proven

solution and rework the code into his/her app. Accordingly, together

with the coherent search enactments, the open periphery helps to

maintain the platform's stability. However, while such coherent

searches can help maintain a platform's stability, an excessively one-

sided focus on coherent searches will hamper changes in the

platform ecosystems that are necessary for the platform to remain

attractive.

Thus, Brunswicker and Schecter (2019) point to a flexible search

strategy as a second strategy. This type of search strategy involves a

Daniel Rudmark

 17

developer exploring unexploited solution spaces to meet anticipated

user needs. Flexible searches may be triggered by new user needs,

emerging technological capabilities, or market trends. While the

flexible search strategy explores new territory, Brunswicker and

Schecter (2019) posit that flexible searches branching out of solutions

coherent with the past are more likely to be successful than those

lacking such a connection with the past. To exemplify this type of

flexible search in the public transport example, one could consider a

developer attempting to bring the departure board concept to a

much more technologically constrained environment, such as an

LED/OLED display
12

. These types of displays typically require more

low-level manipulation than a web-based equivalent. Consequently,

to resolve this challenge, a developer cannot merely reuse an existing

departure board layout code but will need to seek novel solutions.

However, while code reuse may be limited, the developer may take

inspiration from some of the layout used in existing complements

and branch out from coherent searches.

Since coherent-flexible searches occur at the platform periphery,

these search mechanisms unfold within the micro-architecture of an

app. Therefore, the architectural implications from this work suggest

that platform designers should facilitate developer movement across

complements, maintain complement openness, and promote

technology reuse across apps.

2.4.2 Access and Resource Openness
The second core aspect of open platform emulation governance

concerns how to open up a platform for outside access. Here, the

literature offers two principal strategies to achieve platform

openness: access openness and resource openness (Boudreau, 2010;

Karhu et al., 2018).

In access openness, a platform is opened by granting access to

selected parts of the platform’s core. Thus, Karhu et al. (2018) refer to

access openness as:

12 Some model railway enthusiasts like to incorporate live train departure
information into their models.

Designing Platform Emulation

 18

“the granting of access to external complementors
to participate and conduct business on a platform
by providing them with dedicated resources to
interact with the platform”
(Karhu et al., 2018, p. 481)

Through access openness, the platform host may thus choose what

parts of, in what form, and under which intellectual property (IP)

regime external users can use the platform. This way, access

openness provides the platform owner with additional flexibility in

the future use trajectory. When governing third-party development

through access openness, boundary resources (Ghazawneh &

Henfridsson, 2013) play a key role. Boundary resources constitute the

thin layer of assets that both capacitate and confine third-party

complements. These resources include the APIs, Software

Development Kits (SDKs), license terms, and testing tools that

enable third-party developers to interact with a platform alongside

the design rules for doing so.

Within a multisided platform, access openness typically is instigated

to allow for supply-side users to create complements for the

platform’s demand-side users. For instance, Apple provides access to

a vast amount—albeit not all—of the capabilities of iPhones through

the iOS SDK. While the SDK allows developers to access functions

such as the current location and internet connection, Apple blocked

access for third-party apps to use the phone’s near field

communication (NFC) chip long after the chip was installed on new

phones. It is believed that this was done to help build the Apple Pay

user base
13
 without competition in the IOS platform ecosystem. Once

sufficient momentum was created for Apple Pay, Apple initiated a

stepwise strategy to also allow third parties to develop NFC-

compliant apps. However, to date, Apple Pay remains the only NFC-

compliant payment provider on the iPhone. In summation, by

governing the platform through access openness, Apple has been

able to mobilize third-party complements using NFC while

maintaining a monopoly on NFC in-store payments.

13 https://venturebeat.com/2017/05/02/apple-pay-transactions-rose-450-in-
the-last-year/

Daniel Rudmark

 19

The second principal method for opening a platform is through

resource openness. This method implies the platform core being

made available to users, and where particular importance is put on

the governing intellectual property rights (IPR) of the platform.

Karhu et al. (2018) refer to resource openness as:

“Opening the platform’s valuable resources by
forfeiting the IPR of the resource.”
(Karhu et al., 2018, p. 481)

Hence, resource openness is closely associated with the platform

governance that makes a platform core readily available for users.

This way, a platform host may achieve greater uptake since the legal

barriers to reusing code have been removed. However, the platform

owner has limited means of controlling the continued evolution of

the platform. As an example of resource openness, one can consider

the Android mobile handset platform, which is the greatest

competitor to iOS. In stark contrast to iOS, the Android operating

system is open source, meaning that all operating system

functionality is readily available for third-party developers. As a

consequence, when Android implemented operating system support

for NFC chips any third-party developer could immediately start

exploiting this hardware innovation. As a result, there are many

providers of NFC payment apps on Android besides Google,

including tech giants such as Facebook, PayPal, and Samsung

alongside an array of innovative start-ups.

2.5 Technology Architectures
Platform emulation is fundamentally contingent on transforming an

organization’s resources to outperform the existing ecosystem’s

capabilities. In this context, platform architecture constitutes the

necessary means to reorganize incumbent digital resources and

redistribute design capabilities to third-party developers.

As previously mentioned, a digital platform’s architecture consists of

a stable modular platform core, standardized visible interfaces, and

peripheral applications (Baldwin & Woodard, 2009; Karhu et al.,

2018; Saadatmand et al., 2019). To enable the seamless addition of

new complements, the platform core must be modular and thus draw

on the principle of information hiding (Parnas, 1972). Information

Designing Platform Emulation

 18

“the granting of access to external complementors
to participate and conduct business on a platform
by providing them with dedicated resources to
interact with the platform”
(Karhu et al., 2018, p. 481)

Through access openness, the platform host may thus choose what

parts of, in what form, and under which intellectual property (IP)

regime external users can use the platform. This way, access

openness provides the platform owner with additional flexibility in

the future use trajectory. When governing third-party development

through access openness, boundary resources (Ghazawneh &

Henfridsson, 2013) play a key role. Boundary resources constitute the

thin layer of assets that both capacitate and confine third-party

complements. These resources include the APIs, Software

Development Kits (SDKs), license terms, and testing tools that

enable third-party developers to interact with a platform alongside

the design rules for doing so.

Within a multisided platform, access openness typically is instigated

to allow for supply-side users to create complements for the

platform’s demand-side users. For instance, Apple provides access to

a vast amount—albeit not all—of the capabilities of iPhones through

the iOS SDK. While the SDK allows developers to access functions

such as the current location and internet connection, Apple blocked

access for third-party apps to use the phone’s near field

communication (NFC) chip long after the chip was installed on new

phones. It is believed that this was done to help build the Apple Pay

user base
13
 without competition in the IOS platform ecosystem. Once

sufficient momentum was created for Apple Pay, Apple initiated a

stepwise strategy to also allow third parties to develop NFC-

compliant apps. However, to date, Apple Pay remains the only NFC-

compliant payment provider on the iPhone. In summation, by

governing the platform through access openness, Apple has been

able to mobilize third-party complements using NFC while

maintaining a monopoly on NFC in-store payments.

13 https://venturebeat.com/2017/05/02/apple-pay-transactions-rose-450-in-
the-last-year/

Daniel Rudmark

 19

The second principal method for opening a platform is through

resource openness. This method implies the platform core being

made available to users, and where particular importance is put on

the governing intellectual property rights (IPR) of the platform.

Karhu et al. (2018) refer to resource openness as:

“Opening the platform’s valuable resources by
forfeiting the IPR of the resource.”
(Karhu et al., 2018, p. 481)

Hence, resource openness is closely associated with the platform

governance that makes a platform core readily available for users.

This way, a platform host may achieve greater uptake since the legal

barriers to reusing code have been removed. However, the platform

owner has limited means of controlling the continued evolution of

the platform. As an example of resource openness, one can consider

the Android mobile handset platform, which is the greatest

competitor to iOS. In stark contrast to iOS, the Android operating

system is open source, meaning that all operating system

functionality is readily available for third-party developers. As a

consequence, when Android implemented operating system support

for NFC chips any third-party developer could immediately start

exploiting this hardware innovation. As a result, there are many

providers of NFC payment apps on Android besides Google,

including tech giants such as Facebook, PayPal, and Samsung

alongside an array of innovative start-ups.

2.5 Technology Architectures
Platform emulation is fundamentally contingent on transforming an

organization’s resources to outperform the existing ecosystem’s

capabilities. In this context, platform architecture constitutes the

necessary means to reorganize incumbent digital resources and

redistribute design capabilities to third-party developers.

As previously mentioned, a digital platform’s architecture consists of

a stable modular platform core, standardized visible interfaces, and

peripheral applications (Baldwin & Woodard, 2009; Karhu et al.,

2018; Saadatmand et al., 2019). To enable the seamless addition of

new complements, the platform core must be modular and thus draw

on the principle of information hiding (Parnas, 1972). Information

Designing Platform Emulation

 20

hiding posits that modular system designers should ensure that only

necessary information is available to modules’ users in order to

reduce dependencies and better accommodate change.

2.5.1 Platform Design Rules
Since a platform core involves information hiding, platform module

users can only act on a module’s visible information. This visible

information has been conceptualized as design rules (Baldwin &

Clark, 2000) and constitutes the ways in which module developers

can establish compatibility with a platform. As such, two important

characteristics mark successful design rules (Tiwana et al., 2010).

First, design rules should be stable over time to ensure that module

developers, regardless of when they enter, can make the same

assumptions around functionality and interface specifications.

Second, design rules should be sufficiently versatile (e.g., not

forestalling an ecosystem’s variety and performance). Following

(Baldwin & Clark, 2000, p. 77), a complete set of design rules has the

following constituents:

• Architecture – A blueprint of existing modules within

the systems, including their roles and relationships.

• Interfaces – Describe how a specific module behaves

when, for example, a module’s API is invoked. This

includes what parameters are required to achieve this

behavior.

• Integration protocols and testing standards – Allow a

module designer to fit his/her app to the platform’s

interfaces and determine whether the app works

sufficiently well.

Open platform emulation requires that existing modules are

reorganized to achieve the desired capabilities. A part of this

reorganization corresponds to the design rules architecture and

constitutes the visible modules that external developers can interact

with (Jha & Pinsonneault, 2016; Kapoor & Agarwal, 2017; Kazan, Tan,

Lim, Sørensen, & Damsgaard, 2018). Within such modular systems,

Baldwin and Clark (2000) suggest that modular operators play a key

role. These operators act as a discrete set of possibilities through

which designers may alter the architecture of modular systems. In

this sense, a platform designer may draw on modular operators as:

Daniel Rudmark

 21

“actions that change existing structures into new
structures in well-defined ways.”
(Baldwin and Clark (2000, p. 129)

Within such an architectural redesign, there are several such

operators that a platform designer can apply to evolve a platform. Of

interest for this research are the following operators
14

:

• By inverting, a designer may create modules that

publishes information that is widely used or

requested but has been previously hidden.

• Through substituting, a platform designer may

replace existing modules with those having improved

qualities.

• Finally, by mutating modules, designers can copy

existing modules for usage in other application

domains (Karhu et al., 2018; Tiwana, 2014, p. 195)
 15

.

Moreover, design rules also require visible interfaces specifying the

behavior of modules in a platform. As such, the interfaces act as a

description of what the platform provides for third-party developers

(Parnas, Clements, & Weiss, 1985) and thus conveys the boundaries

of possible platform innovation. From an architectural perspective,

two important decisions stand out for interface design: the degree of

app-platform decoupling and interface standards (Tiwana, 2014, pp.

106-114). Interface decoupling occurs when a designer minimizes the

visible information by increasing a module’s encapsulation of

internal complexities (Ethiraj & Levinthal, 2004). Such designs

decrease dependencies between the platform and its apps, thereby

making integration and testing more straightforward—especially for

new platform developers. However, a drawback from far-reaching

decoupling is the risk of hampering third-party developer

experiment opportunities (Tiwana, 2014, p. 105). Interface standards

14 While the set of six original modular operators (splitting, substituting,
augmenting, excluding, inverting, and porting) suggested Baldwin and
Clark (2000) apply to any modular systems, additional modular operators
for the digital platform context have been identified (Karhu et al., 2018;
Tiwana, 2014, pp. 191-196).
15 This same operator has been conceptualized as cloning by Karhu et al.
(2018)

Designing Platform Emulation

 20

hiding posits that modular system designers should ensure that only

necessary information is available to modules’ users in order to

reduce dependencies and better accommodate change.

2.5.1 Platform Design Rules
Since a platform core involves information hiding, platform module

users can only act on a module’s visible information. This visible

information has been conceptualized as design rules (Baldwin &

Clark, 2000) and constitutes the ways in which module developers

can establish compatibility with a platform. As such, two important

characteristics mark successful design rules (Tiwana et al., 2010).

First, design rules should be stable over time to ensure that module

developers, regardless of when they enter, can make the same

assumptions around functionality and interface specifications.

Second, design rules should be sufficiently versatile (e.g., not

forestalling an ecosystem’s variety and performance). Following

(Baldwin & Clark, 2000, p. 77), a complete set of design rules has the

following constituents:

• Architecture – A blueprint of existing modules within

the systems, including their roles and relationships.

• Interfaces – Describe how a specific module behaves

when, for example, a module’s API is invoked. This

includes what parameters are required to achieve this

behavior.

• Integration protocols and testing standards – Allow a

module designer to fit his/her app to the platform’s

interfaces and determine whether the app works

sufficiently well.

Open platform emulation requires that existing modules are

reorganized to achieve the desired capabilities. A part of this

reorganization corresponds to the design rules architecture and

constitutes the visible modules that external developers can interact

with (Jha & Pinsonneault, 2016; Kapoor & Agarwal, 2017; Kazan, Tan,

Lim, Sørensen, & Damsgaard, 2018). Within such modular systems,

Baldwin and Clark (2000) suggest that modular operators play a key

role. These operators act as a discrete set of possibilities through

which designers may alter the architecture of modular systems. In

this sense, a platform designer may draw on modular operators as:

Daniel Rudmark

 21

“actions that change existing structures into new
structures in well-defined ways.”
(Baldwin and Clark (2000, p. 129)

Within such an architectural redesign, there are several such

operators that a platform designer can apply to evolve a platform. Of

interest for this research are the following operators
14

:

• By inverting, a designer may create modules that

publishes information that is widely used or

requested but has been previously hidden.

• Through substituting, a platform designer may

replace existing modules with those having improved

qualities.

• Finally, by mutating modules, designers can copy

existing modules for usage in other application

domains (Karhu et al., 2018; Tiwana, 2014, p. 195)
 15

.

Moreover, design rules also require visible interfaces specifying the

behavior of modules in a platform. As such, the interfaces act as a

description of what the platform provides for third-party developers

(Parnas, Clements, & Weiss, 1985) and thus conveys the boundaries

of possible platform innovation. From an architectural perspective,

two important decisions stand out for interface design: the degree of

app-platform decoupling and interface standards (Tiwana, 2014, pp.

106-114). Interface decoupling occurs when a designer minimizes the

visible information by increasing a module’s encapsulation of

internal complexities (Ethiraj & Levinthal, 2004). Such designs

decrease dependencies between the platform and its apps, thereby

making integration and testing more straightforward—especially for

new platform developers. However, a drawback from far-reaching

decoupling is the risk of hampering third-party developer

experiment opportunities (Tiwana, 2014, p. 105). Interface standards

14 While the set of six original modular operators (splitting, substituting,
augmenting, excluding, inverting, and porting) suggested Baldwin and
Clark (2000) apply to any modular systems, additional modular operators
for the digital platform context have been identified (Karhu et al., 2018;
Tiwana, 2014, pp. 191-196).
15 This same operator has been conceptualized as cloning by Karhu et al.
(2018)

Designing Platform Emulation

 22

entail how interfaces materialize on the platform. In this vein,

considerations concern communication protocols, compliance with

existing industry standards, and versatility.

Finally, design rules hinge on the use of an integration protocol and
testing standards. These aspects of the design rules concern

additional information that allows third-party developers to connect

a platform’s core interfaces to those of an app’s micro-architecture.

Typically, these aspects of a platform’s design rules manifest

themselves as SDKs, integrated development environments (IDEs),

or code examples. As such, these extensions target developers during

the app design process by, for example, providing entry paths for new

platform developers (e.g., code examples), simulating the runtime

environment, and ensuring compatibility with specific devices

(Evans, Hagiu, & Schmalensee, 2006; Tiwana, 2014). As such,

platform complexities (Cennamo, Ozalp, & Kretschmer, 2018) can be

encapsulated to minimize third-party developers’ coordination costs

(Tiwana, 2015).

Daniel Rudmark

 23

In this thesis, I have used ADR (Sein et al., 2011) to investigate and

answer the research question presented in Chapter 1.4. This chapter

details the more practical aspects of the included activities in this

research.

In ADR, contributions come in a threefold package (Sein et al., 2011,

p. 42; Westin & Sein, 2015, p. 24). As in other design science research

approaches, the project should generate design principles that convey

the necessary and sufficiently generalized design knowledge for use

in other similar design contexts. The second part, which is more

specific to ADR projects, is ensemble-specific contributions. This part

of the contribution constitutes both the resulting artifact (ingrained

by initial theoretical hypotheses and contextual structures) and the

modified organizational structures where the ensemble artifact

resides. The final ADR result relates to the end-user utility that

emerges when the artifact is put into use.

Regarding design principles, I have opted for articulating design

principles in accordance with the recommendations of Gregor,

Kruse, and Seidel (2020). These authors stress the need for a schema

that streamlines the explication of design principles while

maintaining flexibility toward context-specific design situations. To

this end, the schema includes four statements covering a total of six

aspects of design principle formulation. These include:

1. The objective of the design principle, who is the

intended designer, and who is the prospective user

(aim, implementer, and user, respectively).

2. The boundary conditions for when the design

principle is applicable (context).

3. The causal workings that help to accomplish the aim

(mechanisms).

3 RESEARCH METHOD

Designing Platform Emulation

 22

entail how interfaces materialize on the platform. In this vein,

considerations concern communication protocols, compliance with

existing industry standards, and versatility.

Finally, design rules hinge on the use of an integration protocol and
testing standards. These aspects of the design rules concern

additional information that allows third-party developers to connect

a platform’s core interfaces to those of an app’s micro-architecture.

Typically, these aspects of a platform’s design rules manifest

themselves as SDKs, integrated development environments (IDEs),

or code examples. As such, these extensions target developers during

the app design process by, for example, providing entry paths for new

platform developers (e.g., code examples), simulating the runtime

environment, and ensuring compatibility with specific devices

(Evans, Hagiu, & Schmalensee, 2006; Tiwana, 2014). As such,

platform complexities (Cennamo, Ozalp, & Kretschmer, 2018) can be

encapsulated to minimize third-party developers’ coordination costs

(Tiwana, 2015).

Daniel Rudmark

 23

In this thesis, I have used ADR (Sein et al., 2011) to investigate and

answer the research question presented in Chapter 1.4. This chapter

details the more practical aspects of the included activities in this

research.

In ADR, contributions come in a threefold package (Sein et al., 2011,

p. 42; Westin & Sein, 2015, p. 24). As in other design science research

approaches, the project should generate design principles that convey

the necessary and sufficiently generalized design knowledge for use

in other similar design contexts. The second part, which is more

specific to ADR projects, is ensemble-specific contributions. This part

of the contribution constitutes both the resulting artifact (ingrained

by initial theoretical hypotheses and contextual structures) and the

modified organizational structures where the ensemble artifact

resides. The final ADR result relates to the end-user utility that

emerges when the artifact is put into use.

Regarding design principles, I have opted for articulating design

principles in accordance with the recommendations of Gregor,

Kruse, and Seidel (2020). These authors stress the need for a schema

that streamlines the explication of design principles while

maintaining flexibility toward context-specific design situations. To

this end, the schema includes four statements covering a total of six

aspects of design principle formulation. These include:

1. The objective of the design principle, who is the

intended designer, and who is the prospective user

(aim, implementer, and user, respectively).

2. The boundary conditions for when the design

principle is applicable (context).

3. The causal workings that help to accomplish the aim

(mechanisms).

3 RESEARCH METHOD

Designing Platform Emulation

 24

4. The theoretical and empirical justification for why

the principle holds true (rationale).

To align with ADR’s epistemological assumptions (Iivari, 2015) and

deliver design principles, ensemble-specific contributions, and end-

user utility, ADR researchers must situate artifacts within truly

authentic settings. More specifically, ADR recognizes that since an

IT artifact is always embedded in some context (Orlikowski & Iacono,

2001), it serves as a carrier of structures from its surrounding ecology.

These structures are inscribed into the artifact by both designers and

users, evolve over time, and add to subsequent design theorizing.

Consequently, ADR’s technology perspective requires that

researchers possess sufficient contextual knowledge, resources, and

legitimacy within the target ensemble environment to both initiate

and continuously shape ensemble artifacts.

This chapter describes the more practical aspects of this journey.

Chapter 3.1 details the research activities that gradually both

increased my understanding of the study context but also helped me

build sufficient credibility within the target environment. Then, in

Chapters 3.2 and 3.3, I provide background information for two full

ADR cycles that closely follows the ideal model of ADR presented by

Sein et al. (2011) and builds on the converged insights from the

previous activities. Finally, Chapter 3.4 describes how I followed the

platform’s continued trajectory after I had exited as an active

designer.

3.1 Design Antecedent

3.1.1 The DART Group: Verifying Action Design Research
The starting point for the knowledge developed in this thesis

emerged in August 2009 as I began investigating methods of

publishing transport-related data for third-party developers. The

organizational nexus of this investigation was a regional working

group called “Regional deployment of traffic informatics”
 16

 (DART)

in Gothenburg, Sweden. The group contained regional

representatives from the city of Gothenburg, the regional public

16 ”Driftsättning av regional trafikinformatik” (Swedish)

Daniel Rudmark

 25

transport authority (Västtrafik), and the Swedish Transport

Administration. Although it was not a focus at that time, members of

the DART group brought up scraping as an unresolved issue from the

very start since the involved organizations had been subjected to

different forms of self-resourcing. As part of a research initiative, I

headed a work package responsible for creating a developer platform

to support the emerging third-party developers identified in prior

stages. The guiding vision was to create an inviting environment

where extra-industrial actors could develop services supporting

sustainable everyday travel. Since this approach was novel to the

working group and undertheorized, we agreed that situated design

research would be most appropriate for materializing a new

ensemble artifact. In parallel to attending these monthly meetings, I

interviewed both stakeholders within DART’s organizations as well

as third-party developers (some of which rely on self-resourcing). To

make sense of the data, I imported that transcribed material into

atlas.ti and coded the data inductively. First, data were analyzed

inductively based on the methods of Strauss and Corbin (1990). Here,

I sought to diagnose the current state of affairs in the local practice

without forcing my own preconceptions onto the data. The

relationships between codes were established and a detailed

snapshot of the current struggles of the working group with respect

to novel system development approaches emerged (see Appendix A

for example). As the current situation became more articulated, I

detailed the historical processes and events that led to the current

gaps. To this end, I used follow-up interviews and reports and coded

them using the theoretical raster of punctuated information systems

(information systems) change (Lyytinen & Newman, 2008). Finally,

the reconstruction of historical events was triangulated using

interviews with former employees and external developers.

Interviews with external developers also provided important cues for

the upcoming developer platform design.

From this analysis (Rudmark & Lind, 2011), I found that the DART

group primarily sought to share data that could help facilitate

sustainable transportation. On the other hand, developers were

seeking APIs that easily could be used in a mobile context to map to

their problems and technological standards (e.g., APIs using the

geographical coordinates native to smartphones). Based on these

insights, I refined the developer platform design through two joint

Designing Platform Emulation

 24

4. The theoretical and empirical justification for why

the principle holds true (rationale).

To align with ADR’s epistemological assumptions (Iivari, 2015) and

deliver design principles, ensemble-specific contributions, and end-

user utility, ADR researchers must situate artifacts within truly

authentic settings. More specifically, ADR recognizes that since an

IT artifact is always embedded in some context (Orlikowski & Iacono,

2001), it serves as a carrier of structures from its surrounding ecology.

These structures are inscribed into the artifact by both designers and

users, evolve over time, and add to subsequent design theorizing.

Consequently, ADR’s technology perspective requires that

researchers possess sufficient contextual knowledge, resources, and

legitimacy within the target ensemble environment to both initiate

and continuously shape ensemble artifacts.

This chapter describes the more practical aspects of this journey.

Chapter 3.1 details the research activities that gradually both

increased my understanding of the study context but also helped me

build sufficient credibility within the target environment. Then, in

Chapters 3.2 and 3.3, I provide background information for two full

ADR cycles that closely follows the ideal model of ADR presented by

Sein et al. (2011) and builds on the converged insights from the

previous activities. Finally, Chapter 3.4 describes how I followed the

platform’s continued trajectory after I had exited as an active

designer.

3.1 Design Antecedent

3.1.1 The DART Group: Verifying Action Design Research
The starting point for the knowledge developed in this thesis

emerged in August 2009 as I began investigating methods of

publishing transport-related data for third-party developers. The

organizational nexus of this investigation was a regional working

group called “Regional deployment of traffic informatics”
 16

 (DART)

in Gothenburg, Sweden. The group contained regional

representatives from the city of Gothenburg, the regional public

16 ”Driftsättning av regional trafikinformatik” (Swedish)

Daniel Rudmark

 25

transport authority (Västtrafik), and the Swedish Transport

Administration. Although it was not a focus at that time, members of

the DART group brought up scraping as an unresolved issue from the

very start since the involved organizations had been subjected to

different forms of self-resourcing. As part of a research initiative, I

headed a work package responsible for creating a developer platform

to support the emerging third-party developers identified in prior

stages. The guiding vision was to create an inviting environment

where extra-industrial actors could develop services supporting

sustainable everyday travel. Since this approach was novel to the

working group and undertheorized, we agreed that situated design

research would be most appropriate for materializing a new

ensemble artifact. In parallel to attending these monthly meetings, I

interviewed both stakeholders within DART’s organizations as well

as third-party developers (some of which rely on self-resourcing). To

make sense of the data, I imported that transcribed material into

atlas.ti and coded the data inductively. First, data were analyzed

inductively based on the methods of Strauss and Corbin (1990). Here,

I sought to diagnose the current state of affairs in the local practice

without forcing my own preconceptions onto the data. The

relationships between codes were established and a detailed

snapshot of the current struggles of the working group with respect

to novel system development approaches emerged (see Appendix A

for example). As the current situation became more articulated, I

detailed the historical processes and events that led to the current

gaps. To this end, I used follow-up interviews and reports and coded

them using the theoretical raster of punctuated information systems

(information systems) change (Lyytinen & Newman, 2008). Finally,

the reconstruction of historical events was triangulated using

interviews with former employees and external developers.

Interviews with external developers also provided important cues for

the upcoming developer platform design.

From this analysis (Rudmark & Lind, 2011), I found that the DART

group primarily sought to share data that could help facilitate

sustainable transportation. On the other hand, developers were

seeking APIs that easily could be used in a mobile context to map to

their problems and technological standards (e.g., APIs using the

geographical coordinates native to smartphones). Based on these

insights, I refined the developer platform design through two joint

Designing Platform Emulation

 26

workshops with various stakeholders representing both public

transportation and various third-party developers. However, while

the DART group indeed embraced these tentative results, they were

not in a position to host the projected ensemble artifact. While the

DART collaboration supported the notion of using design research as

a basis for third-party developer platforms, the quest to find a more

appropriate organizational context for situated design research

continued.

EMPIRICAL DATA N SCOPE

Interviews with DART
Group

10 interviews

Total minutes: 644
Total words: 95220

Interviews with third-party
developers

12 interviews
(20 people)

Total minutes: 711
Total words: 117309

Internal DART meetings 5 meetings Total minutes: 440

Secondary data 7 reports Total pages: 246
Total words: 65862

Workshops with DART and
third-party developers

2 workshops

Total mins: 540

Table 1 - Empirical material related to the DART group (2009-09 - 2010-
06)

3.1.2 Trafiklab.se: Industry Platform Openness
In the wake of the discontinued research collaboration with DART, I

began to engage with Samtrafiken (the Swedish Association for

Public Transport Companies). At this point (autumn 2010),

Samtrafiken had advanced plans to deploy an industry-wide API

platform for third-party developers, later named Trafiklab.se. In

addition to being a data-sharing platform for its founding members

(Stockholm Public Transport (SL) and Samtrafiken), Trafiklab.se had

Daniel Rudmark

 27

a clear ambition to become a concerted effort for the entire Swedish

public transport industry regarding data openness vis-a-vis external

innovators. Therefore, in addition to hosting APIs from SL and

Samtrafiken, the platform was a core component when the public

transport industry sought to boost innovation and extend their

digital infrastructure. Consequently, Trafiklab.se was used to

innovate new services via innovation contests such as TravelHack

(see Chapter 3.1.4).

Moreover, the industry employed Trafiklab.se when Google

requested the underlying data resources (such as stops, routes, and

schedules) since Google would not settle for indirect access through

travel planning services. This series of events triggered a deeper

investigation, which was analyzed using the procedures outlined in

Koutsikouri, Lindgren, Henfridsson, and Rudmark (2018). Another

important learning opportunity that emerged in this episode was

that between September 2010 and February 2012, the product owner

of Trafiklab.se was a part-time employee at the research institute

where I worked. Thus, many insights gained about the industry

emanated from a vast amount of informal and continuous

communications throughout this period. Hence, through my

continued close collaboration with Trafiklab.se, I was exposed to

various configurations of platform governance and architecture

within the industry.

Designing Platform Emulation

 26

workshops with various stakeholders representing both public

transportation and various third-party developers. However, while

the DART group indeed embraced these tentative results, they were

not in a position to host the projected ensemble artifact. While the

DART collaboration supported the notion of using design research as

a basis for third-party developer platforms, the quest to find a more

appropriate organizational context for situated design research

continued.

EMPIRICAL DATA N SCOPE

Interviews with DART
Group

10 interviews

Total minutes: 644
Total words: 95220

Interviews with third-party
developers

12 interviews
(20 people)

Total minutes: 711
Total words: 117309

Internal DART meetings 5 meetings Total minutes: 440

Secondary data 7 reports Total pages: 246
Total words: 65862

Workshops with DART and
third-party developers

2 workshops

Total mins: 540

Table 1 - Empirical material related to the DART group (2009-09 - 2010-
06)

3.1.2 Trafiklab.se: Industry Platform Openness
In the wake of the discontinued research collaboration with DART, I

began to engage with Samtrafiken (the Swedish Association for

Public Transport Companies). At this point (autumn 2010),

Samtrafiken had advanced plans to deploy an industry-wide API

platform for third-party developers, later named Trafiklab.se. In

addition to being a data-sharing platform for its founding members

(Stockholm Public Transport (SL) and Samtrafiken), Trafiklab.se had

Daniel Rudmark

 27

a clear ambition to become a concerted effort for the entire Swedish

public transport industry regarding data openness vis-a-vis external

innovators. Therefore, in addition to hosting APIs from SL and

Samtrafiken, the platform was a core component when the public

transport industry sought to boost innovation and extend their

digital infrastructure. Consequently, Trafiklab.se was used to

innovate new services via innovation contests such as TravelHack

(see Chapter 3.1.4).

Moreover, the industry employed Trafiklab.se when Google

requested the underlying data resources (such as stops, routes, and

schedules) since Google would not settle for indirect access through

travel planning services. This series of events triggered a deeper

investigation, which was analyzed using the procedures outlined in

Koutsikouri, Lindgren, Henfridsson, and Rudmark (2018). Another

important learning opportunity that emerged in this episode was

that between September 2010 and February 2012, the product owner

of Trafiklab.se was a part-time employee at the research institute

where I worked. Thus, many insights gained about the industry

emanated from a vast amount of informal and continuous

communications throughout this period. Hence, through my

continued close collaboration with Trafiklab.se, I was exposed to

various configurations of platform governance and architecture

within the industry.

Designing Platform Emulation

 28

EMPIRICAL DATA N SCOPE

Interviews with
industry
representatives

4 interviews

Total minutes: 206
Total words: 28939

Workshops with
Trafiklab before
release

2 workshops Total minutes: 440

Meetings Trafiklab
after release

11 meetings Total minutes: 2370

Continuous and informal discussions with the product manager of
Trafiklab.se

Table 2 - Empirical material related to Trafiklab.se (2010-08 - 2011-12)

3.1.3 SL: Scraping trajectories
One of the leading actors in Trafiklab was SL. Accordingly, the

collaboration with Trafiklab.se enabled me to map SL’s trajectory

regarding third-party development. By primarily using interviews

with public transport representatives and self-resourcing third-party

developers, I was able to position critical events on a timeline.

Moreover, I took particular interest in analyzing SLs and third-party

developer responses to these critical events. This inquiry (Rudmark

et al., 2012) revealed that SL had been subjected to scraping for an

extended period. Indeed, one of the primary reasons for launching a

new platform was to resolve issues related to scraping. Under the

sway of data scrapers and hundreds of thousands of end users, SL had

started to open their internal systems for external innovators. Finally,

in addition to inquiring into SL’s past experiences, I was also able to

follow the initial developer adoption of Trafiklab after the platform’s

launch, which took place in September 2011.

Daniel Rudmark

 29

EMPIRICAL DATA N SCOPE

Interviews with the
public transport
industry

11 interviews

Total minutes: 491
Total words: 68171

Interviews with third-
party developers

4 interviews

Tot mins: 206
Tot words: 28939

Database with
registered users at
Trafiklab.se

1 database Tot users: 506
(per 2011-12-31)

Table 3 - Empirical material related to SL (2010-08 - 2011-12)

3.1.4 TravelHack: Exploring Developer Practices
The launch of Trafiklab.se materialized as a Digital Innovation

Contest
17

 designed by a team of researchers, of which I was part. The

contest was called West Coast TravelHack 2011 and was designed as

a development contest lasting 24 hours. The competition’s goal was

to generate prototypes for innovative digital services supporting

citizens in their everyday travel. More specifically, the prototypes

should help travelers make more sustainable choices in their daily

journeys (e.g., choosing car-sharing over lone driving, public

transport over car-sharing, or bicycling over public transport). Since

the Swedish public transport industry backed this contest, it wielded

significant legitimacy and attracted over 70 developers.

In addition to co-designing the overall contest, my task was to

coordinate and consolidate APIs and other data sources available to

the teams during the event. Through my previous engagement with

the public transport industry in general, and SL in particular, it

became clear that a more detailed understanding of technology use

was necessary to address scraping. Consequently, I wanted to use

TravelHack as a situated opportunity to observe and understand how

API appropriation—and possibly self-resourcing—unfolded in real-

17 See Hjalmarsson and Rudmark (2012) for more background information.

Designing Platform Emulation

 28

EMPIRICAL DATA N SCOPE

Interviews with
industry
representatives

4 interviews

Total minutes: 206
Total words: 28939

Workshops with
Trafiklab before
release

2 workshops Total minutes: 440

Meetings Trafiklab
after release

11 meetings Total minutes: 2370

Continuous and informal discussions with the product manager of
Trafiklab.se

Table 2 - Empirical material related to Trafiklab.se (2010-08 - 2011-12)

3.1.3 SL: Scraping trajectories
One of the leading actors in Trafiklab was SL. Accordingly, the

collaboration with Trafiklab.se enabled me to map SL’s trajectory

regarding third-party development. By primarily using interviews

with public transport representatives and self-resourcing third-party

developers, I was able to position critical events on a timeline.

Moreover, I took particular interest in analyzing SLs and third-party

developer responses to these critical events. This inquiry (Rudmark

et al., 2012) revealed that SL had been subjected to scraping for an

extended period. Indeed, one of the primary reasons for launching a

new platform was to resolve issues related to scraping. Under the

sway of data scrapers and hundreds of thousands of end users, SL had

started to open their internal systems for external innovators. Finally,

in addition to inquiring into SL’s past experiences, I was also able to

follow the initial developer adoption of Trafiklab after the platform’s

launch, which took place in September 2011.

Daniel Rudmark

 29

EMPIRICAL DATA N SCOPE

Interviews with the
public transport
industry

11 interviews

Total minutes: 491
Total words: 68171

Interviews with third-
party developers

4 interviews

Tot mins: 206
Tot words: 28939

Database with
registered users at
Trafiklab.se

1 database Tot users: 506
(per 2011-12-31)

Table 3 - Empirical material related to SL (2010-08 - 2011-12)

3.1.4 TravelHack: Exploring Developer Practices
The launch of Trafiklab.se materialized as a Digital Innovation

Contest
17

 designed by a team of researchers, of which I was part. The

contest was called West Coast TravelHack 2011 and was designed as

a development contest lasting 24 hours. The competition’s goal was

to generate prototypes for innovative digital services supporting

citizens in their everyday travel. More specifically, the prototypes

should help travelers make more sustainable choices in their daily

journeys (e.g., choosing car-sharing over lone driving, public

transport over car-sharing, or bicycling over public transport). Since

the Swedish public transport industry backed this contest, it wielded

significant legitimacy and attracted over 70 developers.

In addition to co-designing the overall contest, my task was to

coordinate and consolidate APIs and other data sources available to

the teams during the event. Through my previous engagement with

the public transport industry in general, and SL in particular, it

became clear that a more detailed understanding of technology use

was necessary to address scraping. Consequently, I wanted to use

TravelHack as a situated opportunity to observe and understand how

API appropriation—and possibly self-resourcing—unfolded in real-

17 See Hjalmarsson and Rudmark (2012) for more background information.

Designing Platform Emulation

 30

time. During the contest, third-party developers could choose from

a wide array (17) of public transport-related APIs rooted in different

design paradigms potentially yielding different adoption patterns

among developers. Consequently, I contacted four teams before the

contest and inquired whether I could video record their work. Of

these four teams, three provided insights relevant to my objective.

Afterward, I screened the approx. 57 hours of video I had gathered

during the event. In this rich empirical material, I used the video

research software Transana to identify and code 51 incidents where

the developers used or attempted to use the available APIs, which

shaped the future trajectory of the respective teams’ API

appropriation. More specifically, I created a dedicated clip for each

incident that captured the videotaped incident and transcribed the

dialogue. Next, I coded each incident with instances of related coding

families, each of which captured important context and process

characteristics connected to the incident. For example, this included

which API caused the incident, how the incident manifested itself,

and how it was resolved (see Appendix B). In this manner, I was able

to observe and compare different API appropriations as they

occurred rather than the retrospective accounts I had been gathering

earlier through interviews. Also, I witnessed several instances of self-

resourcing in certain cases, even in the presence of official APIs. As

complementary data, I also collected the final source codes from two

teams, alongside the server log files of commonly used APIs.

EMPIRICAL DATA N SCOPE

Video observations 3 teams Tot mins: 3420
Tot incidents: 51

Data sources 17 n/a

Team submission
application source code

2 Total lines of code: 29652

API log files 5 Tot log entries: 245829

Table 4 - Empirical material related to West Coast TravelHack 2011
(2011-10)

Daniel Rudmark

 31

3.1.5 The Swedish Transport Administration: The Alpha
version Platform

Together with the aforementioned institute colleague
18

, I received a

funding opportunity from Vinnova
19

 in December 2011 to engage with

other public transport industry actors in designing and launching

APIs. At this point, we contacted the STA since they were subjected

to scraping and would thus potentially benefit from participating in

a study on resolving scraping. Moreover, they would provide an

excellent research venue to develop corresponding design

knowledge. At that time (January 2012), the STA could not commit to

a full ADR ensemble artifact implementation upfront. Instead, the

initial agreement allowed us to conduct a detailed problem

formulation and present a solution blueprint (corresponding to an

ensemble artifact alpha version (Sein et al., 2011)). After we had

presented the alpha version, the project would enter a stage-gate.

Here, the STA would decide whether to proceed and form a full-

fledged ADR team and release a working platform or decline further

collaboration.

In this phase, I conducted a round of interviews with key personnel

at the STA to understand current strategies, challenges, and plans

within the administration. Also, I started to investigate the most

popular consumer-facing third-party apps that were available based

on self-resourcing from third-party developers. Most of these

developers also agreed to participate in in-depth interviews. For the

analysis, I imported the transcribed interviews into Atlas.ti and

coded the material according to the interview protocol categories

(see Appendix C and Appendix D). This way, I was able to compare

and highlight discrepancies between the current third-party

developer program at the STA and the platform capabilities sought

by self-resourcing third-party developers. A workshop concluded this

part of the research and served as an ex ante formative evaluation

(Venable, Pries-Heje, & Baskerville, 2016). In this workshop, we

presented the alpha version to the participants, including critical

stakeholders within the STA and prominent third-party developers

(currently exercising self-resourcing). After compiling the workshop

18 We conducted the activities collaboratively throughout this phase.
19

 Sweden’s innovation agency.

Designing Platform Emulation

 30

time. During the contest, third-party developers could choose from

a wide array (17) of public transport-related APIs rooted in different

design paradigms potentially yielding different adoption patterns

among developers. Consequently, I contacted four teams before the

contest and inquired whether I could video record their work. Of

these four teams, three provided insights relevant to my objective.

Afterward, I screened the approx. 57 hours of video I had gathered

during the event. In this rich empirical material, I used the video

research software Transana to identify and code 51 incidents where

the developers used or attempted to use the available APIs, which

shaped the future trajectory of the respective teams’ API

appropriation. More specifically, I created a dedicated clip for each

incident that captured the videotaped incident and transcribed the

dialogue. Next, I coded each incident with instances of related coding

families, each of which captured important context and process

characteristics connected to the incident. For example, this included

which API caused the incident, how the incident manifested itself,

and how it was resolved (see Appendix B). In this manner, I was able

to observe and compare different API appropriations as they

occurred rather than the retrospective accounts I had been gathering

earlier through interviews. Also, I witnessed several instances of self-

resourcing in certain cases, even in the presence of official APIs. As

complementary data, I also collected the final source codes from two

teams, alongside the server log files of commonly used APIs.

EMPIRICAL DATA N SCOPE

Video observations 3 teams Tot mins: 3420
Tot incidents: 51

Data sources 17 n/a

Team submission
application source code

2 Total lines of code: 29652

API log files 5 Tot log entries: 245829

Table 4 - Empirical material related to West Coast TravelHack 2011
(2011-10)

Daniel Rudmark

 31

3.1.5 The Swedish Transport Administration: The Alpha
version Platform

Together with the aforementioned institute colleague
18

, I received a

funding opportunity from Vinnova
19

 in December 2011 to engage with

other public transport industry actors in designing and launching

APIs. At this point, we contacted the STA since they were subjected

to scraping and would thus potentially benefit from participating in

a study on resolving scraping. Moreover, they would provide an

excellent research venue to develop corresponding design

knowledge. At that time (January 2012), the STA could not commit to

a full ADR ensemble artifact implementation upfront. Instead, the

initial agreement allowed us to conduct a detailed problem

formulation and present a solution blueprint (corresponding to an

ensemble artifact alpha version (Sein et al., 2011)). After we had

presented the alpha version, the project would enter a stage-gate.

Here, the STA would decide whether to proceed and form a full-

fledged ADR team and release a working platform or decline further

collaboration.

In this phase, I conducted a round of interviews with key personnel

at the STA to understand current strategies, challenges, and plans

within the administration. Also, I started to investigate the most

popular consumer-facing third-party apps that were available based

on self-resourcing from third-party developers. Most of these

developers also agreed to participate in in-depth interviews. For the

analysis, I imported the transcribed interviews into Atlas.ti and

coded the material according to the interview protocol categories

(see Appendix C and Appendix D). This way, I was able to compare

and highlight discrepancies between the current third-party

developer program at the STA and the platform capabilities sought

by self-resourcing third-party developers. A workshop concluded this

part of the research and served as an ex ante formative evaluation

(Venable, Pries-Heje, & Baskerville, 2016). In this workshop, we

presented the alpha version to the participants, including critical

stakeholders within the STA and prominent third-party developers

(currently exercising self-resourcing). After compiling the workshop

18 We conducted the activities collaboratively throughout this phase.
19

 Sweden’s innovation agency.

Designing Platform Emulation

 32

results and presenting them for the STA, they decided to continue

our collaboration and participate in beta version development.

EMPIRICAL DATA N SCOPE

Interviews with the STA 7 Total minutes: 382
Total words: 56204

Interviews with third-party
developers

6 Total minutes: 313
Total words: 39925

Examining the existing data source
of self-resourcing third-party
developers

4 N/A

Workshops 1 Total minutes: 390

Table 5 - Empirical material related to the alpha version (Jan 2012–
April 2012)

3.2 ADR Cycle 1
As a basis for the beta version artifact, I converged the rich insights

gained from my previous thesis work. My initial work with DART

provided sufficient evidence that situated design research (e.g., ADR)

as a viable platform design method by working closely with both

platform owners and third-party developers. The time I spent with

Trafiklab.se provided me with a deeper understanding of third-party

development and the impact of self-resourcing. Moreover,

immersing in this particular emergent platform context convinced

me that it was an excellent digital infrastructure for materializing

ADR ensemble artifacts within the public transport industry.

Moreover, the data collected from the API use experiment conducted

at TravelHack allowed me to further develop my theoretical

framework regarding platform emulation. Finally, our initial inquiry

into the STA allowed for a refined design framework and yielded a

substantial researcher-client agreement that ensured the necessary

commitment from the STA.

Daniel Rudmark

 33

Thus, I headed the team responsible for the first full cycle of ADR in

May 2012. The ADR team consisted of a product manager, a systems

manager, and a systems architect from Trafiklab.se alongside two

systems managers and a systems developer from the STA. The overall

solution architecture offered two APIs: one for known coherent

searches and one for non-deterministic flexible searches. These APIs

were delivered using the technical infrastructure of Trafiklab.se by

providing access openness to an internal system within the STA

called Orion
20

.

First, we detailed the interface specifications based on the previous

feedback and the team’s domain knowledge. Consequently, we

continued to implement the platform according to the specifications

during the summer and autumn of 2012.

The ADR team officially released the solution on October 25, 2012.

The solution allowed anyone to register for the API. In 3 months, a

total of 59 developers had registered. To evaluate the ensemble

artifact formatively ex post (Venable et al., 2016), I contacted these

registered developers to inquire as to whether they would like to

participate in an interview for evaluation purposes. Out of these 59

developers, 17 developers agreed. I then interviewed these 17

developers following an interview protocol (see Appendix E).

20
 Orion’s API was subjected to self-resourcing since it had been made

available through the STA website.

Designing Platform Emulation

 32

results and presenting them for the STA, they decided to continue

our collaboration and participate in beta version development.

EMPIRICAL DATA N SCOPE

Interviews with the STA 7 Total minutes: 382
Total words: 56204

Interviews with third-party
developers

6 Total minutes: 313
Total words: 39925

Examining the existing data source
of self-resourcing third-party
developers

4 N/A

Workshops 1 Total minutes: 390

Table 5 - Empirical material related to the alpha version (Jan 2012–
April 2012)

3.2 ADR Cycle 1
As a basis for the beta version artifact, I converged the rich insights

gained from my previous thesis work. My initial work with DART

provided sufficient evidence that situated design research (e.g., ADR)

as a viable platform design method by working closely with both

platform owners and third-party developers. The time I spent with

Trafiklab.se provided me with a deeper understanding of third-party

development and the impact of self-resourcing. Moreover,

immersing in this particular emergent platform context convinced

me that it was an excellent digital infrastructure for materializing

ADR ensemble artifacts within the public transport industry.

Moreover, the data collected from the API use experiment conducted

at TravelHack allowed me to further develop my theoretical

framework regarding platform emulation. Finally, our initial inquiry

into the STA allowed for a refined design framework and yielded a

substantial researcher-client agreement that ensured the necessary

commitment from the STA.

Daniel Rudmark

 33

Thus, I headed the team responsible for the first full cycle of ADR in

May 2012. The ADR team consisted of a product manager, a systems

manager, and a systems architect from Trafiklab.se alongside two

systems managers and a systems developer from the STA. The overall

solution architecture offered two APIs: one for known coherent

searches and one for non-deterministic flexible searches. These APIs

were delivered using the technical infrastructure of Trafiklab.se by

providing access openness to an internal system within the STA

called Orion
20

.

First, we detailed the interface specifications based on the previous

feedback and the team’s domain knowledge. Consequently, we

continued to implement the platform according to the specifications

during the summer and autumn of 2012.

The ADR team officially released the solution on October 25, 2012.

The solution allowed anyone to register for the API. In 3 months, a

total of 59 developers had registered. To evaluate the ensemble

artifact formatively ex post (Venable et al., 2016), I contacted these

registered developers to inquire as to whether they would like to

participate in an interview for evaluation purposes. Out of these 59

developers, 17 developers agreed. I then interviewed these 17

developers following an interview protocol (see Appendix E).

20
 Orion’s API was subjected to self-resourcing since it had been made

available through the STA website.

Designing Platform Emulation

 34

EMPIRICAL DATA N SCOPE

Project coordination meetings 18 Total minutes: 1650

Third-party application analysis 6 n/a

Interface specification online
discussions

28 Tot words: 2991

Evaluation interviews with third-
party developers

17 Total minutes: 604
Total words: 66930

Emails third-party developers (SL) 4 Total words: 1587

Table 6 - Empirical material related to the beta version (May 2012–
January 2013)

3.3 ADR Cycle 2
Overall, the STA assessed the experiment as quite successful and thus

decided to develop a permanent solution based on the findings from

the ADR project. As a tangible result of the beta version, they altered

their third-party developer strategy. More specifically, the strategy

now included a new segment “other developers” that the new

platform would target and serve. Consequently, the resources

necessary for this iteration were provided solely by the STA and we

reorganized responsibilities as a result. The STA systems manager

that had been part of the beta version ADR team now became the

team lead, and a systems architect was assigned to the group. I was

contracted to this team through a direct award to ensure that the

previous learnings were included in the platform’s release version

and was being responsible for conducting situated evaluations.

This second ADR cycle focused on creating a more sustainable

solution while also addressing the shortcomings identified in the

previous ADR iteration. During the beta version evaluation interview

analysis, I found that existing developers had mostly not switched

from scraping to open APIs. This surprising fact caused me to

investigate the current scraping situations at SL and Trafiklab.se,

given that this platform now had been operating for some two years.

Daniel Rudmark

 35

To clarify what data sources third-party developers used to access SL

data, I chose to investigate a particular subset of third-party services,

namely real-time departure information for stations and bus stops

used by smartphone apps. I opted for this subset since both of these

services had caused the system breakdowns and were thus critical for

SL to bind to sanctioned data sources. To find such services, I

searched three major app marketplaces (Apple App Store, Google

Play, and Windows Marketplace) for apps that used real-time

information. By using commonly used keywords such as the name of

the public transit company and other general transit-related

keywords, I compiled a gross set of services (51 services). When

investigating these services in greater detail, many fell outside of the

criterion. Such services (which are outside the scope of my

investigation) dealt with other aspects of public transit information,

such as offline subway maps, travel planning capabilities, ticketing,

and subway station maps. After this analysis, I found 19 services

across the marketplaces using real-time departure information. As a

next step, I wanted to trace the remote procedure calls that the apps

made to obtain the data. To this end, I installed the 19 services on

three different handheld devices (one for each marketplace).

Moreover, I installed an HTTP proxy called Charles Proxy on a laptop

and configured the smartphones to access the internet through this

proxy. This way, I was able to trace the requests made by each

smartphone and could thereby determine the data source for each

particular smartphone app. This procedure allowed me to determine

the data sources for 14 of the 19 apps. Since the remaining 5 apps did

not access SL directly and instead made their requests to app-specific

servers, I could not determine the origin of the data displayed in

these apps. Hence, I contacted these developers and inquired into

the data sources used by their services. Through these email

conversations, I determined an additional four of the five remaining

services (since one developer did not respond to my request).

Moreover, given the exhaustive beta version feedback from third-

party developers, my role was to ensure that these requirements were

considered throughout the implementation. To this end, I provided

feedback in the project meetings and performed a formative expert

evaluation during the design of the new platform.

Designing Platform Emulation

 34

EMPIRICAL DATA N SCOPE

Project coordination meetings 18 Total minutes: 1650

Third-party application analysis 6 n/a

Interface specification online
discussions

28 Tot words: 2991

Evaluation interviews with third-
party developers

17 Total minutes: 604
Total words: 66930

Emails third-party developers (SL) 4 Total words: 1587

Table 6 - Empirical material related to the beta version (May 2012–
January 2013)

3.3 ADR Cycle 2
Overall, the STA assessed the experiment as quite successful and thus

decided to develop a permanent solution based on the findings from

the ADR project. As a tangible result of the beta version, they altered

their third-party developer strategy. More specifically, the strategy

now included a new segment “other developers” that the new

platform would target and serve. Consequently, the resources

necessary for this iteration were provided solely by the STA and we

reorganized responsibilities as a result. The STA systems manager

that had been part of the beta version ADR team now became the

team lead, and a systems architect was assigned to the group. I was

contracted to this team through a direct award to ensure that the

previous learnings were included in the platform’s release version

and was being responsible for conducting situated evaluations.

This second ADR cycle focused on creating a more sustainable

solution while also addressing the shortcomings identified in the

previous ADR iteration. During the beta version evaluation interview

analysis, I found that existing developers had mostly not switched

from scraping to open APIs. This surprising fact caused me to

investigate the current scraping situations at SL and Trafiklab.se,

given that this platform now had been operating for some two years.

Daniel Rudmark

 35

To clarify what data sources third-party developers used to access SL

data, I chose to investigate a particular subset of third-party services,

namely real-time departure information for stations and bus stops

used by smartphone apps. I opted for this subset since both of these

services had caused the system breakdowns and were thus critical for

SL to bind to sanctioned data sources. To find such services, I

searched three major app marketplaces (Apple App Store, Google

Play, and Windows Marketplace) for apps that used real-time

information. By using commonly used keywords such as the name of

the public transit company and other general transit-related

keywords, I compiled a gross set of services (51 services). When

investigating these services in greater detail, many fell outside of the

criterion. Such services (which are outside the scope of my

investigation) dealt with other aspects of public transit information,

such as offline subway maps, travel planning capabilities, ticketing,

and subway station maps. After this analysis, I found 19 services

across the marketplaces using real-time departure information. As a

next step, I wanted to trace the remote procedure calls that the apps

made to obtain the data. To this end, I installed the 19 services on

three different handheld devices (one for each marketplace).

Moreover, I installed an HTTP proxy called Charles Proxy on a laptop

and configured the smartphones to access the internet through this

proxy. This way, I was able to trace the requests made by each

smartphone and could thereby determine the data source for each

particular smartphone app. This procedure allowed me to determine

the data sources for 14 of the 19 apps. Since the remaining 5 apps did

not access SL directly and instead made their requests to app-specific

servers, I could not determine the origin of the data displayed in

these apps. Hence, I contacted these developers and inquired into

the data sources used by their services. Through these email

conversations, I determined an additional four of the five remaining

services (since one developer did not respond to my request).

Moreover, given the exhaustive beta version feedback from third-

party developers, my role was to ensure that these requirements were

considered throughout the implementation. To this end, I provided

feedback in the project meetings and performed a formative expert

evaluation during the design of the new platform.

Designing Platform Emulation

 36

Additionally, I planned the evaluation of the release version

platform. First, and most importantly, wanted to understand

whether experienced existing developers had switched (or were

considering switching) platforms. Second, less experienced

developers that were likely to implement coherent searches were also

important. Therefore, before launching a tentative release version to

the public, I codesigned a usability test with a human-computer

interaction expert at my research institute to target novice users.

The test took 4 hours and was conducted in December 2013. The test

subject group included second- and third-year information system

majors, and the participants had not been given access to any

materials before the test. The test aimed to capture a beginner's

potential to use the interfaces as well as their impressions of this

process. The participants were given three tasks to perform: locate

data, call APIs, and build a crude application. Although not all

students were able to complete the exercises, they independently

stated that the coherent search examples were imperative to their

productiveness. Additionally, the test yielded a handful of bugs and

minor adjustments.

The platform was launched on February 10, 2014, as an open test

environment. This launch meant that any user registered at

Trafiklab.se could use the API if they applied for access by email.

During this test period, 20 developers registered (including several

existing railway data developers), and 6 of them agreed to be

interviewed. Based on this feedback, the platform went live on March

18, 2014. As the final task in ADR loop 2, I ,in August 2014 interviewed

another six developers that had registered as users of the platform in

a summative evaluation ex post (Venable et al., 2016). All of these

interviews were conducted following virtually the same protocol

used for the beta version evaluations (see Appendix F). These

interviews pointed clearly towards that the interviewed developers

were content with the released version platform.

Daniel Rudmark

 37

EMPIRICAL DATA N SCOPE

Project coordination
meetings

18 Total minutes: 1140

Open feedback
discussion forum
posts

34 Total words: 3033

Evaluation
interviews with
third-party
developers

12 Total minutes: 543
Total words: 69521

Novice user test 13 Total survey responses
(before/after each task): 1255
Self-reported critical incidents:9
Post-test interviews: 3

Analyzed third-party
apps using SL data

51(gross)
19 (net)

N/A

Table 7 - Empirical material related to the release version (April 2013-
August 2014)

3.4 Design Outcome
After leaving my position as an active designer of STA’s third-party

developer platform, I continued to follow its trajectory in several

respects.

In September 2016, I conducted a data source experiment following

the same procedures used in ADR loop 1 (see Chapter 3.2) to

investigate the actual data sources of the apps available in major app

stores. Moreover, following the previous data source experiment, I

contacted the app developers (5 developers managing a total of 11

apps) to inquire about data sources if an app’s data source was unable

to be determined programmatically.

Designing Platform Emulation

 36

Additionally, I planned the evaluation of the release version

platform. First, and most importantly, wanted to understand

whether experienced existing developers had switched (or were

considering switching) platforms. Second, less experienced

developers that were likely to implement coherent searches were also

important. Therefore, before launching a tentative release version to

the public, I codesigned a usability test with a human-computer

interaction expert at my research institute to target novice users.

The test took 4 hours and was conducted in December 2013. The test

subject group included second- and third-year information system

majors, and the participants had not been given access to any

materials before the test. The test aimed to capture a beginner's

potential to use the interfaces as well as their impressions of this

process. The participants were given three tasks to perform: locate

data, call APIs, and build a crude application. Although not all

students were able to complete the exercises, they independently

stated that the coherent search examples were imperative to their

productiveness. Additionally, the test yielded a handful of bugs and

minor adjustments.

The platform was launched on February 10, 2014, as an open test

environment. This launch meant that any user registered at

Trafiklab.se could use the API if they applied for access by email.

During this test period, 20 developers registered (including several

existing railway data developers), and 6 of them agreed to be

interviewed. Based on this feedback, the platform went live on March

18, 2014. As the final task in ADR loop 2, I ,in August 2014 interviewed

another six developers that had registered as users of the platform in

a summative evaluation ex post (Venable et al., 2016). All of these

interviews were conducted following virtually the same protocol

used for the beta version evaluations (see Appendix F). These

interviews pointed clearly towards that the interviewed developers

were content with the released version platform.

Daniel Rudmark

 37

EMPIRICAL DATA N SCOPE

Project coordination
meetings

18 Total minutes: 1140

Open feedback
discussion forum
posts

34 Total words: 3033

Evaluation
interviews with
third-party
developers

12 Total minutes: 543
Total words: 69521

Novice user test 13 Total survey responses
(before/after each task): 1255
Self-reported critical incidents:9
Post-test interviews: 3

Analyzed third-party
apps using SL data

51(gross)
19 (net)

N/A

Table 7 - Empirical material related to the release version (April 2013-
August 2014)

3.4 Design Outcome
After leaving my position as an active designer of STA’s third-party

developer platform, I continued to follow its trajectory in several

respects.

In September 2016, I conducted a data source experiment following

the same procedures used in ADR loop 1 (see Chapter 3.2) to

investigate the actual data sources of the apps available in major app

stores. Moreover, following the previous data source experiment, I

contacted the app developers (5 developers managing a total of 11

apps) to inquire about data sources if an app’s data source was unable

to be determined programmatically.

Designing Platform Emulation

 38

Between August 2016 and March 2018, I was part of a project group

tasked with designing a new infrastructure for open data targeting

the entire Swedish public transport industry
21
, in which the STA also

participated. In this work, the open platform approach, as

implemented by the STA, became a role model for resolving service

level agreements (SLAs).

Third, I conducted a targeted follow-up study within the STA. This

inquiry encompassed four follow-up interviews (two in October 2018

and two in May 2020) with key personnel within the STA. Here, I

inquired into what had happened with the platform and its reception

since its launch. More specifically, I questioned my informants about

items in a changelog of the platform’s public functionalities, the

rationales behind them, and potential connections to the emulation

approach. Finally, I collected the usage statistics of the platform.

In addition, this stage encompassed the formalization of learning

stage in ADR (Sein et al., 2011), that yielded both the design principles

in Chapter 6 and the additional theoretical implications presented in

Chapter 7.

21 See Arnestrand, Lundh, Rudmark, and Östlund (2017) for further details.

Daniel Rudmark

 39

EMPIRICAL DATA N LENGTH

Analyzed third-
party applications
using STA data

35 (gross)
28 (net)

n/a

Emails third-party
developers on data
source

4 Tot words: 1587

Interview third-
party developers on
data source

2 Tot mins: 32

Workshops with the
Swedish Public
Transport Industry

6 Tot mins: 1800

Interviews with key
STA personnel

4 Tot mins: 374
Tot words: 55787

Platform changelog
entries

19 Tot words: 281

Usage statistics
spreadsheet

1 Number of API calls between
2015 and 2020, separated on
internal and external calls

Table 8- Empirical material related to the maintenance version
(September 2014-April 2021)

While this chapter has outlined the overall structure of this research,

it was not merely a series of data collection and analysis

opportunities. Instead, it was a process that contained an intricate

interplay between deliberate guidance from myself and my fellow

ADR team members and emergent environment results. I expand on

this process in the following chapter.

Designing Platform Emulation

 38

Between August 2016 and March 2018, I was part of a project group

tasked with designing a new infrastructure for open data targeting

the entire Swedish public transport industry
21
, in which the STA also

participated. In this work, the open platform approach, as

implemented by the STA, became a role model for resolving service

level agreements (SLAs).

Third, I conducted a targeted follow-up study within the STA. This

inquiry encompassed four follow-up interviews (two in October 2018

and two in May 2020) with key personnel within the STA. Here, I

inquired into what had happened with the platform and its reception

since its launch. More specifically, I questioned my informants about

items in a changelog of the platform’s public functionalities, the

rationales behind them, and potential connections to the emulation

approach. Finally, I collected the usage statistics of the platform.

In addition, this stage encompassed the formalization of learning

stage in ADR (Sein et al., 2011), that yielded both the design principles

in Chapter 6 and the additional theoretical implications presented in

Chapter 7.

21 See Arnestrand, Lundh, Rudmark, and Östlund (2017) for further details.

Daniel Rudmark

 39

EMPIRICAL DATA N LENGTH

Analyzed third-
party applications
using STA data

35 (gross)
28 (net)

n/a

Emails third-party
developers on data
source

4 Tot words: 1587

Interview third-
party developers on
data source

2 Tot mins: 32

Workshops with the
Swedish Public
Transport Industry

6 Tot mins: 1800

Interviews with key
STA personnel

4 Tot mins: 374
Tot words: 55787

Platform changelog
entries

19 Tot words: 281

Usage statistics
spreadsheet

1 Number of API calls between
2015 and 2020, separated on
internal and external calls

Table 8- Empirical material related to the maintenance version
(September 2014-April 2021)

While this chapter has outlined the overall structure of this research,

it was not merely a series of data collection and analysis

opportunities. Instead, it was a process that contained an intricate

interplay between deliberate guidance from myself and my fellow

ADR team members and emergent environment results. I expand on

this process in the following chapter.

Designing Platform Emulation

 40

The interventional design in this research was conducted between

January 2010 and August 2014, with two full ADR cycles occurring

between May 2012 and August 2014. The overarching objective was to

design an open digital platform by emulating unsanctioned

development and increase the STAs pool of potential innovators. An

overview of these cycles and the concluding product design

principles
22

 can be found in Table 9
23

.

22 In chapter 6, the product (and process) principles are elaborated.
23 While paper 5 includes the design interventions, the outlet space
requirement did not allow for the full empirical narrative and supporting
evidence. To this end, this narrative can be found in Appendix G.

4 GUIDED EMERGENCE

Daniel Rudmark

 39

EMPIRICAL DATA N LENGTH

Analyzed third-
party applications
using STA data

35 (gross)
28 (net)

n/a

Emails third-party
developers on data
source

4 Tot words: 1587

Interview third-
party developers on
data source

2 Tot mins: 32

Workshops with the
Swedish Public
Transport Industry

6 Tot mins: 1800

Interviews with key
STA personnel

4 Tot mins: 374
Tot words: 55787

Platform changelog
entries

19 Tot words: 281

Usage statistics
spreadsheet

1 Number of API calls between
2015 and 2020, separated on
internal and external calls

Table 8- Empirical material related to the maintenance version
(September 2014-April 2021)

While this chapter has outlined the overall structure of this research,

it was not merely a series of data collection and analysis

opportunities. Instead, it was a process that contained an intricate

interplay between deliberate guidance from myself and my fellow

ADR team members and emergent environment results. I expand on

this process in the following chapter.

Designing Platform Emulation

 40

The interventional design in this research was conducted between

January 2010 and August 2014, with two full ADR cycles occurring

between May 2012 and August 2014. The overarching objective was to

design an open digital platform by emulating unsanctioned

development and increase the STAs pool of potential innovators. An

overview of these cycles and the concluding product design

principles
22

 can be found in Table 9
23

.

22 In chapter 6, the product (and process) principles are elaborated.
23 While paper 5 includes the design interventions, the outlet space
requirement did not allow for the full empirical narrative and supporting
evidence. To this end, this narrative can be found in Appendix G.

4 GUIDED EMERGENCE

D
an

ie
l R

ud
m

ar
k

 41

A

R
TI

FI
C

IA
L

P
LA

TF
O

R
M

D

EM
O

N
ST

R
A

TI
O

N

A
U

TH
EN

TI
C

 P
LA

TF
O

R
M

D

EV
EL

O
P

M
EN

T
TA

R
G

ET
 P

LA
TF

O
R

M

IM
P

LE
M

EN
TA

TI
O

N

EN
SE

M
B

LE
 P

LA
TF

O
R

M

M
A

N
IF

ES
TA

TI
O

N

V
ER

SI
O

N

A
lp

ha

Be
ta

R

el
ea

se

M
ai

nt
en

an
ce

R
ES

EA
R

C
H

ER
-

C
LI

EN
T

A
G

R
EE

M
EN

T

Fo
cu

s:
 D

em
on

st
ra

te
 th

e
fe

as
ib

ili
ty

 o
f a

nd
 te

nt
at

iv
e

pr
in

ci
pl

es
 fo

r
m

or
e

op
en

ac

ce
ss

 to
 r

ea
l-

ti
m

e
ra

ilw
ay

da

ta

R
ol

es
: R

es
ea

rc
he

rs
 le

d
th

e
in

ve
st

ig
at

io
n

an
d

de
si

gn
ed

th

e
ar

ti
fa

ct
 w

it
h

lim
it

ed

fe
ed

ba
ck

 fr
om

 th
ir

d-
pa

rt
y

de
ve

lo
pe

rs
 a

nd
 th

e
ST

A

C
lie

nt
 c

om
m

it
m

en
t:

Su
pp

or
t t

he
 a

lp
ha

 a
rt

ifa
ct

,
op

ti
on

 to
 m

at
er

ia
liz

e
a

liv
e

be
ta

 a
rt

ifa
ct

Fo
cu

s:
 D

ev
el

op
 a

 fu
lly

fu

nc
ti

on
al

 p
la

tf
or

m
 e

na
bl

in
g

th
ir

d-
pa

rt
y

de
ve

lo
pm

en
t o

n
re

al
-t

im
e

ra
ilw

ay
 d

at
a

R
ol

es
: R

es
ea

rc
he

rs
 a

s
pr

oj
ec

t
m

an
ag

er
s,

 S
TA

 w
as

 p
ar

t o
f

de
si

gn
 te

am
, t

hi
rd

-p
ar

ty

de
ve

lo
pe

rs
 w

er
e

us
er

s
C

lie
nt

 c
om

m
it

m
en

t:
M

ak
e

th
e

pl
at

fo
rm

 o
pe

nl
y

av
ai

la
bl

e
du

ri
ng

 th
e

pr
oj

ec
t +

 1
ye

ar

Fo
cu

s:
 Im

pl
em

en
t a

n
op

er
at

io
na

l
pl

at
fo

rm
, a

dd
re

ss
in

g
th

e
sh

or
tc

om
in

gs
 o

f t
he

 b
et

a
ar

ti
fa

ct

an
d

en
ab

lin
g

th
ir

d-
pa

rt
y

de
ve

lo
pm

en
t u

si
ng

 r
ea

l-
ti

m
e

ra
ilw

ay
 d

at
a

R

ol
es

: S
TA

 a
s

pr
oj

ec
t m

an
ag

er
s

an
d

de
si

gn
er

s,
 r

es
ea

rc
he

rs
 a

s
de

si
gn

er
s

an
d

re
sp

on
si

bl
e

fo
r

ev
al

ua
ti

on
s

C
lie

nt
 c

om
m

it
m

en
t:

cr
ea

te
 a

n
op

en
 o

ffi
ci

al
 r

ea
l-

ti
m

e
da

ta

pl
at

fo
rm

 fo
r

th
e

ST
A

Fo
cu

s:
 F

ol
lo

w
 th

e
pl

at
fo

rm

ev
ol

ut
io

n

R
ol

es
: S

TA
 a

s
pr

oj
ec

t m
an

ag
er

s
an

d
de

si
gn

er
s,

 r
es

ea
rc

he
rs

 a
s

ob
se

rv
er

s
C

lie
nt

 c
om

m
it

m
en

t:
A

llo
w

ac

ce
ss

 to
 r

el
ev

an
t u

sa
ge

st

at
is

ti
cs

 a
nd

 q
ua

lit
at

iv
e

in
qu

ir
ie

s

SP
EC

IF
IC

P

R
O

B
LE

M

D
ev

el
op

er
s

m
is

si
ng

sh

or
tc

ut
s

to
 fr

eq
ue

nt
ly

im

pl
em

en
te

d
us

e
ca

se
s

D
ev

el
op

er
s

m
is

si
ng

 s
ho

rt
cu

ts

to
 fr

eq
ue

nt
ly

 im
pl

em
en

te
d

us
e

ca
se

s
+

ac
ce

ss
 to

 a
ll

da
ta

D
ev

el
op

er
s

m
is

si
ng

 s
ho

rt
cu

ts
 to

fr

eq
ue

nt
ly

 im
pl

em
en

te
d

us
e

ca
se

s
an

d
fle

xi
bl

e
da

ta

pr
oc

es
si

ng
 o

pt
io

ns

En
su

re
 n

ew
 d

at
as

et
s

fo
llo

w

pl
at

fo
rm

 p
ri

nc
ip

le
s

an
d

fin
d

in
te

rn
al

 u
se

s
fo

r
th

e
pl

at
fo

rm

w
it

hi
n

th
e

ST
A

G
EN

ER
A

LI
ZE

D

P
R

O
B

LE
M

La

ck
 o

f p
la

tf
or

m

ca
pa

bi
lit

ie
s

fo
r

m
at

er
ia

liz
ed

se

lf-
re

so
ur

ci
ng

La
ck

 o
f p

la
tf

or
m

 c
ap

ab
ili

ti
es

fo

r
m

at
er

ia
liz

ed
 s

el
f-

re
so

ur
ci

ng

an
d

ad
di

ti
on

al
 e

xp
er

im
en

ta
ti

on

op
po

rt
un

it
ie

s

La
ck

 o
f p

la
tf

or
m

 c
ap

ab
ili

ti
es

 fo
r

bo
th

 m
at

er
ia

liz
ed

 a
nd

 e
m

er
ge

nt

se
lf-

re
so

ur
ci

ng

Su
st

ai
ni

ng
 e

xt
er

na
l a

nd

ex
pl

oi
ti

ng
 in

te
rn

al
 e

m
ul

at
ed

pl

at
fo

rm
 c

ap
ab

ili
ti

es

Daniel Rudmark

 41

 ARTIFICIAL PLATFORM
DEMONSTRATION

AUTHENTIC PLATFORM
DEVELOPMENT

TARGET PLATFORM
IMPLEMENTATION

ENSEMBLE PLATFORM
MANIFESTATION

VERSION Alpha Beta Release Maintenance

RESEARCHER-
CLIENT
AGREEMENT

Focus: Demonstrate the
feasibility of and tentative
principles for more open
access to real-time railway
data
Roles: Researchers led the
investigation and designed
the artifact with limited
feedback from third-party
developers and the STA
Client commitment:
Support the alpha artifact,
option to materialize a live
beta artifact

Focus: Develop a fully
functional platform enabling
third-party development on
real-time railway data
Roles: Researchers as project
managers, STA was part of
design team, third-party
developers were users
Client commitment: Make the
platform openly available
during the project + 1 year

Focus: Implement an operational
platform, addressing the
shortcomings of the beta artifact
and enabling third-party
development using real-time
railway data
Roles: STA as project managers
and designers, researchers as
designers and responsible for
evaluations
Client commitment: create an
open official real-time data
platform for the STA

Focus: Follow the platform
evolution
Roles: STA as project managers
and designers, researchers as
observers
Client commitment: Allow
access to relevant usage
statistics and qualitative
inquiries

SPECIFIC
PROBLEM

Developers missing
shortcuts to frequently
implemented use cases

Developers missing shortcuts
to frequently implemented use
cases + access to all data

Developers missing shortcuts to
frequently implemented use
cases and flexible data
processing options

Ensure new datasets follow
platform principles and find
internal uses for the platform
within the STA

GENERALIZED
PROBLEM

Lack of platform
capabilities for materialized
self-resourcing

Lack of platform capabilities
for materialized self-resourcing
and additional experimentation
opportunities

Lack of platform capabilities for
both materialized and emergent
self-resourcing

Sustaining external and
exploiting internal emulated
platform capabilities

Daniel Rudmark

 39

EMPIRICAL DATA N LENGTH

Analyzed third-
party applications
using STA data

35 (gross)
28 (net)

n/a

Emails third-party
developers on data
source

4 Tot words: 1587

Interview third-
party developers on
data source

2 Tot mins: 32

Workshops with the
Swedish Public
Transport Industry

6 Tot mins: 1800

Interviews with key
STA personnel

4 Tot mins: 374
Tot words: 55787

Platform changelog
entries

19 Tot words: 281

Usage statistics
spreadsheet

1 Number of API calls between
2015 and 2020, separated on
internal and external calls

Table 8- Empirical material related to the maintenance version
(September 2014-April 2021)

While this chapter has outlined the overall structure of this research,

it was not merely a series of data collection and analysis

opportunities. Instead, it was a process that contained an intricate

interplay between deliberate guidance from myself and my fellow

ADR team members and emergent environment results. I expand on

this process in the following chapter.

D
es

ig
ni

ng
 P

la
tf

or
m

 E
m

ul
at

io
n

 42

A

R
TI

FI
C

IA
L

P
LA

TF
O

R
M

D

EM
O

N
ST

R
A

TI
O

N

A
U

TH
EN

TI
C

 P
LA

TF
O

R
M

D

EV
EL

O
P

M
EN

T
TA

R
G

ET
 P

LA
TF

O
R

M

IM
P

LE
M

EN
TA

TI
O

N

EN
SE

M
B

LE
 P

LA
TF

O
R

M

M
A

N
IF

ES
TA

TI
O

N

IN
ST

A
N

TI
A

TE
D

G

O
V

ER
N

A
N

C
E

A

cc
es

s
op

en
ne

ss

o

O
pe

n,
 n

on
-

di
sc

ri
m

in
at

or
y

A
PI

ac

ce
ss

C

oh
er

en
t s

ea
rc

h
o

Pa

ck
ag

in
g

ob
se

rv
ab

le

ap
p

be
ha

vi
or

A
cc

es
s

op
en

ne
ss

o

O

pe
n,

 n
on

-d
is

cr
im

in
at

or
y

A
PI

 a
cc

es
s

C
oh

er
en

t s
ea

rc
h

o

Pa
ck

ag
in

g
ob

se
rv

ab
le

 a
pp

be

ha
vi

or

Fl
ex

ib
le

 s
ea

rc
h

o

C

ha
nn

el
 r

aw
 in

fo
rm

at
io

n
ob

je
ct

s

o

R
es

ou
rc

e
op

en
ne

ss

o

O
pe

n
pl

at
fo

rm

C
oh

er
en

t s
ea

rc
h

o

D
is

cl
os

in
g

ob
se

rv
ab

le
 a

pp

be
ha

vi
or

 im
pl

em
en

ta
ti

on

Fl
ex

ib
le

 s
ea

rc
h

o

Im
pr

ov
ed

 a
nd

 o
pe

ne
d

in
te

rn
al

 in
te

rf
ac

es

R
es

ou
rc

e
op

en
ne

ss

o

O
pe

n
pl

at
fo

rm

C
oh

er
en

t s
ea

rc
h

o

D
is

cl
os

in
g

ob
se

rv
ab

le
 a

pp

be
ha

vi
or

 im
pl

em
en

ta
ti

on

Fl
ex

ib
le

 s
ea

rc
h

o

Im
pr

ov
ed

 a
nd

 o
pe

ne
d

in
te

rn
al

 in
te

rf
ac

es

IN
ST

A
N

TI
A

TE
D

A

R
C

H
IT

EC
TU

R
E

M
od

ul
ar

 o
pe

ra
to

r:

o

In
ve

rt
in

g
In

te
rf

ac
es

o

A

PI
 k

ey
 d

is
pe

ns
er

o

U

se
-c

as
e-

bo
un

d
A

PI

M
od

ul
ar

 o
pe

ra
to

r:

o

In
ve

rt
in

g
In

te
rf

ac
es

o

U

se
-c

as
e-

bo
un

d
A

PI

o

Fu
ll

da
ta

 m
od

el
 A

PI

In
te

gr
at

io
n

pr
ot

oc
ol

s
o

C

oo
rd

in
at

e
co

nv
er

si
on

co

de

o

U
se

r
tu

to
ri

al

o

A
PI

 c
on

so
le

o

U

se
r

re
gi

st
ra

ti
on

o

D

oc
um

en
ta

ti
on

M
od

ul
ar

 o
pe

ra
to

r:

o

Su
bs

ti
tu

ti
ng

In

te
rf

ac
es

o

Q

ue
ry

 e
ng

in
e

A
PI

In

te
gr

at
io

n
pr

ot
oc

ol
s

o

Ex

am
pl

e
qu

er
ie

s
fo

r
co

m
m

on
 u

se
 c

as
es

o

U

se
r

tu
to

ri
al

o

A

PI
 C

on
so

le

o

U
se

r
re

gi
st

ra
ti

on

o

D
oc

um
en

ta
ti

on

M
od

ul
ar

 o
pe

ra
to

r:

o

M
ut

at
in

g
o

In

te
rf

ac
es

o

Q

ue
ry

 e
ng

in
e

A
PI

In

te
gr

at
io

n
pr

ot
oc

ol
s

o

Ex
am

pl
e

qu
er

ie
s

fo
r

co
m

m
on

 u
se

 c
as

es

o

U
se

r
tu

to
ri

al

o

A
PI

 C
on

so
le

o

U

se
r

re
gi

st
ra

ti
on

o

D

oc
um

en
ta

ti
on

Designing Platform Emulation

 42

 ARTIFICIAL PLATFORM
DEMONSTRATION

AUTHENTIC PLATFORM
DEVELOPMENT

TARGET PLATFORM
IMPLEMENTATION

ENSEMBLE PLATFORM
MANIFESTATION

INSTANTIATED
GOVERNANCE

Access openness
o Open, non-

discriminatory API
access

Coherent search
o Packaging observable

app behavior

Access openness
o Open, non-discriminatory

API access
Coherent search
o Packaging observable app

behavior
Flexible search
o Channel raw information

objects

o Resource openness
o Open platform

Coherent search
o Disclosing observable app

behavior implementation
Flexible search
o Improved and opened

internal interfaces

Resource openness
o Open platform

Coherent search
o Disclosing observable app

behavior implementation
Flexible search
o Improved and opened

internal interfaces

INSTANTIATED
ARCHITECTURE

Modular operator:
o Inverting

Interfaces
o API key dispenser
o Use-case-bound API

Modular operator:
o Inverting

Interfaces
o Use-case-bound API
o Full data model API

Integration protocols
o Coordinate conversion

code
o User tutorial
o API console
o User registration
o Documentation

Modular operator:
o Substituting

Interfaces
o Query engine API

Integration protocols
o Example queries for

common use cases
o User tutorial
o API Console
o User registration
o Documentation

Modular operator:
o Mutating

o Interfaces
o Query engine API

Integration protocols
o Example queries for

common use cases
o User tutorial
o API Console
o User registration
o Documentation

Daniel Rudmark

 39

EMPIRICAL DATA N LENGTH

Analyzed third-
party applications
using STA data

35 (gross)
28 (net)

n/a

Emails third-party
developers on data
source

4 Tot words: 1587

Interview third-
party developers on
data source

2 Tot mins: 32

Workshops with the
Swedish Public
Transport Industry

6 Tot mins: 1800

Interviews with key
STA personnel

4 Tot mins: 374
Tot words: 55787

Platform changelog
entries

19 Tot words: 281

Usage statistics
spreadsheet

1 Number of API calls between
2015 and 2020, separated on
internal and external calls

Table 8- Empirical material related to the maintenance version
(September 2014-April 2021)

While this chapter has outlined the overall structure of this research,

it was not merely a series of data collection and analysis

opportunities. Instead, it was a process that contained an intricate

interplay between deliberate guidance from myself and my fellow

ADR team members and emergent environment results. I expand on

this process in the following chapter.

Designing Platform Emulation

 40

The interventional design in this research was conducted between

January 2010 and August 2014, with two full ADR cycles occurring

between May 2012 and August 2014. The overarching objective was to

design an open digital platform by emulating unsanctioned

development and increase the STAs pool of potential innovators. An

overview of these cycles and the concluding product design

principles
22

 can be found in Table 9
23

.

22 In chapter 6, the product (and process) principles are elaborated.
23 While paper 5 includes the design interventions, the outlet space
requirement did not allow for the full empirical narrative and supporting
evidence. To this end, this narrative can be found in Appendix G.

4 GUIDED EMERGENCE

D
an

ie
l R

ud
m

ar
k

 43

A

R
TI

FI
C

IA
L

P
LA

TF
O

R
M

D

EM
O

N
ST

R
A

TI
O

N

A
U

TH
EN

TI
C

 P
LA

TF
O

R
M

D

EV
EL

O
P

M
EN

T
TA

R
G

ET
 P

LA
TF

O
R

M

IM
P

LE
M

EN
TA

TI
O

N

EN
SE

M
B

LE
 P

LA
TF

O
R

M

M
A

N
IF

ES
TA

TI
O

N

C
O

N
C

U
R

R
EN

T
EV

A
LU

A
TI

O
N

C

O
N

TE
X

T

Ex
 a

nt
e,

 fo
rm

at
iv

e
ev

al
ua

ti
on

W

or
ks

ho
p

w
it

h
th

ir
d-

pa
rt

y
de

ve
lo

pe
rs

 a
nd

re

pr
es

en
ta

ti
ve

s
fr

om
 th

e
ST

A

Ex
 p

os
t,

fo
rm

at
iv

e
ev

al
ua

ti
on

O

pe
n

di
sc

us
si

on
 fo

ru
m

Pl

at
fo

rm
 o

pe
n

to
 th

e
pu

bl
ic

,
ti

m
e-

co
ns

tr
ai

ne
d

Ex
 p

os
t,

su
m

m
at

iv
e

ev
al

ua
ti

on

Pl
at

fo
rm

 o
pe

n
to

 th
e

pu
bl

ic

Ex
 p

os
t,

su
m

m
at

iv
e

ev
al

ua
ti

on

Pl
at

fo
rm

 o
pe

n
to

 th
e

pu
bl

ic

an
d

th
e

ST
A

EV
A

LU
A

TI
O

N

R
ES

U
LT

S

C
oh

er
en

t s
ea

rc
he

s
ne

ce
ss

ar
y

Fl
ex

ib
le

 s
ea

rc
he

s
m

is
si

ng

A
cc

es
s

op
en

ne
ss

 s
uf

fic
ie

nt

C
oh

er
en

t s
ea

rc
he

s
ne

ce
ss

ar
y

an
d

co
ns

id
er

ed
 s

at
is

fa
ct

or
y

Fl
ex

ib
le

 s
ea

rc
he

s
ne

ce
ss

ar
y

bu
t

co
ns

id
er

ed
 u

ns
at

is
fa

ct
or

y
A

cc
es

s
op

en
ne

ss
 s

uf
fic

ie
nt

 a
nd

co

ns
id

er
ed

 s
at

is
fa

ct
or

y

C
oh

er
en

t s
ea

rc
he

s
ne

ce
ss

ar
y

an
d

co
ns

id
er

ed
 s

at
is

fa
ct

or
y

Fl
ex

ib
le

 s
ea

rc
he

s
ne

ce
ss

ar
y

an
d

co
ns

id
er

ed
 s

at
is

fa
ct

or
y

R
es

ou
rc

e
op

en
ne

ss
 s

uf
fic

ie
nt

 a
nd

co

ns
id

er
ed

 s
at

is
fa

ct
or

y

G
ov

er
na

nc
e/

ar
ch

it
ec

tu
re

co

nf
ig

ur
at

io
n

pe
rs

ev
er

ed

Sc
ra

pi
ng

 c
ea

se
d

ST
A

 e
m

ul
at

io
n

pr
ac

ti
ce

s
co

nt
in

ue
d

O
pe

n
pl

at
fo

rm
 a

pp
ro

ac
h

re
so

lv
ed

 S
LA

 c
on

ce
rn

s
Em

ul
at

io
n

as
 a

 p
la

tf
or

m
 d

es
ig

n
st

ra
te

gy
 le

d
to

 in
te

rn
al

ad

op
ti

on

C
O

N
C

LU
D

IN
G

P

R
O

D
U

C
T

P
R

IN
C

IP
LE

Th
e

Pr
in

ci
pl

e
of

 P
la

tf
or

m

A
cc

es
s

to
 E

xt
er

na
bl

e
D

at
a

an
d

Fu
nc

ti
on

al
it

y

Th
e

Pr
in

ci
pl

e
of

 P
la

tf
or

m

C
ap

ab
ili

ty
 w

it
h

N
on

-
D

et
er

m
in

is
ti

c
U

se
 S

up
po

rt

Th
e

Pr
in

ci
pl

e
of

 P
la

tf
or

m

G
ro

w
th

 B
y

Ex

pe
ri

m
en

t F
le

xi
bi

lit
y

Th
e

Pr
in

ci
pl

e
of

 P
la

tf
or

m

Eq
ui

lib
ri

um
 th

ro
ug

h
In

te
rn

al

In
te

gr
at

io
n

Ta
bl

e
9

–
O

ve
rv

ie
w

 o
f g

ui
de

d
em

er
ge

nc
e

in
 th

is
 r

es
ea

rc
h

Daniel Rudmark

 43

 ARTIFICIAL PLATFORM
DEMONSTRATION

AUTHENTIC PLATFORM
DEVELOPMENT

TARGET PLATFORM
IMPLEMENTATION

ENSEMBLE PLATFORM
MANIFESTATION

CONCURRENT
EVALUATION
CONTEXT

Ex ante, formative
evaluation
Workshop with third-party
developers and
representatives from the
STA

Ex post, formative evaluation
Open discussion forum
Platform open to the public,
time-constrained

Ex post, summative evaluation
Platform open to the public

Ex post, summative evaluation
Platform open to the public
and the STA

EVALUATION
RESULTS

Coherent searches
necessary
Flexible searches missing
Access openness sufficient

Coherent searches necessary
and considered satisfactory
Flexible searches necessary but
considered unsatisfactory
Access openness sufficient and
considered satisfactory

Coherent searches necessary and
considered satisfactory
Flexible searches necessary and
considered satisfactory
Resource openness sufficient and
considered satisfactory

Governance/architecture
configuration persevered
Scraping ceased
STA emulation practices
continued
Open platform approach
resolved SLA concerns
Emulation as a platform design
strategy led to internal
adoption

CONCLUDING
PRODUCT
PRINCIPLE

The Principle of Platform
Access to Externable Data
and Functionality

The Principle of Platform
Capability with Non-
Deterministic Use Support

The Principle of Platform
Growth By
Experiment Flexibility

The Principle of Platform
Equilibrium through Internal
Integration

Table 9 – Overview of guided emergence in this research

Daniel Rudmark

 39

EMPIRICAL DATA N LENGTH

Analyzed third-
party applications
using STA data

35 (gross)
28 (net)

n/a

Emails third-party
developers on data
source

4 Tot words: 1587

Interview third-
party developers on
data source

2 Tot mins: 32

Workshops with the
Swedish Public
Transport Industry

6 Tot mins: 1800

Interviews with key
STA personnel

4 Tot mins: 374
Tot words: 55787

Platform changelog
entries

19 Tot words: 281

Usage statistics
spreadsheet

1 Number of API calls between
2015 and 2020, separated on
internal and external calls

Table 8- Empirical material related to the maintenance version
(September 2014-April 2021)

While this chapter has outlined the overall structure of this research,

it was not merely a series of data collection and analysis

opportunities. Instead, it was a process that contained an intricate

interplay between deliberate guidance from myself and my fellow

ADR team members and emergent environment results. I expand on

this process in the following chapter.

Designing Platform Emulation

 40

The interventional design in this research was conducted between

January 2010 and August 2014, with two full ADR cycles occurring

between May 2012 and August 2014. The overarching objective was to

design an open digital platform by emulating unsanctioned

development and increase the STAs pool of potential innovators. An

overview of these cycles and the concluding product design

principles
22

 can be found in Table 9
23

.

22 In chapter 6, the product (and process) principles are elaborated.
23 While paper 5 includes the design interventions, the outlet space
requirement did not allow for the full empirical narrative and supporting
evidence. To this end, this narrative can be found in Appendix G.

4 GUIDED EMERGENCE

Designing Platform Emulation

 44

4.1 Artificial Platform Demonstration
My engagement with the STA began in January 2012 after receiving
funding to work with actors in the public transport industry to open
up their internal systems for outside innovators. Based on this
financial support and previous experiences from DART, Trafiklab.se,
SL, and TravelHack, I searched for organizations that could be
interested in resolving self-resourcing issues. Here, the STA stood
out as a prime candidate for testing the emerging framework on open
platform emulation since they were subjected to the extensive
scraping of real-time railway data and had little knowledge of how to
resolve this situation. Thus, the product owner of Trafiklab.se and I
contacted the STA to determine their potential interest in engaging
in a collaborative venture involving emulation as a means to design
an open platform. After some initial discussions, they expressed a
clear interest in engaging in this venture.

At this point in the investigation, I had immersed myself in third-
party development, self-resourcing, and platforms within the
Swedish public transport industry since autumn 2009. As a result, I
had begun developing hypotheses on what configurations of
platform governance and architecture were suitable for emulating
self-resourcing. These hypotheses sprung out of observed
disconnects between the platform capabilities offered (if any) by
public transport actors and how developers designed and consumed
resources for their use. Following the interactions with DART
(Rudmark & Ghazawneh, 2011; Rudmark & Lind, 2011), we presented
our ideas.

Additionally, the capabilities offered by public transport agencies
were rooted in different design paradigms. One such paradigm was
publishing previously internal interfaces publicly. For instance,
Västtrafik, one of the agencies in the DART group, followed this
tradition and outright published the APIs used for their webpage to
developers. However, these interfaces were criticized by developers
for a variety of reasons. They were considered verbose (response sizes
were difficult to process by phones on the move), contained a non-
standard use of XML, were stop-oriented (rather than en route-
oriented), and used geographic positioning coordinates (RT90
coordinates) that were challenging to cast to those used by

Daniel Rudmark

 45

smartphones (WGS84). For their part, Trafikverket designed data-
sharing platforms rooted in another paradigm, where real-time data
about road works, accidents, and severe weather conditions were
based on the European standard Datex II (distributed free of
charge)24. Incumbent industry actors such as traffic data aggregators,
forestry companies, and traffic navigators used this data stream, and
the STA’s yearly customer surveys noted satisfaction with the service.
However, when I interviewed a group of smartphone app developers
outside of the established transport industry, they were critical of the
STA’s Datex II program. As in the case of Västtrafik’s APIs, they found
it impossible to cast this verbose data stream (initially developed for
exchanging data between traffic management centers across Europe)
into mobile use without substantial intermediate data processing.
Moreover, obtaining access to this data involved signing a written
agreement with the STA, which they found unnecessarily
complicated.

The criticism of verbose (and to these developers) outdated
technologies in tandem with the far-reaching written agreement
repeated itself in my study of SL and their scraping trajectory
(Koutsikouri et al., 2018; Rudmark et al., 2012). In a largely failed
attempt to offer internal APIs conditioned by signed contracts,
developers expressed their discontent in interviews and the initial
developer program by SL suffered from low adoption rates. However,
when SL offered less verbose APIs that were suitable for a mobile
context and available through a simple registration process, adoption
skyrocketed among external developers. Notably, the Trafiklab
architecture enabled this turnaround redesign. SL could not offer the
sought-after capabilities through their existing architectures due to
outdated technologies and numerous dependencies. Instead, they
published their new APIs through Trafiklab, which were more
precise, less verbose, and allowed en route-oriented interfaces to be
offered.

Finally, studying developers using platforms in real-time during
TravelHack (Rudmark, 2013) allowed me to gather more information
on the discrepancies between the software tools offered by public
transport agencies and what third-party developers expected. This

24 http://www.datex2.eu/

Designing Platform Emulation

 44

4.1 Artificial Platform Demonstration
My engagement with the STA began in January 2012 after receiving
funding to work with actors in the public transport industry to open
up their internal systems for outside innovators. Based on this
financial support and previous experiences from DART, Trafiklab.se,
SL, and TravelHack, I searched for organizations that could be
interested in resolving self-resourcing issues. Here, the STA stood
out as a prime candidate for testing the emerging framework on open
platform emulation since they were subjected to the extensive
scraping of real-time railway data and had little knowledge of how to
resolve this situation. Thus, the product owner of Trafiklab.se and I
contacted the STA to determine their potential interest in engaging
in a collaborative venture involving emulation as a means to design
an open platform. After some initial discussions, they expressed a
clear interest in engaging in this venture.

At this point in the investigation, I had immersed myself in third-
party development, self-resourcing, and platforms within the
Swedish public transport industry since autumn 2009. As a result, I
had begun developing hypotheses on what configurations of
platform governance and architecture were suitable for emulating
self-resourcing. These hypotheses sprung out of observed
disconnects between the platform capabilities offered (if any) by
public transport actors and how developers designed and consumed
resources for their use. Following the interactions with DART
(Rudmark & Ghazawneh, 2011; Rudmark & Lind, 2011), we presented
our ideas.

Additionally, the capabilities offered by public transport agencies
were rooted in different design paradigms. One such paradigm was
publishing previously internal interfaces publicly. For instance,
Västtrafik, one of the agencies in the DART group, followed this
tradition and outright published the APIs used for their webpage to
developers. However, these interfaces were criticized by developers
for a variety of reasons. They were considered verbose (response sizes
were difficult to process by phones on the move), contained a non-
standard use of XML, were stop-oriented (rather than en route-
oriented), and used geographic positioning coordinates (RT90
coordinates) that were challenging to cast to those used by

Daniel Rudmark

 45

smartphones (WGS84). For their part, Trafikverket designed data-
sharing platforms rooted in another paradigm, where real-time data
about road works, accidents, and severe weather conditions were
based on the European standard Datex II (distributed free of
charge)24. Incumbent industry actors such as traffic data aggregators,
forestry companies, and traffic navigators used this data stream, and
the STA’s yearly customer surveys noted satisfaction with the service.
However, when I interviewed a group of smartphone app developers
outside of the established transport industry, they were critical of the
STA’s Datex II program. As in the case of Västtrafik’s APIs, they found
it impossible to cast this verbose data stream (initially developed for
exchanging data between traffic management centers across Europe)
into mobile use without substantial intermediate data processing.
Moreover, obtaining access to this data involved signing a written
agreement with the STA, which they found unnecessarily
complicated.

The criticism of verbose (and to these developers) outdated
technologies in tandem with the far-reaching written agreement
repeated itself in my study of SL and their scraping trajectory
(Koutsikouri et al., 2018; Rudmark et al., 2012). In a largely failed
attempt to offer internal APIs conditioned by signed contracts,
developers expressed their discontent in interviews and the initial
developer program by SL suffered from low adoption rates. However,
when SL offered less verbose APIs that were suitable for a mobile
context and available through a simple registration process, adoption
skyrocketed among external developers. Notably, the Trafiklab
architecture enabled this turnaround redesign. SL could not offer the
sought-after capabilities through their existing architectures due to
outdated technologies and numerous dependencies. Instead, they
published their new APIs through Trafiklab, which were more
precise, less verbose, and allowed en route-oriented interfaces to be
offered.

Finally, studying developers using platforms in real-time during
TravelHack (Rudmark, 2013) allowed me to gather more information
on the discrepancies between the software tools offered by public
transport agencies and what third-party developers expected. This

24 http://www.datex2.eu/

Designing Platform Emulation

 46

in-depth observation led me to understand the importance of
considering seemingly minor details such as registration procedures,
development environment integration, and the exact meaning of
casting API calls into live use cases.

However, despite our previous experience in dealing with similar
situations and the emerging theoretical framework, it was not
feasible to directly instantiate a platform at that point. Given the
STA's existing third-party developer programs, the organization did
not have sufficient knowledge or capacity to directly fulfill the
emerging requirements. Moreover, the current STA third-party
developer strategy did not include the type "app hackers" under
scrutiny in this project, which made more far-reaching commitments
difficult at that time. Thus, to resolve the situation while still making
progress, we entered a rather limited researcher-client agreement.
This agreement stipulated that myself and the product manager of
Trafiklab would investigate their situation and demonstrate an
artificial version of a potential platform with support from both the
STA and—to the extent possible—third-party developers. After this
artificial platform demonstration, the STA would have the option,
but not an obligation, to continue the collaboration.

As a first step, we formed a deeper understanding of the idiosyncratic
situation at hand. At the outset, we identified that it was essential to
detail current strategies at the STA and third-party developer
preferences to describe the change nexus more precisely. The STA
interviews highlighted their existing practices and policies
concerning third-party development. These were marked by existing
industry structures, where external data re-users were well known by
the STA and operating within the transportation sector. Also, the
data formats in use were rich and complex (i.e., focused on enabling
flexible searches), while third-party relationships were based on
signed contracts to ensure respective parties' responsibilities (not
open platforms). I also reached out to developers that were using
scraped data, who were surprisingly willing to share their views.
These interviews with developers highlighted a rather different set of
platform governance expectations. Rather than contracts, they
wanted to work directly with APIs and were, at most, willing to
submit to online registration (access openness).

Daniel Rudmark

 47

Moreover, rather than searching for solutions in complex data
structures, they wanted APIs that allowed for immediate recurrent
usage (coherent searches). This preference meant that attractive APIs
should support common use cases such as station searches based on
names, coordinates, or departures and arrivals from platforms. The
developer interviews also uncovered two categories of developers.
The first type both scraped data and built the end-user services, while
the other type focused on the end-user services and used
unsanctioned APIs to build on scraped data that other developers
had collected and shared.

At this point, my emulation framework25 consisted of a specific
configuration of architecture and governance. As argued in this
thesis, emulation entails surpassing desirable compatible platform
capabilities by rearranging an organization's resources. More
specifically, the problem at hand concerned a lack of available
platform capabilities that materialized existing self-resourcing.

Based on the problem formulation, I hypothesized that such
capabilities involved two aspects in this context. First, there was a
need to establish coherent search opportunities (i.e., a set of highly
reusable capabilities that could cut across knowledge boundaries).
This finding was corroborated by video observations from
TravelHack (Rudmark, 2013), where I was able to study how
developers appropriated APIs in their development in real time. The
analysis showed that developers were attracted to platforms that
facilitated casting of common use cases into platform calls (e.g.,
finding the nearest train station).

Second, my framework included access openness to govern the
platform's openness. By drawing on access openness, an organization
subject to outlaw innovation could retain control of what was shared
with third-party developers (i.e., coherent search capabilities).
Moreover, during fall 2011, my co-authors and I conducted a case

25 During the ADR interventions, I ingrained the platform with theoretical
ideas that were available at the time (e.g., Boudreau, 2010; Tilson et al.,
2010). In retrospect, more contemporary platform theories (e.g.,
Brunswicker & Schecter, 2019; Karhu et al., 2018) that were built on earlier
ones provided additional explanatory power and were thus included in the
framework.

Designing Platform Emulation

 46

in-depth observation led me to understand the importance of
considering seemingly minor details such as registration procedures,
development environment integration, and the exact meaning of
casting API calls into live use cases.

However, despite our previous experience in dealing with similar
situations and the emerging theoretical framework, it was not
feasible to directly instantiate a platform at that point. Given the
STA's existing third-party developer programs, the organization did
not have sufficient knowledge or capacity to directly fulfill the
emerging requirements. Moreover, the current STA third-party
developer strategy did not include the type "app hackers" under
scrutiny in this project, which made more far-reaching commitments
difficult at that time. Thus, to resolve the situation while still making
progress, we entered a rather limited researcher-client agreement.
This agreement stipulated that myself and the product manager of
Trafiklab would investigate their situation and demonstrate an
artificial version of a potential platform with support from both the
STA and—to the extent possible—third-party developers. After this
artificial platform demonstration, the STA would have the option,
but not an obligation, to continue the collaboration.

As a first step, we formed a deeper understanding of the idiosyncratic
situation at hand. At the outset, we identified that it was essential to
detail current strategies at the STA and third-party developer
preferences to describe the change nexus more precisely. The STA
interviews highlighted their existing practices and policies
concerning third-party development. These were marked by existing
industry structures, where external data re-users were well known by
the STA and operating within the transportation sector. Also, the
data formats in use were rich and complex (i.e., focused on enabling
flexible searches), while third-party relationships were based on
signed contracts to ensure respective parties' responsibilities (not
open platforms). I also reached out to developers that were using
scraped data, who were surprisingly willing to share their views.
These interviews with developers highlighted a rather different set of
platform governance expectations. Rather than contracts, they
wanted to work directly with APIs and were, at most, willing to
submit to online registration (access openness).

Daniel Rudmark

 47

Moreover, rather than searching for solutions in complex data
structures, they wanted APIs that allowed for immediate recurrent
usage (coherent searches). This preference meant that attractive APIs
should support common use cases such as station searches based on
names, coordinates, or departures and arrivals from platforms. The
developer interviews also uncovered two categories of developers.
The first type both scraped data and built the end-user services, while
the other type focused on the end-user services and used
unsanctioned APIs to build on scraped data that other developers
had collected and shared.

At this point, my emulation framework25 consisted of a specific
configuration of architecture and governance. As argued in this
thesis, emulation entails surpassing desirable compatible platform
capabilities by rearranging an organization's resources. More
specifically, the problem at hand concerned a lack of available
platform capabilities that materialized existing self-resourcing.

Based on the problem formulation, I hypothesized that such
capabilities involved two aspects in this context. First, there was a
need to establish coherent search opportunities (i.e., a set of highly
reusable capabilities that could cut across knowledge boundaries).
This finding was corroborated by video observations from
TravelHack (Rudmark, 2013), where I was able to study how
developers appropriated APIs in their development in real time. The
analysis showed that developers were attracted to platforms that
facilitated casting of common use cases into platform calls (e.g.,
finding the nearest train station).

Second, my framework included access openness to govern the
platform's openness. By drawing on access openness, an organization
subject to outlaw innovation could retain control of what was shared
with third-party developers (i.e., coherent search capabilities).
Moreover, during fall 2011, my co-authors and I conducted a case

25 During the ADR interventions, I ingrained the platform with theoretical
ideas that were available at the time (e.g., Boudreau, 2010; Tilson et al.,
2010). In retrospect, more contemporary platform theories (e.g.,
Brunswicker & Schecter, 2019; Karhu et al., 2018) that were built on earlier
ones provided additional explanatory power and were thus included in the
framework.

Designing Platform Emulation

 48

study (Rudmark et al., 2012) that investigated the trajectory of a
similar organization (SL) and how they had struggled with (and now
seemingly succeeded in) transforming unsanctioned third-party
development involving scraping into development on sanctioned
resources. A key conclusion from this work was that more far-
reaching contracts were misaligned with the preferences of third-
party developers that use scraping. Consequently, developer
adoption skyrocketed when SL switched to non-discriminatory
access openness.

On the architectural side, the means of ensuring such capabilities
included inverting a new module on top of the existing resources.
This new module was then used to emulate the desired behavior
conveyed through specialized interfaces (e.g., APIs). I hypothesized
that this architecture was an efficient way to provide access to
incumbent digital resources and cast them into the type of reusable
capabilities preferred by developers. An inversion-based architecture
had been used to establish Trafiklab and was vital to enabling the
rapid developer uptake of SL’s open interfaces. This architectural
pattern would also allow tentative platform experiments and release
versions to unfold without affecting existing systems.

Given the input gathered in the problem formulation phase and my
initial framework, the artificial platform materialized in the following
manner. We proposed a dedicated API that was open to any external
third-party developer (access openness) and conveyed the set of use
cases hinted at during the interviews (coherent searches). In terms
of architecture, these use case-bound APIs (interfaces) would be
implemented in Trafiklab (inversion) and use API technologies
relying on Representational State Transfer (REST) and simple URL
parameters. The architecture also required an API key dispenser
(interface) that developers would call to obtain API access tokens26.

The alpha version evaluation involved a workshop held on April 19,
2012, where the platform’s principles were presented. We concluded
that even though we were in a pure building system mode, there was
a need to sufficiently resemble the authentic tensions in the work

26 In the subsequent beta version platform, this interface was exchanged
for registration procedures using an integration protocol.

Daniel Rudmark

 49

system. We achieved this by inviting representatives from the STA
and third-party developers to get all actors in the same room27 since
we considered these developers an indispensable part of the work
system ensemble. Until that point, these third-party developers had
been mostly unknown to the STA personnel and were jokingly
named "underwear hackers" (since these programmers presumably
developed at home in their underwear). Notably, we considered it
essential for these developers and key STA personnel to become
more familiar with each other. Moreover, we considered it crucial to
share more detailed knowledge regarding the impact of these third-
party applications and their developers' genuine interest in rail-based
public transport. By bringing these actors together, we determined
that the ADR project would be better positioned to transition the
artifact from the pure building ensemble (alpha version) toward the
existing work system (beta version).

All workshop participants (i.e., STA developers and third-party
developers) shared positive views of the artificial platform
demonstration. The developers welcomed the coherent search
capabilities and the suggested access openness. However, an
unanticipated governance issue also emerged during the workshop.
The more seasoned developers expressed their dislike for only
exposing these shortcuts. For them, access to as many data points as
possible was necessary to enable future innovative service
development. Thus, only publishing the coherent searches was
viewed as constraining future innovative uses of the real-time railway
data. However, the developers also made it clear that the exact
format or retrieval mechanism for these new datapoints were not
essential.

27 Although there was both an overall interest from the third-party
developers to continue the dialogue and a rather positive response to the
current project, recruiting the developers for a full day workshop was not
easy. Since many of these were contractors, their participation would infer
a financial investment on their part. Moreover, since we assessed their
participation to be critical, we decided to offer some financial
remuneration to compensate for the loss of income.

Designing Platform Emulation

 48

study (Rudmark et al., 2012) that investigated the trajectory of a
similar organization (SL) and how they had struggled with (and now
seemingly succeeded in) transforming unsanctioned third-party
development involving scraping into development on sanctioned
resources. A key conclusion from this work was that more far-
reaching contracts were misaligned with the preferences of third-
party developers that use scraping. Consequently, developer
adoption skyrocketed when SL switched to non-discriminatory
access openness.

On the architectural side, the means of ensuring such capabilities
included inverting a new module on top of the existing resources.
This new module was then used to emulate the desired behavior
conveyed through specialized interfaces (e.g., APIs). I hypothesized
that this architecture was an efficient way to provide access to
incumbent digital resources and cast them into the type of reusable
capabilities preferred by developers. An inversion-based architecture
had been used to establish Trafiklab and was vital to enabling the
rapid developer uptake of SL’s open interfaces. This architectural
pattern would also allow tentative platform experiments and release
versions to unfold without affecting existing systems.

Given the input gathered in the problem formulation phase and my
initial framework, the artificial platform materialized in the following
manner. We proposed a dedicated API that was open to any external
third-party developer (access openness) and conveyed the set of use
cases hinted at during the interviews (coherent searches). In terms
of architecture, these use case-bound APIs (interfaces) would be
implemented in Trafiklab (inversion) and use API technologies
relying on Representational State Transfer (REST) and simple URL
parameters. The architecture also required an API key dispenser
(interface) that developers would call to obtain API access tokens26.

The alpha version evaluation involved a workshop held on April 19,
2012, where the platform’s principles were presented. We concluded
that even though we were in a pure building system mode, there was
a need to sufficiently resemble the authentic tensions in the work

26 In the subsequent beta version platform, this interface was exchanged
for registration procedures using an integration protocol.

Daniel Rudmark

 49

system. We achieved this by inviting representatives from the STA
and third-party developers to get all actors in the same room27 since
we considered these developers an indispensable part of the work
system ensemble. Until that point, these third-party developers had
been mostly unknown to the STA personnel and were jokingly
named "underwear hackers" (since these programmers presumably
developed at home in their underwear). Notably, we considered it
essential for these developers and key STA personnel to become
more familiar with each other. Moreover, we considered it crucial to
share more detailed knowledge regarding the impact of these third-
party applications and their developers' genuine interest in rail-based
public transport. By bringing these actors together, we determined
that the ADR project would be better positioned to transition the
artifact from the pure building ensemble (alpha version) toward the
existing work system (beta version).

All workshop participants (i.e., STA developers and third-party
developers) shared positive views of the artificial platform
demonstration. The developers welcomed the coherent search
capabilities and the suggested access openness. However, an
unanticipated governance issue also emerged during the workshop.
The more seasoned developers expressed their dislike for only
exposing these shortcuts. For them, access to as many data points as
possible was necessary to enable future innovative service
development. Thus, only publishing the coherent searches was
viewed as constraining future innovative uses of the real-time railway
data. However, the developers also made it clear that the exact
format or retrieval mechanism for these new datapoints were not
essential.

27 Although there was both an overall interest from the third-party
developers to continue the dialogue and a rather positive response to the
current project, recruiting the developers for a full day workshop was not
easy. Since many of these were contractors, their participation would infer
a financial investment on their part. Moreover, since we assessed their
participation to be critical, we decided to offer some financial
remuneration to compensate for the loss of income.

Designing Platform Emulation

 50

4.2 Authentic Platform Development
Given these largely positive signals from the workshop participants,
the product owner of Trafiklab and I began to work on a proposal for
creating a more authentic beta version. Here, we strived to balance
the need for near-deployment authenticity while simultaneously
recognizing that the beta version platform had to be developed in a
way that the STA was able to host it. Some two weeks after the
workshop, we sent the refined solution blueprint to the Head of
Passenger Information at the STA (also a workshop participant). The
blueprint used a system called Orion (some outlaw innovators fueled
their apps with data using a "backdoor" to this system) as the
underlying resource. Simultaneously, Trafiklab.se contained the
architectural modules necessary to emulate the desired behavior.
Our suggestion also included a request to engage personnel within
the STA to become part of the ADR team that I would lead. Just one
day after receiving our offer, the Head of Passenger Information at
the STA gave the go-ahead to start the design and deployment of a
live beta version and provided access to the required STA personnel.

After forming the ADR team, we started to reformulate the problem
to develop the beta version. While many of the assumptions
identified in the alpha version held true, the need for developers to
also be able to experiment beyond these common use cases had
surfaced. However, the participating developers noted that this
missing feature could be a less complicated capability since the core
issue was having all data points obtainable from the API. This
assumption of a less sophisticated flexible search mechanism was
highlighted by a unanimous statement from the developers
participating in the workshop, who noted that they would be content
with any format other than HTML. We thus embarked on resolving
this problem of missing platform capabilities regarding already
materialized self-resourcing but also to provide opportunities for
additional experimentation.

As a next step, we began the Building, Intervention, and Evaluation
(BIE) stage of ADR by addressing the more specific platform design
aspects. Given the problem formulation, we decided to include the
following elements.

Daniel Rudmark

 51

Regarding governance, we found support from the developers in both
interviews and the workshop to implement an access openness (as
per the SL case). Thus, we concluded that we could mimic such
governance concerning platform access. However, the coherent
search capabilities were a bit more complex to construct. The alpha
version interviews concerned integration capabilities and keeping
data transfer to a minimum, a finding corroborated in the video
observations from TravelHack. Besides catering for more general
ease of integration, we concluded that the API needed quality-
assured "shortcuts" to datasets with high developer demand. Thus,
we decided to reverse-engineer the current app behaviors and
"pirate" API designs and then offer these as beta platform shortcuts.

Given the unanticipated developer response to the constraining
effect of merely publishing coherent searches, we concluded that the
platform required a mechanism to channel all data to allow for
flexible searches. However, based on the developer feedback. We also
hypothesized that such an arrangement could be cruder. To this end,
we decided to publish information objects in their original form. This
change led to a shift in the design framework to include flexible
search capabilities.

Although the data were readily available within the STA, their
systems architecture at the time could not afford to support it within
the project's resource boundaries. Instead, we used the infrastructure
of Trafiklab for platform architecture since it could host the emulated
capabilities. Moreover, its modular structure allowed for the
resource-efficient inclusion of the STA’s systems. In practice, the
module facing developers was a cloud-based service hosted by
ApiGee, a company selling platforms that host and scale APIs. This
module handled access control, data caching (to relieve the
underlying system of redundant queries), and provided the interfaces
geared toward third-party developers that were decoupled from the
underlying systems. Furthermore, we created a specification on how
to extract data corresponding to the coherent and flexible searches
within the ADR team, including how the ApiGee interfaces should
offer these as REST APIs (the actual transformation was carried out
by ApiGee personnel). Notably, the TrainInfo interface marshaled
coherent searches while TrainExport facilitated flexible search
activities.

Designing Platform Emulation

 50

4.2 Authentic Platform Development
Given these largely positive signals from the workshop participants,
the product owner of Trafiklab and I began to work on a proposal for
creating a more authentic beta version. Here, we strived to balance
the need for near-deployment authenticity while simultaneously
recognizing that the beta version platform had to be developed in a
way that the STA was able to host it. Some two weeks after the
workshop, we sent the refined solution blueprint to the Head of
Passenger Information at the STA (also a workshop participant). The
blueprint used a system called Orion (some outlaw innovators fueled
their apps with data using a "backdoor" to this system) as the
underlying resource. Simultaneously, Trafiklab.se contained the
architectural modules necessary to emulate the desired behavior.
Our suggestion also included a request to engage personnel within
the STA to become part of the ADR team that I would lead. Just one
day after receiving our offer, the Head of Passenger Information at
the STA gave the go-ahead to start the design and deployment of a
live beta version and provided access to the required STA personnel.

After forming the ADR team, we started to reformulate the problem
to develop the beta version. While many of the assumptions
identified in the alpha version held true, the need for developers to
also be able to experiment beyond these common use cases had
surfaced. However, the participating developers noted that this
missing feature could be a less complicated capability since the core
issue was having all data points obtainable from the API. This
assumption of a less sophisticated flexible search mechanism was
highlighted by a unanimous statement from the developers
participating in the workshop, who noted that they would be content
with any format other than HTML. We thus embarked on resolving
this problem of missing platform capabilities regarding already
materialized self-resourcing but also to provide opportunities for
additional experimentation.

As a next step, we began the Building, Intervention, and Evaluation
(BIE) stage of ADR by addressing the more specific platform design
aspects. Given the problem formulation, we decided to include the
following elements.

Daniel Rudmark

 51

Regarding governance, we found support from the developers in both
interviews and the workshop to implement an access openness (as
per the SL case). Thus, we concluded that we could mimic such
governance concerning platform access. However, the coherent
search capabilities were a bit more complex to construct. The alpha
version interviews concerned integration capabilities and keeping
data transfer to a minimum, a finding corroborated in the video
observations from TravelHack. Besides catering for more general
ease of integration, we concluded that the API needed quality-
assured "shortcuts" to datasets with high developer demand. Thus,
we decided to reverse-engineer the current app behaviors and
"pirate" API designs and then offer these as beta platform shortcuts.

Given the unanticipated developer response to the constraining
effect of merely publishing coherent searches, we concluded that the
platform required a mechanism to channel all data to allow for
flexible searches. However, based on the developer feedback. We also
hypothesized that such an arrangement could be cruder. To this end,
we decided to publish information objects in their original form. This
change led to a shift in the design framework to include flexible
search capabilities.

Although the data were readily available within the STA, their
systems architecture at the time could not afford to support it within
the project's resource boundaries. Instead, we used the infrastructure
of Trafiklab for platform architecture since it could host the emulated
capabilities. Moreover, its modular structure allowed for the
resource-efficient inclusion of the STA’s systems. In practice, the
module facing developers was a cloud-based service hosted by
ApiGee, a company selling platforms that host and scale APIs. This
module handled access control, data caching (to relieve the
underlying system of redundant queries), and provided the interfaces
geared toward third-party developers that were decoupled from the
underlying systems. Furthermore, we created a specification on how
to extract data corresponding to the coherent and flexible searches
within the ADR team, including how the ApiGee interfaces should
offer these as REST APIs (the actual transformation was carried out
by ApiGee personnel). Notably, the TrainInfo interface marshaled
coherent searches while TrainExport facilitated flexible search
activities.

Designing Platform Emulation

 52

Before we started to develop the beta version platform, the ADR team
constructed a detailed specification of the expected externally
available functionalities. Here, we opted for public feedback for our
concurrent evaluation by openly publishing the specifications28 and
receiving feedback on a public web forum29. We did this because only
a handful of developers could be present at the alpha version
workshop and our team needed to make a few design decisions to
transform the alpha version into actionable interface specifications.

Since we received few manageable suggestions from the public
feedback, the specification remained virtually untouched. However,
one unfulfilled request played a more critical role in the next version
and surfaced twice in this group. This request involved the possibility
to only retrieve records that had changed since the previous request.

Next, we carefully designed the environment in which the beta
version platform would be deployed. While striving for maximum
authenticity, we decided to launch the platform publicly to allow any
interested developer to use the APIs. This way, the ensemble would
allow for maximum structural influx. However, due to it being a beta
version, there were limits to authenticity. In our case, these limits
materialized as announcing that the APIs were deployed as a test.
Thus, guarantees regarding their future operations was limited to the
project's end, plus one year (effectively spring 2014).

Based on the specifications, the platform was developed between
August and early October and was launched on October 25, 2012.
Once the APIs were launched, I initiated a round of interviews with
the developers. Through these interviews, I aimed to understand how
both new and more seasoned developers experienced the platform in
terms of its utility. New developers had almost exclusively opted for
the coherent search interface (TrainInfo) and found it satisfactory.
However, the more experienced developers often sought more
flexible search capabilities and expressed disappointment in what
was offered through the beta version platform. First, the assumption

28 Available at https://docs.google.com/document/d/1qf-
Cj18NGeDDkMjIRBSOmdQVGMmGu_Zi2UmkXAbwJDQ/ (in Swedish).
29 https://groups.google.com/forum/#!forum/jarnvags-api-trafiklab (in

Swedish).

Daniel Rudmark

 53

(brought forward in the alpha version workshop) that any format
except HTML would suffice fell short. Here, the developers
highlighted the inherent versatility of the existing Orion interface
(that some outlaw innovators had used). This interface is essentially
non-deterministic and a general query interface (similar to SQL) that
was sufficiently easy to tailor to the developers' different needs. On
the other hand, our beta version platform allowed all raw data to be
downloaded. However, all subsequent processing had to be
performed in the ecosystem periphery by the individual developer.

Second, these developers also expressed the need for additional
flexible search benefits to change their applications’ data sources.
When asked what such incentives might be, the developers' signals
conveyed the need for only retrieving records that changed since the
last request (this also surfaced in the open forum).

Regarding access openness, all developers were in favor of how the
interfaces were offered.

4.3 Target Platform Implementation
As a direct consequence of the ADR project, the STA decided to
revise its third-party developer strategy in early 2013 to include the
type of mostly unpaid app developers that had been users of the beta
APIs and used self-resourcing in the past. The subsequent need to
implement a release version of the platform thus emerged, which
facilitated my continued active participation. In this phase, our
researcher-client agreement stipulated that the STA would lead the
target platform's implementation project and that my role was to
provide design input (especially regarding third-party developer
needs) and be responsible for evaluations.

As a next step, we reformulated the problem. In summary, third-
party developers that were new to the railway domain had used the
coherent search interface TrainInfo, found it pertinent, and echoed a
pleasant experience. However, existing and more seasoned third-
party developers that had already implemented services expressed
their dislike for the flexible search capabilities. For this reason, most
of them had continued to use unsanctioned data access. Second,
these developers were unhappy with the capabilities of TrainExport

Designing Platform Emulation

 52

Before we started to develop the beta version platform, the ADR team
constructed a detailed specification of the expected externally
available functionalities. Here, we opted for public feedback for our
concurrent evaluation by openly publishing the specifications28 and
receiving feedback on a public web forum29. We did this because only
a handful of developers could be present at the alpha version
workshop and our team needed to make a few design decisions to
transform the alpha version into actionable interface specifications.

Since we received few manageable suggestions from the public
feedback, the specification remained virtually untouched. However,
one unfulfilled request played a more critical role in the next version
and surfaced twice in this group. This request involved the possibility
to only retrieve records that had changed since the previous request.

Next, we carefully designed the environment in which the beta
version platform would be deployed. While striving for maximum
authenticity, we decided to launch the platform publicly to allow any
interested developer to use the APIs. This way, the ensemble would
allow for maximum structural influx. However, due to it being a beta
version, there were limits to authenticity. In our case, these limits
materialized as announcing that the APIs were deployed as a test.
Thus, guarantees regarding their future operations was limited to the
project's end, plus one year (effectively spring 2014).

Based on the specifications, the platform was developed between
August and early October and was launched on October 25, 2012.
Once the APIs were launched, I initiated a round of interviews with
the developers. Through these interviews, I aimed to understand how
both new and more seasoned developers experienced the platform in
terms of its utility. New developers had almost exclusively opted for
the coherent search interface (TrainInfo) and found it satisfactory.
However, the more experienced developers often sought more
flexible search capabilities and expressed disappointment in what
was offered through the beta version platform. First, the assumption

28 Available at https://docs.google.com/document/d/1qf-
Cj18NGeDDkMjIRBSOmdQVGMmGu_Zi2UmkXAbwJDQ/ (in Swedish).
29 https://groups.google.com/forum/#!forum/jarnvags-api-trafiklab (in

Swedish).

Daniel Rudmark

 53

(brought forward in the alpha version workshop) that any format
except HTML would suffice fell short. Here, the developers
highlighted the inherent versatility of the existing Orion interface
(that some outlaw innovators had used). This interface is essentially
non-deterministic and a general query interface (similar to SQL) that
was sufficiently easy to tailor to the developers' different needs. On
the other hand, our beta version platform allowed all raw data to be
downloaded. However, all subsequent processing had to be
performed in the ecosystem periphery by the individual developer.

Second, these developers also expressed the need for additional
flexible search benefits to change their applications’ data sources.
When asked what such incentives might be, the developers' signals
conveyed the need for only retrieving records that changed since the
last request (this also surfaced in the open forum).

Regarding access openness, all developers were in favor of how the
interfaces were offered.

4.3 Target Platform Implementation
As a direct consequence of the ADR project, the STA decided to
revise its third-party developer strategy in early 2013 to include the
type of mostly unpaid app developers that had been users of the beta
APIs and used self-resourcing in the past. The subsequent need to
implement a release version of the platform thus emerged, which
facilitated my continued active participation. In this phase, our
researcher-client agreement stipulated that the STA would lead the
target platform's implementation project and that my role was to
provide design input (especially regarding third-party developer
needs) and be responsible for evaluations.

As a next step, we reformulated the problem. In summary, third-
party developers that were new to the railway domain had used the
coherent search interface TrainInfo, found it pertinent, and echoed a
pleasant experience. However, existing and more seasoned third-
party developers that had already implemented services expressed
their dislike for the flexible search capabilities. For this reason, most
of them had continued to use unsanctioned data access. Second,
these developers were unhappy with the capabilities of TrainExport

Designing Platform Emulation

 54

compared to what certain scraped resources could achieve. They also
expressed the need for additional flexible search benefits to motivate
the effort of changing their data source. Consequently, we
hypothesized that emergent flexible searches also had to be emulated
and not only offered (as per the beta version) in tandem with those
that had materialized across apps.

The surprising reception of the beta version platform by experienced
third-party developers instigated a substantial release version
platform redesign. Based on the feedback, we decided to implement
a query language similar to that of Orion to cater to flexible searches.
However, Orion’s query language was designed for internal use, and
the ADR team assessed that it was unsuitable for external publishing
in its existing form. To this end, the query language was redesigned
for reduced redundancy, syntax strictness, and data model
congruence.

Moreover, in the beta version design and onwards, signals from
developers conveyed the need for a functionality that facilitates the
retrieval of records that changed since their last request. However,
this feature would require a substantial redesign of the underlying
system. Thus, implementing this feature had not been considered
financially justifiable until that point. To further investigate whether
this feature was necessary, I conducted a data source experiment on
apps using SL’s real-time data. This experiment corroborated the
findings from the STA’s beta version API, which indicates that the
primary reason for developers continuing to scrape was the lack of
perceived benefits related to switching. Consequently, this additional
signal provided sufficient evidence for the STA to implement this
improved flexible search functionality despite the large investment.

Given these various signals, we decided to apply a new governance
regime for the platform’s openness (resource openness)—a far-
reaching decision that stemmed from several reasons. First, since the
STA now planned to offer its internal (albeit refactored) query
language for external developers, there were fewer incentives to
encapsulate it behind a software layer offering access to the resource.
Second, given our insights from the data source experiment,
developers at SL mentioned capabilities not available in the official
APIs as a reason for continued self-resourcing. Consequently, any

Daniel Rudmark

 55

deviations between the interfaces offered to third-party developers
and internally developed public apps risked introducing new self-
resourcing. Finally, the STA did not want to maintain more interfaces
than necessary. By providing improved Orion interfaces through
DataCache, the STA could easily upgrade its own applications while
still serving the needs of external third-party developers.

However, this decision involved challenges to the platform's
architecture. First, Orion's interface (the system that was then
explicitly being transformed and exposed to developers) was a non-
deterministic query language and inherently supported only flexible
searches. Hence, we concluded that it was no longer possible to use
the interface level for coherent searches (unless introducing new
interfaces, which is a solution that the STA rejected for system
maintenance reasons). Instead, we opted for a revised architectural
configuration. Here, we used the integration and testing protocols
(i.e., predefined example queries) to implement the identified
coherent searches. We then sought to replace the core resource (i.e.,
the Orion system, which was renamed DataCache in the release
version) with a new third-party developer platform. This way, the
necessary emulation activities (simplifying both the query language
and internal data models while also introducing delta functionality)
were implemented directly into the Orion system using the
Substituting modular operator.

Although the coherent search implementation was successful in the
beta version platform, we saw a need to validate the new
implementation (using example queries). To this end, a more
controlled test with novice users was conducted. In this test,
university students were given a set of tasks to complete that
involved them reusing the coherent searches to accomplish tasks.
The students provided generous feedback on improvement
opportunities (e.g., more informative names for the data model
elements and example responses in addition to queries). A core
signal from this test was that 10 out of the 13 students were able to
perform the tasks (e.g., getting the train departures from a specific
station) with the help of the queries. Since these students' application
development experience was lower (according to the background
information they provided) compared to the target group, we
concluded that the coherent search solution would suffice.

Designing Platform Emulation

 54

compared to what certain scraped resources could achieve. They also
expressed the need for additional flexible search benefits to motivate
the effort of changing their data source. Consequently, we
hypothesized that emergent flexible searches also had to be emulated
and not only offered (as per the beta version) in tandem with those
that had materialized across apps.

The surprising reception of the beta version platform by experienced
third-party developers instigated a substantial release version
platform redesign. Based on the feedback, we decided to implement
a query language similar to that of Orion to cater to flexible searches.
However, Orion’s query language was designed for internal use, and
the ADR team assessed that it was unsuitable for external publishing
in its existing form. To this end, the query language was redesigned
for reduced redundancy, syntax strictness, and data model
congruence.

Moreover, in the beta version design and onwards, signals from
developers conveyed the need for a functionality that facilitates the
retrieval of records that changed since their last request. However,
this feature would require a substantial redesign of the underlying
system. Thus, implementing this feature had not been considered
financially justifiable until that point. To further investigate whether
this feature was necessary, I conducted a data source experiment on
apps using SL’s real-time data. This experiment corroborated the
findings from the STA’s beta version API, which indicates that the
primary reason for developers continuing to scrape was the lack of
perceived benefits related to switching. Consequently, this additional
signal provided sufficient evidence for the STA to implement this
improved flexible search functionality despite the large investment.

Given these various signals, we decided to apply a new governance
regime for the platform’s openness (resource openness)—a far-
reaching decision that stemmed from several reasons. First, since the
STA now planned to offer its internal (albeit refactored) query
language for external developers, there were fewer incentives to
encapsulate it behind a software layer offering access to the resource.
Second, given our insights from the data source experiment,
developers at SL mentioned capabilities not available in the official
APIs as a reason for continued self-resourcing. Consequently, any

Daniel Rudmark

 55

deviations between the interfaces offered to third-party developers
and internally developed public apps risked introducing new self-
resourcing. Finally, the STA did not want to maintain more interfaces
than necessary. By providing improved Orion interfaces through
DataCache, the STA could easily upgrade its own applications while
still serving the needs of external third-party developers.

However, this decision involved challenges to the platform's
architecture. First, Orion's interface (the system that was then
explicitly being transformed and exposed to developers) was a non-
deterministic query language and inherently supported only flexible
searches. Hence, we concluded that it was no longer possible to use
the interface level for coherent searches (unless introducing new
interfaces, which is a solution that the STA rejected for system
maintenance reasons). Instead, we opted for a revised architectural
configuration. Here, we used the integration and testing protocols
(i.e., predefined example queries) to implement the identified
coherent searches. We then sought to replace the core resource (i.e.,
the Orion system, which was renamed DataCache in the release
version) with a new third-party developer platform. This way, the
necessary emulation activities (simplifying both the query language
and internal data models while also introducing delta functionality)
were implemented directly into the Orion system using the
Substituting modular operator.

Although the coherent search implementation was successful in the
beta version platform, we saw a need to validate the new
implementation (using example queries). To this end, a more
controlled test with novice users was conducted. In this test,
university students were given a set of tasks to complete that
involved them reusing the coherent searches to accomplish tasks.
The students provided generous feedback on improvement
opportunities (e.g., more informative names for the data model
elements and example responses in addition to queries). A core
signal from this test was that 10 out of the 13 students were able to
perform the tasks (e.g., getting the train departures from a specific
station) with the help of the queries. Since these students' application
development experience was lower (according to the background
information they provided) compared to the target group, we
concluded that the coherent search solution would suffice.

Designing Platform Emulation

 56

The target platform was launched in a staged process. First,
DataCache went live on February 10, 2014, as an open test
environment. As such, any interested party would be granted access
to the platform. However, since the platform was labeled as a beta
version, this meant that it was subject to changes. During this beta
period, I initiated a round of interviews with interested developers
who had registered. The official production platform launch
occurred on March 18, 201430. An important decision made before the
launch was to not require internal applications to migrate by the
launch date. Instead, they could be migrated at will, either when they
needed new platform functionality or when other necessary
adjustments were due31. During this time, the old system (Orion)
remained operational but was not upgraded with new functionalities

After the official launch, I continued my interviewing efforts with
developers. In these interviews, I was especially interested in two
aspects: a) whether the experienced developers now experienced
sufficient incentives to switch from self-resourcing to the release
version DataCache platform; b) whether the coherent search
capabilities had maintained their qualities during the architectural
change. The interview signals were generally positive from both
experienced developers and those new to the railway domain.

4.4 Ensemble Platform Manifestation
Although these tentative ensemble signals were indeed positive, they
provided somewhat conjectural evidence. Once the release version
platform had been deployed, my active part in shaping the platform's
future trajectory ceased. However, I continued to monitor its
continued evolution in several ways. I was particularly interested in
how the platform was adopted by external and internal clients and
its possible industry effects.

Thus, in September 2016, I performed a more technical follow-up
study to investigate the actual data sources used by apps displaying
data from the STA. I surveyed the apps using the same method

30 See https://api.trafikinfo.trafikverket.se/
31 The last internal application migrated in late fall 2017, followed by
Orion’s operations being discontinued.

Daniel Rudmark

 57

utilized for the previous scraping follow-up for Trafiklab (i.e.,
intercepting the apps' API calls). If the data source for an app was
unable to be determined, I contacted the app’s developers to inquire
about the data source by either email or phone. This investigation
revealed that development toward unsanctioned interfaces was
virtually extinct. At that time, 28 services for smartphones using real-
time information were available in the application marketplaces for
Apple iPhone, Google Android, and Windows Phone. Out of the 28
real-time services, 19 used the open API, 6 used interfaces connected
to other STA third-party development segments (a system called
UT/IN), and 3 were not functioning (where it appeared as though the
app was no longer maintained). Moreover, usage statistics from the
platform showed that not only existing developers had adopted the
API. These statistics conveyed that external API calls had increased
from approximately 20 million per month in 2016 to approximately
100 million per month in 2020.

Concerning the organizational reception of the STA, I found signals
pointing toward emulation activities persevering on the open
platform after the ADR project had ended. The platform's website
hosted a changelog where all changes to the platforms had been
recorded. When I interviewed STA personnel about what triggered
these changes, emulation was an essential rationale. For instance,
although the platform initially only hosted railway data, it was not
long until it also hosted roadside data such as accidents, road works,
and road weather, which also became available through the platform.
These data were published by drawing on emulation as a design
strategy to better fit third-party developers' practices. Also, STA
personnel began to monitor discussion boards and similar outlets to
find cues for additional improvements to the data models, which was
triggered by the previous ADR project.

Another essential trigger for altering platform functionalities was the
chosen open platform approach's consequences. When an internal
information object was required for public digital services developed
by the STA, this information object was published in the DataCache
platform and made available to external third-party developers. One
such example concerned road ferries, whose timetables and real-time
updates were published in DataCache for this reason.

Designing Platform Emulation

 56

The target platform was launched in a staged process. First,
DataCache went live on February 10, 2014, as an open test
environment. As such, any interested party would be granted access
to the platform. However, since the platform was labeled as a beta
version, this meant that it was subject to changes. During this beta
period, I initiated a round of interviews with interested developers
who had registered. The official production platform launch
occurred on March 18, 201430. An important decision made before the
launch was to not require internal applications to migrate by the
launch date. Instead, they could be migrated at will, either when they
needed new platform functionality or when other necessary
adjustments were due31. During this time, the old system (Orion)
remained operational but was not upgraded with new functionalities

After the official launch, I continued my interviewing efforts with
developers. In these interviews, I was especially interested in two
aspects: a) whether the experienced developers now experienced
sufficient incentives to switch from self-resourcing to the release
version DataCache platform; b) whether the coherent search
capabilities had maintained their qualities during the architectural
change. The interview signals were generally positive from both
experienced developers and those new to the railway domain.

4.4 Ensemble Platform Manifestation
Although these tentative ensemble signals were indeed positive, they
provided somewhat conjectural evidence. Once the release version
platform had been deployed, my active part in shaping the platform's
future trajectory ceased. However, I continued to monitor its
continued evolution in several ways. I was particularly interested in
how the platform was adopted by external and internal clients and
its possible industry effects.

Thus, in September 2016, I performed a more technical follow-up
study to investigate the actual data sources used by apps displaying
data from the STA. I surveyed the apps using the same method

30 See https://api.trafikinfo.trafikverket.se/
31 The last internal application migrated in late fall 2017, followed by
Orion’s operations being discontinued.

Daniel Rudmark

 57

utilized for the previous scraping follow-up for Trafiklab (i.e.,
intercepting the apps' API calls). If the data source for an app was
unable to be determined, I contacted the app’s developers to inquire
about the data source by either email or phone. This investigation
revealed that development toward unsanctioned interfaces was
virtually extinct. At that time, 28 services for smartphones using real-
time information were available in the application marketplaces for
Apple iPhone, Google Android, and Windows Phone. Out of the 28
real-time services, 19 used the open API, 6 used interfaces connected
to other STA third-party development segments (a system called
UT/IN), and 3 were not functioning (where it appeared as though the
app was no longer maintained). Moreover, usage statistics from the
platform showed that not only existing developers had adopted the
API. These statistics conveyed that external API calls had increased
from approximately 20 million per month in 2016 to approximately
100 million per month in 2020.

Concerning the organizational reception of the STA, I found signals
pointing toward emulation activities persevering on the open
platform after the ADR project had ended. The platform's website
hosted a changelog where all changes to the platforms had been
recorded. When I interviewed STA personnel about what triggered
these changes, emulation was an essential rationale. For instance,
although the platform initially only hosted railway data, it was not
long until it also hosted roadside data such as accidents, road works,
and road weather, which also became available through the platform.
These data were published by drawing on emulation as a design
strategy to better fit third-party developers' practices. Also, STA
personnel began to monitor discussion boards and similar outlets to
find cues for additional improvements to the data models, which was
triggered by the previous ADR project.

Another essential trigger for altering platform functionalities was the
chosen open platform approach's consequences. When an internal
information object was required for public digital services developed
by the STA, this information object was published in the DataCache
platform and made available to external third-party developers. One
such example concerned road ferries, whose timetables and real-time
updates were published in DataCache for this reason.

Designing Platform Emulation

 58

Although the effects above were desired—and thus somewhat
possible to predict if the platform met the ensemble needs—two
more surprising outcomes of the DataCache manifestation emerged
in the follow-up studies. First, since the STA had chosen to keep the
platform open in the user dimension, they used this approach to
solve a dilemma connected to third-party developer service level
agreements. This dilemma was related to how the provider of a "free"
platform provides sufficient assurance of platform uptime so that
external innovators risk investing in their services. The open
DataCache platform was able to satisfy developers' demands for
availability and quality because third-party developers could enjoy a
"shadow SLA" of the STA’s services. Since the services provided by
the STA were mission-critical, they were secured under an SLA
between the STA and their systems suppliers, which the third-party
developers could indirectly enjoy. Therefore, the platform owner had
not received third-party inquiries to sign SLAs with the STA.

Another surprising aspect that surfaced in the follow-up study was
related to how the platform was used within the STA. Until 2015,
DataCache had only been deployed as one instance within the STA.
This instance was the open platform for both external third-party
developers and public end-user services catered for by the STA.
However, in 2015, the systems development team responsible for
DataCache suggested that DataCache could also be used for internal
projects. Since then, through internal word-of-mouth, by mutating
the platform, copies of the platform had been increasingly used
within the STA for integration development projects. According to
the DataCache team members, the reason for this was the
development speed that the platform provided due to its roots in
emulation. A core activity involved in enabling this greater
development speed was guiding potential data publishers in
constructing data models that were understandable outside the
publishing group, using well-known standards, and including
workable examples. Following its increased popularity within the
STA, the DataCache platform was chosen as the official integration
platform to be used across the entire STA in mid-2020.

Ultimately, the STA's open platform approach affected the Swedish
public transport industry. In 2017, the industry's members ratified a
new strategic plan for Sweden’s open public transport data. In this

Daniel Rudmark

 59

blueprint, Samtrafiken was to host an open platform following the
resource openness principle used by the STA for their DataCache
platform. In the report (Arnestrand et al., 2017), the benefits of the
STA’s open platform approach were brought forward as an essential
rationale for having a national public transport data platform that is
open in the user dimension.

Designing Platform Emulation

 58

Although the effects above were desired—and thus somewhat
possible to predict if the platform met the ensemble needs—two
more surprising outcomes of the DataCache manifestation emerged
in the follow-up studies. First, since the STA had chosen to keep the
platform open in the user dimension, they used this approach to
solve a dilemma connected to third-party developer service level
agreements. This dilemma was related to how the provider of a "free"
platform provides sufficient assurance of platform uptime so that
external innovators risk investing in their services. The open
DataCache platform was able to satisfy developers' demands for
availability and quality because third-party developers could enjoy a
"shadow SLA" of the STA’s services. Since the services provided by
the STA were mission-critical, they were secured under an SLA
between the STA and their systems suppliers, which the third-party
developers could indirectly enjoy. Therefore, the platform owner had
not received third-party inquiries to sign SLAs with the STA.

Another surprising aspect that surfaced in the follow-up study was
related to how the platform was used within the STA. Until 2015,
DataCache had only been deployed as one instance within the STA.
This instance was the open platform for both external third-party
developers and public end-user services catered for by the STA.
However, in 2015, the systems development team responsible for
DataCache suggested that DataCache could also be used for internal
projects. Since then, through internal word-of-mouth, by mutating
the platform, copies of the platform had been increasingly used
within the STA for integration development projects. According to
the DataCache team members, the reason for this was the
development speed that the platform provided due to its roots in
emulation. A core activity involved in enabling this greater
development speed was guiding potential data publishers in
constructing data models that were understandable outside the
publishing group, using well-known standards, and including
workable examples. Following its increased popularity within the
STA, the DataCache platform was chosen as the official integration
platform to be used across the entire STA in mid-2020.

Ultimately, the STA's open platform approach affected the Swedish
public transport industry. In 2017, the industry's members ratified a
new strategic plan for Sweden’s open public transport data. In this

Daniel Rudmark

 59

blueprint, Samtrafiken was to host an open platform following the
resource openness principle used by the STA for their DataCache
platform. In the report (Arnestrand et al., 2017), the benefits of the
STA’s open platform approach were brought forward as an essential
rationale for having a national public transport data platform that is
open in the user dimension.

Designing Platform Emulation

 60

In this chapter, I summarize the papers included in this thesis. In
addition to these paper summaries, I detail the roles of these papers
in relation to this thesis as well as my role in collecting evidence,
analyzing the data, and writing up the individual papers.

5.1 Paper 1
Koutsikouri, D., Lindgren, R., Henfridsson, O., and Rudmark, D.
2018. “Extending Digital Infrastructures: A Typology of Growth
Tactics,” Journal of the Association for Information Systems (19:10),
pp. 1001–1019.

Summary: Digital infrastructures enable the delivery of information
services in functional areas such as health, payment, and
transportation by providing a socio-technical foundation for
partnership governance, resource reuse, and system integration.
However, to effectively serve emerging possibilities and changing
purposes, a key question concerns how infrastructure can be
extended to cater to future services in its functional area. This paper
approaches such digital infrastructure growth as a challenge related
to aligning new partners whose digital capabilities spur innovative
services that attract more users. The paper advances an initial
typology that covers four growth tactics (i.e., adding services,
inventing processes, opening identifiers, and providing interfaces)
with the potential to set the extension of infrastructures in motion.
The paper subsequently explores the proposed typology by
investigating how its particular tactics successfully extended the
scope of a digital infrastructure for public transportation in
Stockholm, Sweden.

5 PAPER CONTRIBUTIONS

Daniel Rudmark

 61

Relation to thesis: This paper presents four tactics that can be used
to extend an organization’s digital infrastructure. One of these tactics
is coined “opening interfaces” and becomes the focal tactic that is
further elaborated on in this thesis. As such, this paper helps position
the contribution from this thesis into the larger context of digital
infrastructures.

Contribution as author: In this paper, I was invited by the other co-
authors since they were developing a previously accepted conference
proceedings paper (Koutsikouri, Lindgren, & Henfridsson, 2017). I
collected the data and analyzed it with my co-authors to determine
the tactic opening identifiers as well as complementary data for the
tactic-adding services. Additionally, I reanalyzed already collected
data (corresponding to that presented in Chapter 3.1.3 and 3.1.4
above) with my co-authors. augmenting the data collected by
Koutsikouri et al. (2017). Additionally, I co-wrote the paper with the
other authors.

5.2 Paper 2
Rudmark, D., and M. Lind. 2011. "Design Science Research
Demonstrators for Punctuation – The Establishment of a Service
Ecosystem," in Service-Oriented Perspectives in Design Science
Research, H. Jain, A. Sinha and P. Vitharana (eds.), Berlin: Springer,
pp. 153–165.

Summary: Design science research (DSR) is concerned with
demonstrating design principles. To prove the utility of these
principles, design ideas are materialized into artifacts and put into
an environment sufficient to host the testing of these principles.
When DSR is used in combination with action research,
environmental constraints may prevent researchers from fully
inscribing or testing design principles. In this paper, it is argued that
scholars pursuing DSR have paid insufficient attention to the type of
change required in the local practice. We draw upon theories on IS
change (e.g., punctuated equilibrium) to illustrate when DSR
demonstrators can be used to make substantial contributions to local
practice and the scientific body of knowledge.

Designing Platform Emulation

 60

In this chapter, I summarize the papers included in this thesis. In
addition to these paper summaries, I detail the roles of these papers
in relation to this thesis as well as my role in collecting evidence,
analyzing the data, and writing up the individual papers.

5.1 Paper 1
Koutsikouri, D., Lindgren, R., Henfridsson, O., and Rudmark, D.
2018. “Extending Digital Infrastructures: A Typology of Growth
Tactics,” Journal of the Association for Information Systems (19:10),
pp. 1001–1019.

Summary: Digital infrastructures enable the delivery of information
services in functional areas such as health, payment, and
transportation by providing a socio-technical foundation for
partnership governance, resource reuse, and system integration.
However, to effectively serve emerging possibilities and changing
purposes, a key question concerns how infrastructure can be
extended to cater to future services in its functional area. This paper
approaches such digital infrastructure growth as a challenge related
to aligning new partners whose digital capabilities spur innovative
services that attract more users. The paper advances an initial
typology that covers four growth tactics (i.e., adding services,
inventing processes, opening identifiers, and providing interfaces)
with the potential to set the extension of infrastructures in motion.
The paper subsequently explores the proposed typology by
investigating how its particular tactics successfully extended the
scope of a digital infrastructure for public transportation in
Stockholm, Sweden.

5 PAPER CONTRIBUTIONS

Daniel Rudmark

 61

Relation to thesis: This paper presents four tactics that can be used
to extend an organization’s digital infrastructure. One of these tactics
is coined “opening interfaces” and becomes the focal tactic that is
further elaborated on in this thesis. As such, this paper helps position
the contribution from this thesis into the larger context of digital
infrastructures.

Contribution as author: In this paper, I was invited by the other co-
authors since they were developing a previously accepted conference
proceedings paper (Koutsikouri, Lindgren, & Henfridsson, 2017). I
collected the data and analyzed it with my co-authors to determine
the tactic opening identifiers as well as complementary data for the
tactic-adding services. Additionally, I reanalyzed already collected
data (corresponding to that presented in Chapter 3.1.3 and 3.1.4
above) with my co-authors. augmenting the data collected by
Koutsikouri et al. (2017). Additionally, I co-wrote the paper with the
other authors.

5.2 Paper 2
Rudmark, D., and M. Lind. 2011. "Design Science Research
Demonstrators for Punctuation – The Establishment of a Service
Ecosystem," in Service-Oriented Perspectives in Design Science
Research, H. Jain, A. Sinha and P. Vitharana (eds.), Berlin: Springer,
pp. 153–165.

Summary: Design science research (DSR) is concerned with
demonstrating design principles. To prove the utility of these
principles, design ideas are materialized into artifacts and put into
an environment sufficient to host the testing of these principles.
When DSR is used in combination with action research,
environmental constraints may prevent researchers from fully
inscribing or testing design principles. In this paper, it is argued that
scholars pursuing DSR have paid insufficient attention to the type of
change required in the local practice. We draw upon theories on IS
change (e.g., punctuated equilibrium) to illustrate when DSR
demonstrators can be used to make substantial contributions to local
practice and the scientific body of knowledge.

Designing Platform Emulation

 62

Relation to thesis: This paper is derived from interactions with the
DART group, as described in Chapter 3.1.132. In the context of this
thesis, this paper contributed in two ways. First, it established that
interventional design methods (e.g., ADR) are suitable to address the
type of situation that later emerged at the STA. Second, it proposes
the punctuated socio-technical IS change (PSIC) model of Lyytinen
and Newman (2008) as a theoretical lens to understand how
interventional design methods can be used to address organizational
problems in situations where little guidance exists. A more
comprehensive version of this reasoning can be found in Chapter 7.3.

Contribution as author: I planned the study, collected the data,
performed the analysis, and wrote the paper with support and
feedback from Lind.

5.3 Paper 3
Rudmark, D., E. Arnestrand, and M. Avital. 2012. "Crowdpushing:
The Flipside of Crowdsourcing," in Proceedings of the 20th European
Conference on Information Systems (ECIS 2012).

Summary: Activities and initiatives pertaining to co-creation are
traditionally viewed as a way for organizations to gain value through
the involvement of certain actors in their environment. This paper
highlights the implicit assumption in current theoretical
conceptualizations that co-creation is exclusively initiated and
driven by organizations. However, it appears that co-creation
activities may also be driven by third-party actors outside of
organizations. Based on interviews and secondary data from a public
transport company in Stockholm, Sweden, we noted that third-party
developers of services that gained large and diverse user bases were
driving co-creation activities with their respective organizations.
Based on our findings, we introduced the term "crowdpushing" to
denote externally driven co-creation activities and frame four
propositions to describe how co-creation activities are motivated and

32 Although not part of this thesis, Rudmark and Ghazawneh (2011) also
described the self-resourcing and countermeasures taken by one of
DART’s members (Västtrafik).

Daniel Rudmark

 63

driven. Our findings contribute to a broader understanding of co-
creation and have implications for its design and deployment.

Relation to thesis: This paper contributes to the present thesis in
two distinct ways. First, the paper demonstrates that while self-
resourcing on unsanctioned resources may serve heterogenous user
bases, it also poses a threat to systems operations. Second, it
demonstrates that developer adoption among outlaw innovators
fueled by self-resourcing requires significant degrees of openness.

Contribution as author: I planned the study, collected the data
with Arnestrand, performed the analysis, and wrote the paper
together with Arnestrand and Avital.

5.4 Paper 4
Rudmark, D. 2013. "The Practices of Unpaid Third-Party Developers
– Implications for API Design," in Proceedings of the 19th Americas
Conference on Information Systems (AMCIS 2013).

Summary: To draw on the innovation capabilities of third-party
developers, many organizations are currently deploying open APIs.
While third-party services may offer commercial opportunities for
independent software firms, a large proportion of existing third-party
software were undertaken without any financial compensation.
Although unpaid developers offer a potential source of innovation in
end-user services, the current literature has largely overlooked how
these unpaid actors use and appropriate the technology provided by
organizations. To this end, this research focuses on the specific
practices of unpaid developers. The data used for analysis were
collected through a programming contest—a hackathon—where
unpaid developers gather to craft end-user services. Through an
ethnographic lens, we present a number of recurrent activities and
patterns of action employed by developers. Based on this analysis, we
present implications for API designers seeking to attract unpaid
developers.

Relation to thesis: The findings in this paper emanate from
TravelHack, as previously described in Chapter 3.1.4. As such, this
paper summarizes the practices identified during the innovation

Designing Platform Emulation

 62

Relation to thesis: This paper is derived from interactions with the
DART group, as described in Chapter 3.1.132. In the context of this
thesis, this paper contributed in two ways. First, it established that
interventional design methods (e.g., ADR) are suitable to address the
type of situation that later emerged at the STA. Second, it proposes
the punctuated socio-technical IS change (PSIC) model of Lyytinen
and Newman (2008) as a theoretical lens to understand how
interventional design methods can be used to address organizational
problems in situations where little guidance exists. A more
comprehensive version of this reasoning can be found in Chapter 7.3.

Contribution as author: I planned the study, collected the data,
performed the analysis, and wrote the paper with support and
feedback from Lind.

5.3 Paper 3
Rudmark, D., E. Arnestrand, and M. Avital. 2012. "Crowdpushing:
The Flipside of Crowdsourcing," in Proceedings of the 20th European
Conference on Information Systems (ECIS 2012).

Summary: Activities and initiatives pertaining to co-creation are
traditionally viewed as a way for organizations to gain value through
the involvement of certain actors in their environment. This paper
highlights the implicit assumption in current theoretical
conceptualizations that co-creation is exclusively initiated and
driven by organizations. However, it appears that co-creation
activities may also be driven by third-party actors outside of
organizations. Based on interviews and secondary data from a public
transport company in Stockholm, Sweden, we noted that third-party
developers of services that gained large and diverse user bases were
driving co-creation activities with their respective organizations.
Based on our findings, we introduced the term "crowdpushing" to
denote externally driven co-creation activities and frame four
propositions to describe how co-creation activities are motivated and

32 Although not part of this thesis, Rudmark and Ghazawneh (2011) also
described the self-resourcing and countermeasures taken by one of
DART’s members (Västtrafik).

Daniel Rudmark

 63

driven. Our findings contribute to a broader understanding of co-
creation and have implications for its design and deployment.

Relation to thesis: This paper contributes to the present thesis in
two distinct ways. First, the paper demonstrates that while self-
resourcing on unsanctioned resources may serve heterogenous user
bases, it also poses a threat to systems operations. Second, it
demonstrates that developer adoption among outlaw innovators
fueled by self-resourcing requires significant degrees of openness.

Contribution as author: I planned the study, collected the data
with Arnestrand, performed the analysis, and wrote the paper
together with Arnestrand and Avital.

5.4 Paper 4
Rudmark, D. 2013. "The Practices of Unpaid Third-Party Developers
– Implications for API Design," in Proceedings of the 19th Americas
Conference on Information Systems (AMCIS 2013).

Summary: To draw on the innovation capabilities of third-party
developers, many organizations are currently deploying open APIs.
While third-party services may offer commercial opportunities for
independent software firms, a large proportion of existing third-party
software were undertaken without any financial compensation.
Although unpaid developers offer a potential source of innovation in
end-user services, the current literature has largely overlooked how
these unpaid actors use and appropriate the technology provided by
organizations. To this end, this research focuses on the specific
practices of unpaid developers. The data used for analysis were
collected through a programming contest—a hackathon—where
unpaid developers gather to craft end-user services. Through an
ethnographic lens, we present a number of recurrent activities and
patterns of action employed by developers. Based on this analysis, we
present implications for API designers seeking to attract unpaid
developers.

Relation to thesis: The findings in this paper emanate from
TravelHack, as previously described in Chapter 3.1.4. As such, this
paper summarizes the practices identified during the innovation

Designing Platform Emulation

 64

contest. Notably, some of these practices (especially those relating to
API use) were important to better understand self-resourcing
developers when designing the alpha and beta versions of the open
platform.

Contribution as author: I planned the study, collected the data,
performed the analysis, and wrote the paper.

5.5 Paper 5
Rudmark, D. 2021. "Designing Open Platform Emulation, " Under
review at the 42nd International Conference on Information Systems
(ICIS 2021).

Summary: The successful engagement of third-party development
has been instrumental in establishing contemporary platform
leaders. However, complementary application development
sometimes occurs without organizational consent. Notably, such
unsolicited development can pose severe problems for organizations
at both technical and organizational levels. In this paper, we advance
platform emulation to leverage such unsanctioned development
when designing open platforms. We base our contributions on a 10-
year collaboration with a Swedish authority subjected to extensive
unsanctioned development. Here, we applied the ADR method to
develop a live open platform for third-party developers that is
currently in use. From this work, we synthesize and extend current
theories on open platforms and offer design principles encompassing
a set of product and process principles throughout the open
platform’s developmental trajectory.

Relation to thesis: In this paper, I detail and provide empirical
evidence supporting the design principles presented in Chapter 6. In
relation to the research journey presented in Chapter 3, this paper is
primarily concerned with the empirical information presented in
Chapters 3.1.5, 3.2, 3.3, and 3.4.

Contribution as author: I planned the study, collected the data,
performed the analysis, analyzed the design process, and wrote the
paper

Daniel Rudmark

 65

This chapter presents a design principles that has been developed
from the following research question:

How can organizations emulate self-resourcing
activities of third-party developers to design open
platforms?

To address this research question, I have used ADR. The
contributions from ADR are threefold (Sein et al., 2011, p. 42; Westin
& Sein, 2015, p. 24), with two types of practice contributions and one
generalized knowledge contribution. The first practice contribution
encompasses ensemble-specific contributions. This contribution
constitutes both the resulting artifact (ingrained by initial theoretical
hypotheses and subsequent contextual structures) along with the
modified organizational structures where the ensemble artifact
resides. This first type of practice contribution corresponds to the
DataCache platform (both the original open platform and
subsequent internal instances) alongside STA’s new strategic
developer segment, third-party developers, and the STA’s
organization surrounding the platform. The second practice result
concerns end-user utility. The ADR project described in this thesis
includes utility for both third-party developers and internal
developers at the STA (using the open platform). Finally, and at the
center of this chapter, the design principles, following the
formalization of learning stage of ADR (Sein et al., 2011), and
conveying the necessary and sufficiently generalized design
knowledge for use in other similar design contexts.

The first type of design knowledge contribution concern product-
centric design knowledge. In this regard, I use situated platform
design decisions and their environmental response to derive more
generalized design principles addressing the class of problems under

6 DESIGN PRINCIPLE DEVELOPMENT

Designing Platform Emulation

 64

contest. Notably, some of these practices (especially those relating to
API use) were important to better understand self-resourcing
developers when designing the alpha and beta versions of the open
platform.

Contribution as author: I planned the study, collected the data,
performed the analysis, and wrote the paper.

5.5 Paper 5
Rudmark, D. 2021. "Designing Open Platform Emulation, " Under
review at the 42nd International Conference on Information Systems
(ICIS 2021).

Summary: The successful engagement of third-party development
has been instrumental in establishing contemporary platform
leaders. However, complementary application development
sometimes occurs without organizational consent. Notably, such
unsolicited development can pose severe problems for organizations
at both technical and organizational levels. In this paper, we advance
platform emulation to leverage such unsanctioned development
when designing open platforms. We base our contributions on a 10-
year collaboration with a Swedish authority subjected to extensive
unsanctioned development. Here, we applied the ADR method to
develop a live open platform for third-party developers that is
currently in use. From this work, we synthesize and extend current
theories on open platforms and offer design principles encompassing
a set of product and process principles throughout the open
platform’s developmental trajectory.

Relation to thesis: In this paper, I detail and provide empirical
evidence supporting the design principles presented in Chapter 6. In
relation to the research journey presented in Chapter 3, this paper is
primarily concerned with the empirical information presented in
Chapters 3.1.5, 3.2, 3.3, and 3.4.

Contribution as author: I planned the study, collected the data,
performed the analysis, analyzed the design process, and wrote the
paper

Daniel Rudmark

 65

This chapter presents a design principles that has been developed
from the following research question:

How can organizations emulate self-resourcing
activities of third-party developers to design open
platforms?

To address this research question, I have used ADR. The
contributions from ADR are threefold (Sein et al., 2011, p. 42; Westin
& Sein, 2015, p. 24), with two types of practice contributions and one
generalized knowledge contribution. The first practice contribution
encompasses ensemble-specific contributions. This contribution
constitutes both the resulting artifact (ingrained by initial theoretical
hypotheses and subsequent contextual structures) along with the
modified organizational structures where the ensemble artifact
resides. This first type of practice contribution corresponds to the
DataCache platform (both the original open platform and
subsequent internal instances) alongside STA’s new strategic
developer segment, third-party developers, and the STA’s
organization surrounding the platform. The second practice result
concerns end-user utility. The ADR project described in this thesis
includes utility for both third-party developers and internal
developers at the STA (using the open platform). Finally, and at the
center of this chapter, the design principles, following the
formalization of learning stage of ADR (Sein et al., 2011), and
conveying the necessary and sufficiently generalized design
knowledge for use in other similar design contexts.

The first type of design knowledge contribution concern product-
centric design knowledge. In this regard, I use situated platform
design decisions and their environmental response to derive more
generalized design principles addressing the class of problems under

6 DESIGN PRINCIPLE DEVELOPMENT

Designing Platform Emulation

 66

scrutiny (Gregor et al., 2020; Sein et al., 2011). Second, I follow a
design-theoretical tradition emphasizing that it may not be sufficient
to merely describe product properties but that it is necessary to also
provide process-oriented guidance to help designers meet their aims
(Li, Sun, Chen, Fung, & Wang, 2015; Markus, Majchrzak, & Gasser,
2002; Walls, Widmeyer, & El Sawy, 1992, 2004). I base this decision
on the experiences from this research, which highlight that deploying
an open platform based on emulation is a rather confounding
intervention for an organization. Here, the process in which such
implementation is conducted is critical to meeting the desired aims.
Consequently, in parallel to product principles, I am also offering
generalized process principles to help designers design open
platforms using emulation.

Thus, I present these concluding product and process principles in
the following sections based on the schema suggested by Gregor et
al. (2020)33.

33 The schema presented by Gregor et al. (2020) inherently supports design
principles about an artifact’s properties (the way I am applying the
schema), user activities as well as user activities and artifacts. Since
process aspects are not inherently supported, I present product and
process principles in tandem in this chapter.

Daniel Rudmark

 67

6.1 Alpha Version Principles
The focus of the alpha version is showcasing a blueprint for a
designed ensemble environment. Detailed product and process
principles are presented in Table 10.

 PRODUCT ASPECT PROCESS ASPECT

Principle title Principle of Platform Access to
Externable Data and
Functionality

Principle of Artificial
Platform
Demonstration

Aim,

implementer,

and user

To allow designers to emulate external development activities

into alpha version open platforms targeting external

developers

Context In a situation where external development is based on self-

resourcing

Mechanism Design a blueprint exhibiting

access to frequently self-resourced

functionalities together with other

data available through self-

resourcing via a novel, abstract

software layer with dedicated

interfaces offering such emulated

functionality

Execute an artificial

demonstration of the

alpha version platform

blueprint by including

both external self-

resourcing third-party

developers and

managerial decision

makers

Rationale Because platform ecosystems are

largely dependent on the stability

that tested and reusable

knowledge entails, but also need

to be able to evolve beyond such

functionality. Existing systems can

remain untouched when offering

designated access openness to

these platform capabilities by

inverting existing systems

architectures

Because deploying an

open platform requires

a substantial resource

investment, and long-

term commitment that

require alignment with

developer preferences as

well as managerial

anchoring to enable

further development

Table 10 - Product and process principles for the alpha version
platform

Designing Platform Emulation

 66

scrutiny (Gregor et al., 2020; Sein et al., 2011). Second, I follow a
design-theoretical tradition emphasizing that it may not be sufficient
to merely describe product properties but that it is necessary to also
provide process-oriented guidance to help designers meet their aims
(Li, Sun, Chen, Fung, & Wang, 2015; Markus, Majchrzak, & Gasser,
2002; Walls, Widmeyer, & El Sawy, 1992, 2004). I base this decision
on the experiences from this research, which highlight that deploying
an open platform based on emulation is a rather confounding
intervention for an organization. Here, the process in which such
implementation is conducted is critical to meeting the desired aims.
Consequently, in parallel to product principles, I am also offering
generalized process principles to help designers design open
platforms using emulation.

Thus, I present these concluding product and process principles in
the following sections based on the schema suggested by Gregor et
al. (2020)33.

33 The schema presented by Gregor et al. (2020) inherently supports design
principles about an artifact’s properties (the way I am applying the
schema), user activities as well as user activities and artifacts. Since
process aspects are not inherently supported, I present product and
process principles in tandem in this chapter.

Daniel Rudmark

 67

6.1 Alpha Version Principles
The focus of the alpha version is showcasing a blueprint for a
designed ensemble environment. Detailed product and process
principles are presented in Table 10.

 PRODUCT ASPECT PROCESS ASPECT

Principle title Principle of Platform Access to
Externable Data and
Functionality

Principle of Artificial
Platform
Demonstration

Aim,

implementer,

and user

To allow designers to emulate external development activities

into alpha version open platforms targeting external

developers

Context In a situation where external development is based on self-

resourcing

Mechanism Design a blueprint exhibiting

access to frequently self-resourced

functionalities together with other

data available through self-

resourcing via a novel, abstract

software layer with dedicated

interfaces offering such emulated

functionality

Execute an artificial

demonstration of the

alpha version platform

blueprint by including

both external self-

resourcing third-party

developers and

managerial decision

makers

Rationale Because platform ecosystems are

largely dependent on the stability

that tested and reusable

knowledge entails, but also need

to be able to evolve beyond such

functionality. Existing systems can

remain untouched when offering

designated access openness to

these platform capabilities by

inverting existing systems

architectures

Because deploying an

open platform requires

a substantial resource

investment, and long-

term commitment that

require alignment with

developer preferences as

well as managerial

anchoring to enable

further development

Table 10 - Product and process principles for the alpha version
platform

Designing Platform Emulation

 68

6.2 Beta Version Principles
The beta version involves developing a production-use platform for
testing in an authentic development setting. Detailed product and
process principles are presented in Table 11.

 PRODUCT ASPECT PROCESS ASPECT

Principle
title

The Principle of Platform
Capability with Non-
Deterministic Use Support

The Principle of Authentic
Platform Development

Aim,

implementer,

and user

To allow designers to emulate external development activities

into beta version open platforms targeting external developers

Context In a situation where external development is based on self-

resourcing

Mechanism Offer access to production-

like capabilities

encapsulating product

hackers’ frequently

implemented functionalities

while offering non-

deterministic use support by

adding a new software layer

conveying emulated

capabilities through its

interfaces

Execute the development of

the beta version platform in an

environment that concurrently

allows authentic third-party

development to unfold and

does not bind the platform

owner to the beta version

platform design rules.

Rationale Because an open platform

requires capabilities for both

coherent and flexible

searches, and existing

systems can remain

untouched when offering

access to designated,

production-mimicking

platform capabilities by

inverting existing systems

architectures

Because the identification of

improvement opportunities

and non-negotiable capabilities

for an open platform are

facilitated by third-party

developers assessing platform

capabilities in perceived

release circumstances, yet a

platform owner should retain

the option to alter release

version design rules, or even to

withdraw from further

development

Table 11 - Product and process principles for the beta version platform

Daniel Rudmark

 69

6.3 Release Version Principles
The release version involves transforming and implementing desired
capabilities into live production systems for both external third-party
developers and internal application developers. The product and
process principles for this phase are detailed in Table 12.

 PRODUCT ASPECT PROCESS ASPECT

Principle
title

The Principle of Platform
Growth by Experiment
Flexibility

The Principle of Target
Platform
Implementation

Aim,

implementer,

and user

To allow platform designers to emulate external development

activities into release version open platforms targeting external

and internal developers

Context In a situation where external development is based on self-

resourcing

Mechanism Offer the improved capabilities

to both external and internal

users under the same

conditions, including shortcuts

to product hackers’ frequently

implemented functionalities as

well as non-deterministic

experiment flexibility by

substituting the digital resource

subject to self-resourcing with

modules providing non-

deterministic interfaces and

common functionality through

integration protocols.

Ensure that both desired

third-party developer

capabilities are preserved in

the target platform

implementation while

assuring a flexible upgrade

plan for internal

applications in their

adoption of the release

version platform

Rationale Because an open platform

requires coherent and flexible

search capabilities for both

internal and external users, and

such resource openness requires

that the underlying system is

substituted with a resource

emulating the desired

capabilities.

Because transforming

internal digital resources to

an open release version

platform may infer altered

design rules compared to

both the beta version and

substituted release versions

Table 12 - Product and process principles for the release version
platform

Designing Platform Emulation

 68

6.2 Beta Version Principles
The beta version involves developing a production-use platform for
testing in an authentic development setting. Detailed product and
process principles are presented in Table 11.

 PRODUCT ASPECT PROCESS ASPECT

Principle
title

The Principle of Platform
Capability with Non-
Deterministic Use Support

The Principle of Authentic
Platform Development

Aim,

implementer,

and user

To allow designers to emulate external development activities

into beta version open platforms targeting external developers

Context In a situation where external development is based on self-

resourcing

Mechanism Offer access to production-

like capabilities

encapsulating product

hackers’ frequently

implemented functionalities

while offering non-

deterministic use support by

adding a new software layer

conveying emulated

capabilities through its

interfaces

Execute the development of

the beta version platform in an

environment that concurrently

allows authentic third-party

development to unfold and

does not bind the platform

owner to the beta version

platform design rules.

Rationale Because an open platform

requires capabilities for both

coherent and flexible

searches, and existing

systems can remain

untouched when offering

access to designated,

production-mimicking

platform capabilities by

inverting existing systems

architectures

Because the identification of

improvement opportunities

and non-negotiable capabilities

for an open platform are

facilitated by third-party

developers assessing platform

capabilities in perceived

release circumstances, yet a

platform owner should retain

the option to alter release

version design rules, or even to

withdraw from further

development

Table 11 - Product and process principles for the beta version platform

Daniel Rudmark

 69

6.3 Release Version Principles
The release version involves transforming and implementing desired
capabilities into live production systems for both external third-party
developers and internal application developers. The product and
process principles for this phase are detailed in Table 12.

 PRODUCT ASPECT PROCESS ASPECT

Principle
title

The Principle of Platform
Growth by Experiment
Flexibility

The Principle of Target
Platform
Implementation

Aim,

implementer,

and user

To allow platform designers to emulate external development

activities into release version open platforms targeting external

and internal developers

Context In a situation where external development is based on self-

resourcing

Mechanism Offer the improved capabilities

to both external and internal

users under the same

conditions, including shortcuts

to product hackers’ frequently

implemented functionalities as

well as non-deterministic

experiment flexibility by

substituting the digital resource

subject to self-resourcing with

modules providing non-

deterministic interfaces and

common functionality through

integration protocols.

Ensure that both desired

third-party developer

capabilities are preserved in

the target platform

implementation while

assuring a flexible upgrade

plan for internal

applications in their

adoption of the release

version platform

Rationale Because an open platform

requires coherent and flexible

search capabilities for both

internal and external users, and

such resource openness requires

that the underlying system is

substituted with a resource

emulating the desired

capabilities.

Because transforming

internal digital resources to

an open release version

platform may infer altered

design rules compared to

both the beta version and

substituted release versions

Table 12 - Product and process principles for the release version
platform

Designing Platform Emulation

 70

6.4 Maintenance Version Principles
The maintenance version involves upholding desired capabilities for
new information objects and creating options to harness emulation
capabilities for internal purposes. The product and process principles
for this phase are detailed in Table 12

 PRODUCT ASPECT PROCESS ASPECT

Principle
title

The Principle of Platform
Equilibrium through
Internal Integration

The Principle of Ensemble
Platform Manifestation

Aim,

implementer,

and user

To allow platform designers to maintain open platforms

targeting external and internal developers

Context In a situation where external development based on self-

resourcing has been emulated

Mechanism Offer new public datasets

with the same capabilities

and restrictions for both

external and internal users,

including shortcuts to

projected frequently

implemented functionalities

as well as non-deterministic

experiment flexibility and

mutate the open platform for

internal usage.

Maintain the platform in a way

that ensures that both sides of

the ensemble are content, by

conditioning publishing of new

datasets with having support

for desired capabilities and by

encouraging internal use of

emulated capabilities.

Rationale Because continual offering of

data ex-post open platform

release with coherent and

flexible search capabilities

for both internal and

external users will maintain

platform qualities, and

mutating the open platform

allows for the emulated

capabilities to be used in

internal settings

Because publishing new data

ex-post open platform release

with support for desired

capabilities will facilitate

platform usage and stall new

self-resourcing, and by

encouraging internal use in

new contexts the platform

owner may harness emulated

capabilities for proprietary

organizational purposes

Table 13 - Product and process principles for the maintenance version
platform

Daniel Rudmark

 71

The research presented in this thesis has been undertaken over more
than a decade. As such, it has encompassed a wide array of activities
and analyses along the way. Each of the appended papers presents
individual results but has also been critical in building the
cumulative knowledge leading up to the contributions of this thesis.
The first paper (Koutsikouri et al., 2018) discusses the evolution of
digital infrastructures and platforms, and presents one tactic I have
followed through, namely providing interfaces. While not addressed
in the paper, this study informed me about the potency of an
architectural configuration using inversion. By adding a new module
exposing previously hidden information with high demand, SL and
Samtrafiken was able to substantially expand their digital
infrastructures into smartphone apps and Google maps. In paper two
(Rudmark & Lind, 2011), I investigated the feasibility of using
interventional design research method as a device to develop design
knowledge for the type of platforms under scrutiny in this thesis. This
paper also served as a starting point for the reasoning regarding the
molding of early tentative demonstrators deeper into the
organizational fabric. A more developed argument regarding this
aspect can be found in Chapter 7.3. In the third paper (Rudmark et
al., 2012), I investigate scraping and organizational consequences in
more detail. Here, I conclude that it is first when organizations align
their platform governance with the external thrust from third-party
developers that equilibrium is possible. As such, this paper lays the
foundation for the emulation approach used in this thesis. Moreover,
the study underpinning the paper provided clear pointers that non-
discriminatory access openness would stall self-resourcing
incentives. Paper four (Rudmark, 2013) provided an opportunity for
me to connect so far unconnected dots regarding how self-resourcing
developers use APIs. This study thus enriched my design
understanding and provided evidence of the importance of

7 DISCUSSION

Designing Platform Emulation

 70

6.4 Maintenance Version Principles
The maintenance version involves upholding desired capabilities for
new information objects and creating options to harness emulation
capabilities for internal purposes. The product and process principles
for this phase are detailed in Table 12

 PRODUCT ASPECT PROCESS ASPECT

Principle
title

The Principle of Platform
Equilibrium through
Internal Integration

The Principle of Ensemble
Platform Manifestation

Aim,

implementer,

and user

To allow platform designers to maintain open platforms

targeting external and internal developers

Context In a situation where external development based on self-

resourcing has been emulated

Mechanism Offer new public datasets

with the same capabilities

and restrictions for both

external and internal users,

including shortcuts to

projected frequently

implemented functionalities

as well as non-deterministic

experiment flexibility and

mutate the open platform for

internal usage.

Maintain the platform in a way

that ensures that both sides of

the ensemble are content, by

conditioning publishing of new

datasets with having support

for desired capabilities and by

encouraging internal use of

emulated capabilities.

Rationale Because continual offering of

data ex-post open platform

release with coherent and

flexible search capabilities

for both internal and

external users will maintain

platform qualities, and

mutating the open platform

allows for the emulated

capabilities to be used in

internal settings

Because publishing new data

ex-post open platform release

with support for desired

capabilities will facilitate

platform usage and stall new

self-resourcing, and by

encouraging internal use in

new contexts the platform

owner may harness emulated

capabilities for proprietary

organizational purposes

Table 13 - Product and process principles for the maintenance version
platform

Daniel Rudmark

 71

The research presented in this thesis has been undertaken over more
than a decade. As such, it has encompassed a wide array of activities
and analyses along the way. Each of the appended papers presents
individual results but has also been critical in building the
cumulative knowledge leading up to the contributions of this thesis.
The first paper (Koutsikouri et al., 2018) discusses the evolution of
digital infrastructures and platforms, and presents one tactic I have
followed through, namely providing interfaces. While not addressed
in the paper, this study informed me about the potency of an
architectural configuration using inversion. By adding a new module
exposing previously hidden information with high demand, SL and
Samtrafiken was able to substantially expand their digital
infrastructures into smartphone apps and Google maps. In paper two
(Rudmark & Lind, 2011), I investigated the feasibility of using
interventional design research method as a device to develop design
knowledge for the type of platforms under scrutiny in this thesis. This
paper also served as a starting point for the reasoning regarding the
molding of early tentative demonstrators deeper into the
organizational fabric. A more developed argument regarding this
aspect can be found in Chapter 7.3. In the third paper (Rudmark et
al., 2012), I investigate scraping and organizational consequences in
more detail. Here, I conclude that it is first when organizations align
their platform governance with the external thrust from third-party
developers that equilibrium is possible. As such, this paper lays the
foundation for the emulation approach used in this thesis. Moreover,
the study underpinning the paper provided clear pointers that non-
discriminatory access openness would stall self-resourcing
incentives. Paper four (Rudmark, 2013) provided an opportunity for
me to connect so far unconnected dots regarding how self-resourcing
developers use APIs. This study thus enriched my design
understanding and provided evidence of the importance of

7 DISCUSSION

Designing Platform Emulation

 72

emulating coherent searches. Finally, in paper five (Rudmark, 2021),
I started by testing the first version of the emulation framework
(consisting of governance pertaining to coherent search capabilities
plus access openness and an architecture relying on inversion),
building on the cumulative insights from the previous papers.
Following a continuous shaping over four platform versions, the final
design principles stemming from this process have been presented in
Chapter 6.

While a core contribution from this thesis indeed are the design
principles presented in in the previous chapter, such principles are
not the only type of possible contributions from ADR. As argued in
Sein et al. (2011, p. 44), ADR ventures may come with additional
theoretical implications. In this chapter, I discuss three such
implications. First, I discuss the implications of bringing emulation
logic into the digital platform realm. Second, I offer suggestions
regarding outlaw innovation pertaining to the influencing response.
Finally, I reflect on guided emergence in ADR, before ending with the
limitations of this thesis.

7.1 Platform Emulation

7.1.1 Architectural and Governance Openness
In chapters 6.1 through 6.4, I synthesized how different
configurations of architecture and governance can be used to design
open platforms using emulation throughout a platform's
developmental trajectory. Based on these design insights, I will also
offer extensions to the existing literature on open platforms.

Regarding governance pertaining to solution search mechanisms on
open platforms, Brunswicker and Schecter (2019) offer two powerful
constructs that shape platform ecosystems' trajectories, coherent and
flexible searches. However, while Brunswicker and Schecter (2019)
show how such searches occur in the platform ecosystem periphery,
this research demonstrates that such searches may also play out in
the platform core. By incorporating such attractive capabilities into
the platform core, coherent searches can be re-used across apps, and
new innovative derivatives may emerge through flexible searches
without the requirement of having to keep the periphery open.

Daniel Rudmark

 73

Architecturally, these search mechanisms can play out in one of two
ways:

• These capabilities can be materialized by coherent
and flexible search mechanisms being inverted into
the platform and executed at the interface level.

• These capabilities can be achieved by substituting
the resource subject to self-resourcing while
implementing flexible searches at the interface level
and coherent searches at the integration protocol
level.

Moreover, this research extends the openness theory of Karhu et al.
(2018). They conceptualize the platform owner's important
governance decisions regarding whether to provide platform
openness through access or resource openness. However, while
Karhu et al. (2018) show how resource openness can be applied on
the provider dimension (by forfeiting the IPR of the platform source
code) in a platform context, this research demonstrates that such
resource openness also applies to the platform's user dimension. This
type of resource openness in the user dimension is of particular
interest when a platform owner seeks to share their platform with the
general public but the platform resources are not transferable via
source code. Such situations may emerge when the desirable
resources are bound to the platform owner's physical and digital
infrastructure, such as the real-time railway and roadside data
studied in this research. Architecturally, such resource openness is
obtained by making internal resources used for public services visible
to outsiders and using the very same resources when the platform
owner develops public services.

To the best of my knowledge, this research is the first to introduce
emulation logics into the digital platform realm. As such, I have also
identified two distinct ways of achieving emulation, which I denote
high-level and low-level emulation34.

34 These concepts are borrowed from the gaming emulator scene. Here,
high-level emulation refers to when an emulator creates runtime
compatibility at the system kernel level. Low-level emulation refers to

Designing Platform Emulation

 72

emulating coherent searches. Finally, in paper five (Rudmark, 2021),
I started by testing the first version of the emulation framework
(consisting of governance pertaining to coherent search capabilities
plus access openness and an architecture relying on inversion),
building on the cumulative insights from the previous papers.
Following a continuous shaping over four platform versions, the final
design principles stemming from this process have been presented in
Chapter 6.

While a core contribution from this thesis indeed are the design
principles presented in in the previous chapter, such principles are
not the only type of possible contributions from ADR. As argued in
Sein et al. (2011, p. 44), ADR ventures may come with additional
theoretical implications. In this chapter, I discuss three such
implications. First, I discuss the implications of bringing emulation
logic into the digital platform realm. Second, I offer suggestions
regarding outlaw innovation pertaining to the influencing response.
Finally, I reflect on guided emergence in ADR, before ending with the
limitations of this thesis.

7.1 Platform Emulation

7.1.1 Architectural and Governance Openness
In chapters 6.1 through 6.4, I synthesized how different
configurations of architecture and governance can be used to design
open platforms using emulation throughout a platform's
developmental trajectory. Based on these design insights, I will also
offer extensions to the existing literature on open platforms.

Regarding governance pertaining to solution search mechanisms on
open platforms, Brunswicker and Schecter (2019) offer two powerful
constructs that shape platform ecosystems' trajectories, coherent and
flexible searches. However, while Brunswicker and Schecter (2019)
show how such searches occur in the platform ecosystem periphery,
this research demonstrates that such searches may also play out in
the platform core. By incorporating such attractive capabilities into
the platform core, coherent searches can be re-used across apps, and
new innovative derivatives may emerge through flexible searches
without the requirement of having to keep the periphery open.

Daniel Rudmark

 73

Architecturally, these search mechanisms can play out in one of two
ways:

• These capabilities can be materialized by coherent
and flexible search mechanisms being inverted into
the platform and executed at the interface level.

• These capabilities can be achieved by substituting
the resource subject to self-resourcing while
implementing flexible searches at the interface level
and coherent searches at the integration protocol
level.

Moreover, this research extends the openness theory of Karhu et al.
(2018). They conceptualize the platform owner's important
governance decisions regarding whether to provide platform
openness through access or resource openness. However, while
Karhu et al. (2018) show how resource openness can be applied on
the provider dimension (by forfeiting the IPR of the platform source
code) in a platform context, this research demonstrates that such
resource openness also applies to the platform's user dimension. This
type of resource openness in the user dimension is of particular
interest when a platform owner seeks to share their platform with the
general public but the platform resources are not transferable via
source code. Such situations may emerge when the desirable
resources are bound to the platform owner's physical and digital
infrastructure, such as the real-time railway and roadside data
studied in this research. Architecturally, such resource openness is
obtained by making internal resources used for public services visible
to outsiders and using the very same resources when the platform
owner develops public services.

To the best of my knowledge, this research is the first to introduce
emulation logics into the digital platform realm. As such, I have also
identified two distinct ways of achieving emulation, which I denote
high-level and low-level emulation34.

34 These concepts are borrowed from the gaming emulator scene. Here,
high-level emulation refers to when an emulator creates runtime
compatibility at the system kernel level. Low-level emulation refers to

Designing Platform Emulation

 74

7.1.2 High-level emulation
In the context of emulation on digital platforms, high-level
emulation refers to emulation that occurs by decoupling the
underlying resource and visible third-party developer design rules (as
in the alpha and beta versions of the DataCache platform). This
loosens dependencies on the existing resource used (e.g., by outlaw
innovators) and enables the platform owner to implement the
emulated capabilities through interfaces without affecting the
underlying resource. This type of emulation architecture is achieved
by inverting the system with a new software layer. Through this new
layer, the emulator may encapsulate and abstract specific aspects of
the necessary transition of its incumbent resources into specialized
interfaces that imitate or surpass the behavior of those subjected to
self-resourcing (see Figure 1)

Figure 1 – High-level Emulation

I speculate that this type of emulation may be of interest when
organizations wish to draw on emulation as a design strategy to
design platforms for third-party developers but do not seek to deploy
open platforms. Such situations include where only portions of the
underlying resource are suitable for third-party innovation given
security considerations or when the platform owner aims to avoid
creating the underlying resource interface's dependencies. Other
reasons for such limited emulation can include protecting existing

when the emulator creates a more complex and comprehensive
abstraction layer for the emulated hardware.

Third-Party
Applications

High-Level Emulation

Resource

Platform Owner
ApplicationsAssumed visble

information

Assumed hidden
information

Daniel Rudmark

 75

revenue streams or issues related to underlying IP restrictions (that
may not allow third-party innovation). However, given the empirical
insights from this thesis, high-level emulation may also entail
continued self-resourcing activities.

7.1.3 Low-level emulation
In platform emulation, I refer to low-level emulation when an
emulator replaces existing modules with such that exhibit the
capabilities desired by external innovators. Through low-level
emulation, the emulator implements necessary changes within an
organization’s existing resource collection and effectively emulates
directly into its internal platforms (see Figure 2). Consequently, this
type of emulation suggests that the platform owner considers the
emulated behavior as beneficial to the organization’s own
applications and triggers the modification of its applications to the
new emulated platform design rules.

Figure 2 – Low-level Emulation

As exhibited in the present thesis, this approach to emulation is of
interest when the platformer seeks to establish a platform open in
the user dimension, and where such improved capabilities is of
interest to the platform owner. Although this thesis has focused on
third-party developer resources provided through emulation, I
speculate that low-level emulation also may be used for internal
platforms where outlaw innovation is used to find cues for improving
existing systems and services.

Low-Level Emulation

Third-Party
Applications

Platform Owner
Applications

ResourceAssumed visble
information

Assumed hidden
information

Designing Platform Emulation

 74

7.1.2 High-level emulation
In the context of emulation on digital platforms, high-level
emulation refers to emulation that occurs by decoupling the
underlying resource and visible third-party developer design rules (as
in the alpha and beta versions of the DataCache platform). This
loosens dependencies on the existing resource used (e.g., by outlaw
innovators) and enables the platform owner to implement the
emulated capabilities through interfaces without affecting the
underlying resource. This type of emulation architecture is achieved
by inverting the system with a new software layer. Through this new
layer, the emulator may encapsulate and abstract specific aspects of
the necessary transition of its incumbent resources into specialized
interfaces that imitate or surpass the behavior of those subjected to
self-resourcing (see Figure 1)

Figure 1 – High-level Emulation

I speculate that this type of emulation may be of interest when
organizations wish to draw on emulation as a design strategy to
design platforms for third-party developers but do not seek to deploy
open platforms. Such situations include where only portions of the
underlying resource are suitable for third-party innovation given
security considerations or when the platform owner aims to avoid
creating the underlying resource interface's dependencies. Other
reasons for such limited emulation can include protecting existing

when the emulator creates a more complex and comprehensive
abstraction layer for the emulated hardware.

Third-Party
Applications

High-Level Emulation

Resource

Platform Owner
ApplicationsAssumed visble

information

Assumed hidden
information

Daniel Rudmark

 75

revenue streams or issues related to underlying IP restrictions (that
may not allow third-party innovation). However, given the empirical
insights from this thesis, high-level emulation may also entail
continued self-resourcing activities.

7.1.3 Low-level emulation
In platform emulation, I refer to low-level emulation when an
emulator replaces existing modules with such that exhibit the
capabilities desired by external innovators. Through low-level
emulation, the emulator implements necessary changes within an
organization’s existing resource collection and effectively emulates
directly into its internal platforms (see Figure 2). Consequently, this
type of emulation suggests that the platform owner considers the
emulated behavior as beneficial to the organization’s own
applications and triggers the modification of its applications to the
new emulated platform design rules.

Figure 2 – Low-level Emulation

As exhibited in the present thesis, this approach to emulation is of
interest when the platformer seeks to establish a platform open in
the user dimension, and where such improved capabilities is of
interest to the platform owner. Although this thesis has focused on
third-party developer resources provided through emulation, I
speculate that low-level emulation also may be used for internal
platforms where outlaw innovation is used to find cues for improving
existing systems and services.

Low-Level Emulation

Third-Party
Applications

Platform Owner
Applications

ResourceAssumed visble
information

Assumed hidden
information

Designing Platform Emulation

 76

7.1.4 Self-resourcing integration
Another benefit of using emulation as an approach to platform
design (in cases of external self-resourcing) concerns the option to
integrate potentially valuable capabilities into the platform owner’s
organization for internal purposes. As shown in this thesis, the
platform capabilities linked to coherent, and flexible searches had
implications beyond third-party application development. Indeed,
within the STA, these capabilities were proven to significantly
increase internal development velocity to the extent that the STA
appointed the DataCache platform as the official integration
platform to be used across the organization. However, this is not the
same instance of DataCache used as an open platform among third-
party developers. Instead, the STA has mutated the external platform
to replicate the functionality for information models different to
those of the open platform. Hence, self-resourcing integration refers
to when a platform owner copies the open platform and uses it for
purposes other than an external platform. In this way, the platform
host can integrate the emulated capabilities, rooted in self-
resourcing, for data and information that are not shared with the
general public (see Figure 3).

Figure 3 - Mutating for Internal Integration of Emulation

Open Platform

Third-Party
Applications

Mutating

Visble
information

Hidden
information

Copy of Open Platform

Internal Applications

Daniel Rudmark

 77

7.2 Outlaw Innovation
The next theoretical implication of this thesis more broadly concerns
innovation beyond the platform domain. More specifically, this
contribution adds to existing theories on outlaw innovation (Braun
& Herstatt, 2008; Flowers, 2008; Mollick, 2005; Postigo, 2003; Schulz
& Wagner, 2008; Schäfer, 2011), where an organization is subjected to
product hacking. In these situations, organizations may respond in
several ways, which include attacking the innovator, monitoring
outlaw activities, or adapting outlaw innovations into the hacked
product. Previous in-depth studies have investigated the absorption
response when organizations seek to engage external outlaw
innovators (Eaton et al., 2015; Schäfer, 2011). Such responses are
typically a blend of increased yet selective openness paired with
monitoring and attacking actors who do not comply with
administrative legislation related to third-party developer programs.

In this thesis, I have explored the influencing response to product
hacking. Notably, I argue that the findings from this research can be
used to provide influencing responses with more nuanced content.
When an organization seeks to convince product hackers to choose
sanctioned resources, their outlaw innovation strategy must entail
such innovators having access to publicly available data and
functionalities. First, an organization should investigate and offer
common functionalities with high developer demand by analyzing or
reverse-engineering available applications to find such patterns and
regularities. Second, while such common functionalities will likely
satisfy most external developers, it is imperative to offer
opportunities to experiment beyond these commonly implemented
functions. This means that organizations should provide the same
(although improved) data and functionalities that are publicly
available in some form (e.g., in proprietary apps and web pages).
Third, once such coherent searches and improved flexible searches
have been identified, a concluding activity could involve having
proprietary apps and web pages use this new and improved platform.
Moreover, this use should be governed by the same restrictions and
capabilities applied to external third-party developers to effectively
establish an open platform.

Designing Platform Emulation

 76

7.1.4 Self-resourcing integration
Another benefit of using emulation as an approach to platform
design (in cases of external self-resourcing) concerns the option to
integrate potentially valuable capabilities into the platform owner’s
organization for internal purposes. As shown in this thesis, the
platform capabilities linked to coherent, and flexible searches had
implications beyond third-party application development. Indeed,
within the STA, these capabilities were proven to significantly
increase internal development velocity to the extent that the STA
appointed the DataCache platform as the official integration
platform to be used across the organization. However, this is not the
same instance of DataCache used as an open platform among third-
party developers. Instead, the STA has mutated the external platform
to replicate the functionality for information models different to
those of the open platform. Hence, self-resourcing integration refers
to when a platform owner copies the open platform and uses it for
purposes other than an external platform. In this way, the platform
host can integrate the emulated capabilities, rooted in self-
resourcing, for data and information that are not shared with the
general public (see Figure 3).

Figure 3 - Mutating for Internal Integration of Emulation

Open Platform

Third-Party
Applications

Mutating

Visble
information

Hidden
information

Copy of Open Platform

Internal Applications

Daniel Rudmark

 77

7.2 Outlaw Innovation
The next theoretical implication of this thesis more broadly concerns
innovation beyond the platform domain. More specifically, this
contribution adds to existing theories on outlaw innovation (Braun
& Herstatt, 2008; Flowers, 2008; Mollick, 2005; Postigo, 2003; Schulz
& Wagner, 2008; Schäfer, 2011), where an organization is subjected to
product hacking. In these situations, organizations may respond in
several ways, which include attacking the innovator, monitoring
outlaw activities, or adapting outlaw innovations into the hacked
product. Previous in-depth studies have investigated the absorption
response when organizations seek to engage external outlaw
innovators (Eaton et al., 2015; Schäfer, 2011). Such responses are
typically a blend of increased yet selective openness paired with
monitoring and attacking actors who do not comply with
administrative legislation related to third-party developer programs.

In this thesis, I have explored the influencing response to product
hacking. Notably, I argue that the findings from this research can be
used to provide influencing responses with more nuanced content.
When an organization seeks to convince product hackers to choose
sanctioned resources, their outlaw innovation strategy must entail
such innovators having access to publicly available data and
functionalities. First, an organization should investigate and offer
common functionalities with high developer demand by analyzing or
reverse-engineering available applications to find such patterns and
regularities. Second, while such common functionalities will likely
satisfy most external developers, it is imperative to offer
opportunities to experiment beyond these commonly implemented
functions. This means that organizations should provide the same
(although improved) data and functionalities that are publicly
available in some form (e.g., in proprietary apps and web pages).
Third, once such coherent searches and improved flexible searches
have been identified, a concluding activity could involve having
proprietary apps and web pages use this new and improved platform.
Moreover, this use should be governed by the same restrictions and
capabilities applied to external third-party developers to effectively
establish an open platform.

Designing Platform Emulation

 78

In cases where such complete openness is not possible, another
identified method of influencing some (or even most) product
hacking is to offer more limited access to requested capabilities. In
such a case, potential solutions would be similar to the one described
as high-level emulation in Chapter 7.1.2. Here, the most desirable and
reused capabilities can be implemented for third-party developers,
possibly alongside some opportunities for experimentation.
Moreover, rather than offering an entirely open platform, the
organization subject to product hacking can instantiate a specific
third-party developer platform that is not in use by proprietary
applications.

7.3 Guided Emergence
In this section, I offer my methodological reflections on using ADR
to design platforms. More specifically, I address the principle guiding
reflection and learning in ADR—guided emergence.

Taking ADR's theoretical perspective of the ensemble artifact
seriously involves ADR teams delivering significant contributions in
all three dimensions. In this case, there is a need to design ensemble
artifacts that are deeply embedded into its structures. I argue that an
essential methodological key to unlocking this level of integration is
paying closer attention to the process how the artifact evolves
throughout its life cycle. Within ADR, this evolution follows the
principle of guided emergence.

The basis for guided emergence is the BIE phase's ensemble signals.
Thus, the BIE phases are contingent on embedding the design into
an organizational context where evaluation is characterized by
authenticity and concurrency (Sein et al., 2011). For ADR teams,
authenticity is challenging since the research often questions
organizational assumptions and structures, while the BIE may
require confounding interventions to materialize into an authentic
ensemble. Hence, in one of the papers of this dissertation (Rudmark
& Lind, 2011), the PSIC (Lyytinen & Newman, 2008) is brought
forward to conceptualize this dilemma.

In an information system change situation, PSIC posits that it is
necessary to distinguish between a building and a work system

Daniel Rudmark

 79

analytically. In the PSIC model, a work system constitutes the de facto
IS structures enabling ongoing IS operations. It is characterized by
"low malleability due to path dependencies, habitualization,
cognitive inertia, and high complexity" (Lyytinen & Newman, 2008,
p. 592). Hence, directly altering work systems is typically not feasible
unless minor incremental changes suffice. For this reason,
organizations instead establish building systems when other than
trivial changes in work systems are necessary. In contrast to work
systems, building systems are time delimited and have relative
autonomy toward the work system when addressing a specific
problem. Building systems can thus exhibit rather different
properties to work systems, such as increased agility, specialized
resource configurations, and the use of more flexible systems
architectures.

An example of such a building system could be an enterprise resource
planning (ERP) system implementation project that tailors the
system to existing processes and simultaneously revamps existing
processes to better fit the ERP system's logic. Over time, the building
system needs to transition into the work system to achieve the
anticipated change. In the case of ERP systems, such a transition may
be performed by rolling out selected functions across the enterprise
or incrementally deploying the full system to additional departments
in an organization, or perhaps combining the two. Since knowledge
development through ADR is an organizational intervention at its
core (as per an ERP project), I argue that it is of particular importance
for researchers to understand the roles that ADR phases play—
including the crucial transitions between them—in the journey from
building to work system.

Despite this importance, the existing literature conveys little
guidance on how the ADR phases and their transitions should be
managed. Sein et al. (2011) believe that the early alpha versions of IT-
dominant artifacts should be lightweight, evaluated in a limited
organizational setting, and subject to formative evaluations. Since
beta versions are more mature, they can be tested in a broader
environment and are typically evaluated in a more summative
fashion. However, there is no explicit mention of release versions in
the seminal article by Sein et al. (2011). In addition to this original
article, Barrett and Holeman (2017) suggest that a set of activities

Designing Platform Emulation

 78

In cases where such complete openness is not possible, another
identified method of influencing some (or even most) product
hacking is to offer more limited access to requested capabilities. In
such a case, potential solutions would be similar to the one described
as high-level emulation in Chapter 7.1.2. Here, the most desirable and
reused capabilities can be implemented for third-party developers,
possibly alongside some opportunities for experimentation.
Moreover, rather than offering an entirely open platform, the
organization subject to product hacking can instantiate a specific
third-party developer platform that is not in use by proprietary
applications.

7.3 Guided Emergence
In this section, I offer my methodological reflections on using ADR
to design platforms. More specifically, I address the principle guiding
reflection and learning in ADR—guided emergence.

Taking ADR's theoretical perspective of the ensemble artifact
seriously involves ADR teams delivering significant contributions in
all three dimensions. In this case, there is a need to design ensemble
artifacts that are deeply embedded into its structures. I argue that an
essential methodological key to unlocking this level of integration is
paying closer attention to the process how the artifact evolves
throughout its life cycle. Within ADR, this evolution follows the
principle of guided emergence.

The basis for guided emergence is the BIE phase's ensemble signals.
Thus, the BIE phases are contingent on embedding the design into
an organizational context where evaluation is characterized by
authenticity and concurrency (Sein et al., 2011). For ADR teams,
authenticity is challenging since the research often questions
organizational assumptions and structures, while the BIE may
require confounding interventions to materialize into an authentic
ensemble. Hence, in one of the papers of this dissertation (Rudmark
& Lind, 2011), the PSIC (Lyytinen & Newman, 2008) is brought
forward to conceptualize this dilemma.

In an information system change situation, PSIC posits that it is
necessary to distinguish between a building and a work system

Daniel Rudmark

 79

analytically. In the PSIC model, a work system constitutes the de facto
IS structures enabling ongoing IS operations. It is characterized by
"low malleability due to path dependencies, habitualization,
cognitive inertia, and high complexity" (Lyytinen & Newman, 2008,
p. 592). Hence, directly altering work systems is typically not feasible
unless minor incremental changes suffice. For this reason,
organizations instead establish building systems when other than
trivial changes in work systems are necessary. In contrast to work
systems, building systems are time delimited and have relative
autonomy toward the work system when addressing a specific
problem. Building systems can thus exhibit rather different
properties to work systems, such as increased agility, specialized
resource configurations, and the use of more flexible systems
architectures.

An example of such a building system could be an enterprise resource
planning (ERP) system implementation project that tailors the
system to existing processes and simultaneously revamps existing
processes to better fit the ERP system's logic. Over time, the building
system needs to transition into the work system to achieve the
anticipated change. In the case of ERP systems, such a transition may
be performed by rolling out selected functions across the enterprise
or incrementally deploying the full system to additional departments
in an organization, or perhaps combining the two. Since knowledge
development through ADR is an organizational intervention at its
core (as per an ERP project), I argue that it is of particular importance
for researchers to understand the roles that ADR phases play—
including the crucial transitions between them—in the journey from
building to work system.

Despite this importance, the existing literature conveys little
guidance on how the ADR phases and their transitions should be
managed. Sein et al. (2011) believe that the early alpha versions of IT-
dominant artifacts should be lightweight, evaluated in a limited
organizational setting, and subject to formative evaluations. Since
beta versions are more mature, they can be tested in a broader
environment and are typically evaluated in a more summative
fashion. However, there is no explicit mention of release versions in
the seminal article by Sein et al. (2011). In addition to this original
article, Barrett and Holeman (2017) suggest that a set of activities

Designing Platform Emulation

 80

rooted in theories of sociomateriality can facilitate guided emergence
(i.e., the implementation and use of prototypes, practice
breakdowns, investigating breakdowns, accommodating material
back talk, reconfiguring artifacts and routines, and the use of new
practices).

Given this scarcity, I have studied how existing ADR research projects
have dealt with guided emergence in practice. More specifically, I
have focused on research published in the most influential IS
journals35 since these are more likely to contain substantial
contributions to the IS field (Webster and Watson 2002) and can be
expected to adhere to a high level of scientific rigor. A full list of these
articles can be found in Table 14. Notably, in this collection, only the
paper by Gregor, Imran, and Turner (2014) explicitly mentions how
guided emergence impacted research.

7.3.1 Alpha Version
In ADR, the research team commences by using problem formulation
as an entry point (Sein & Rossi, 2019). This order is essential since
ADR departs from the problems in a client system (rather than using
a clinical setting as an expository instantiation (Iivari, 2015)). Thus,
the focus of the researchers will initially be placed on the work
system. Hence, ADR research commences by analyzing the work
system and establishing that it favors the introduction of a new
ensemble artifact (Asatiani, Hämäläinen, Penttinen, & Rossi, 2020;
Ebel, Bretschneider, & Leimeister, 2016; Giesbrecht, Schwabe, &
Schenk, 2017; Giessmann & Legner, 2016; Gregor et al., 2014; Hustad
& Olsen, 2014; Mettler, 2017). In some cases, signals from similar
environments are collected to further contextualize the problem
(Ebel et al., 2016; Giessmann & Legner, 2016; Gregor et al., 2014).

Next, during the alpha version BIE cycle, an ADR team formulates
theoretically ingrained hypotheses concerning the artifact properties
necessary to trigger desired effects in the observed work system
(Mandviwalla, 2015). These first hypotheses materialize as the
ensemble artifact’s alpha version (Sein et al., 2011). However, since the
artifact is in a genuinely formative stage where both utility potential

35 https://aisnet.org/general/custom.asp?page=SeniorScholarBasket

Daniel Rudmark

 81

and organizational legitimacy still are uncertain, the ADR project is
set up as a building system36.

Examples of such activities may include the incorporation of
representative end users (Giesbrecht et al., 2017; Giessmann &
Legner, 2016; Gregor et al., 2014; Mettler, 2017), the entire ensemble
setting (Asatiani et al., 2020; Hustad & Olsen, 2014), or those who are
likely to create legitimacy for a future artifact (Gregor et al., 2014).

7.3.2 Beta Version
In the following reflection and learning stage, the researchers enter
a more analytical mode of thinking to make sense of the alpha
version intervention. Here, the focus is to assess whether the alpha
version artifact substantially affected the situation. The ADR team
must also establish what additional structures from the ecological
milieu need to be inscribed into the artifact. To grasp the alpha
version’s effect, ADR teams can use a variety of signals. The most
common signals include user perceptions, which are provided in
workshop-like settings (Asatiani et al., 2020; Giesbrecht et al., 2017;
Giessmann & Legner, 2016; Gregor et al., 2014) or in written form
(Asatiani et al., 2020; Ebel et al., 2016; Gregor et al., 2014; Hustad &
Olsen, 2014). To make sense of these signals and articulate a new set
of revised principles for the design of the next version, researchers
use workshops (Asatiani et al., 2020; Giessmann & Legner, 2016;
Mettler, 2017) as well as more formal quantitative (Ebel et al., 2016)
and qualitative (Giesbrecht et al., 2017) research methods. However,
given that the alpha version is deployed into a pure building system,
Ebel et al. (2016) also noted that researchers must consider the extent
to which the cues from an artificial ensemble potentially differ from
those in a work system.

If there is sufficient consensus within the ADR team that the alpha
version intervention results were successful, the next step is to
materialize a beta version. Auspicious properties from the alpha
version, alongside resolutions to identified structural misalignments,

36 In the analyzed literature, Hustad and Olsen (2014) surfaced as an
exception to this. Their ensemble artifact concerned university courses, an
environment in which the authors had sufficient control over enabling
them to start in the work system.

Designing Platform Emulation

 80

rooted in theories of sociomateriality can facilitate guided emergence
(i.e., the implementation and use of prototypes, practice
breakdowns, investigating breakdowns, accommodating material
back talk, reconfiguring artifacts and routines, and the use of new
practices).

Given this scarcity, I have studied how existing ADR research projects
have dealt with guided emergence in practice. More specifically, I
have focused on research published in the most influential IS
journals35 since these are more likely to contain substantial
contributions to the IS field (Webster and Watson 2002) and can be
expected to adhere to a high level of scientific rigor. A full list of these
articles can be found in Table 14. Notably, in this collection, only the
paper by Gregor, Imran, and Turner (2014) explicitly mentions how
guided emergence impacted research.

7.3.1 Alpha Version
In ADR, the research team commences by using problem formulation
as an entry point (Sein & Rossi, 2019). This order is essential since
ADR departs from the problems in a client system (rather than using
a clinical setting as an expository instantiation (Iivari, 2015)). Thus,
the focus of the researchers will initially be placed on the work
system. Hence, ADR research commences by analyzing the work
system and establishing that it favors the introduction of a new
ensemble artifact (Asatiani, Hämäläinen, Penttinen, & Rossi, 2020;
Ebel, Bretschneider, & Leimeister, 2016; Giesbrecht, Schwabe, &
Schenk, 2017; Giessmann & Legner, 2016; Gregor et al., 2014; Hustad
& Olsen, 2014; Mettler, 2017). In some cases, signals from similar
environments are collected to further contextualize the problem
(Ebel et al., 2016; Giessmann & Legner, 2016; Gregor et al., 2014).

Next, during the alpha version BIE cycle, an ADR team formulates
theoretically ingrained hypotheses concerning the artifact properties
necessary to trigger desired effects in the observed work system
(Mandviwalla, 2015). These first hypotheses materialize as the
ensemble artifact’s alpha version (Sein et al., 2011). However, since the
artifact is in a genuinely formative stage where both utility potential

35 https://aisnet.org/general/custom.asp?page=SeniorScholarBasket

Daniel Rudmark

 81

and organizational legitimacy still are uncertain, the ADR project is
set up as a building system36.

Examples of such activities may include the incorporation of
representative end users (Giesbrecht et al., 2017; Giessmann &
Legner, 2016; Gregor et al., 2014; Mettler, 2017), the entire ensemble
setting (Asatiani et al., 2020; Hustad & Olsen, 2014), or those who are
likely to create legitimacy for a future artifact (Gregor et al., 2014).

7.3.2 Beta Version
In the following reflection and learning stage, the researchers enter
a more analytical mode of thinking to make sense of the alpha
version intervention. Here, the focus is to assess whether the alpha
version artifact substantially affected the situation. The ADR team
must also establish what additional structures from the ecological
milieu need to be inscribed into the artifact. To grasp the alpha
version’s effect, ADR teams can use a variety of signals. The most
common signals include user perceptions, which are provided in
workshop-like settings (Asatiani et al., 2020; Giesbrecht et al., 2017;
Giessmann & Legner, 2016; Gregor et al., 2014) or in written form
(Asatiani et al., 2020; Ebel et al., 2016; Gregor et al., 2014; Hustad &
Olsen, 2014). To make sense of these signals and articulate a new set
of revised principles for the design of the next version, researchers
use workshops (Asatiani et al., 2020; Giessmann & Legner, 2016;
Mettler, 2017) as well as more formal quantitative (Ebel et al., 2016)
and qualitative (Giesbrecht et al., 2017) research methods. However,
given that the alpha version is deployed into a pure building system,
Ebel et al. (2016) also noted that researchers must consider the extent
to which the cues from an artificial ensemble potentially differ from
those in a work system.

If there is sufficient consensus within the ADR team that the alpha
version intervention results were successful, the next step is to
materialize a beta version. Auspicious properties from the alpha
version, alongside resolutions to identified structural misalignments,

36 In the analyzed literature, Hustad and Olsen (2014) surfaced as an
exception to this. Their ensemble artifact concerned university courses, an
environment in which the authors had sufficient control over enabling
them to start in the work system.

Designing Platform Emulation

 82

are inscribed into the beta version by analyzing the signals from the
alpha version ensemble. Besides investigating a more refined artifact,
the BIE environment at this stage starts to transition from a pure
building system toward incorporating more facets from the work
system. In the reviewed articles, beta version environments involved
more “genuine” users and use situations (Asatiani et al., 2020; Ebel et
al., 2016; Giesbrecht et al., 2017; Giessmann & Legner, 2016; Gregor et
al., 2014; Mettler, 2017). However, all studied beta version target
environments come with authenticity constraints such as indicating
formative artifact status (Asatiani et al., 2020; Mettler, 2017), expert
(as a proxy for actual market/user) assessment of utility (Ebel et al.,
2016; Giessmann & Legner, 2016), impersonation of clients (rather
than interaction with real ones) (Giesbrecht et al., 2017), and/or only
deploying the solution to selected parts of the work system (Gregor
et al., 2014; Mettler, 2017).

7.3.3 Release version
Given the artifact’s continued molding into the work system, the
evaluation becomes less controlled, while the reflection and learning
phases gain potential access to a broader spectrum of ensemble
signals. However, most of the reviewed research relied on user
perceptions to assess the beta version’s utility (Asatiani et al., 2020;
Ebel et al., 2016; Giesbrecht et al., 2017; Giessmann & Legner, 2016;
Mettler, 2017). In addition to experiential cues such as user
perceptions, researchers may examine the actual results of artifact
use (Ebel et al., 2016). Signals may also be collected from actors that
can legitimize the release version’s deployment in the client
organization (Asatiani et al., 2020; Giessmann & Legner, 2016; Gregor
et al., 2014).

In the studied research, six out of seven artifacts were refined
through an explicit alpha and beta stage (Asatiani et al., 2020; Ebel et
al., 2016; Giesbrecht et al., 2017; Giessmann & Legner, 2016; Gregor et
al., 2014; Mettler, 2017). Out of these six, three eventually molded
their ensemble artifact into the work system (Asatiani et al., 2020;
Giessmann & Legner, 2016; Gregor et al., 2014). Since Sein et al. (2011)
only implicitly deals with a final live version of the artifact, I

Daniel Rudmark

 83

considered this stage’s ensemble as the release version37. When
making the transition into the release version, two articles included
the client organization’s management to wield resources and
authority to deploy a live version of the artifacts (Asatiani et al., 2020;
Giessmann & Legner, 2016). Another essential activity in this stage is
the reciprocal shaping of design knowledge into production-ready
artifacts, which can include aligning the culture code with the
organization’s visual identity (Asatiani et al., 2020) and modifying
app marketplaces to fit new business models (Giessmann & Legner,
2016)38. Notably, three of the reviewed projects that were ready for
real-world deployment had not yet been implemented in their
respective client systems (Ebel et al., 2016; Giesbrecht et al., 2017;
Mettler, 2017).

7.3.4 Maintenance Version
If ADR projects manage to refine artifacts from initial hypotheses to
deployed full-fledged solutions, understanding the continued
maintenance of released artifacts is of great interest for researchers
using an ensemble view of technology (Mullarkey & Hevner, 2019).
Since this artifact version is not explicitly defined within the ADR
literature, I am suggesting the term maintenance version to refer to
ADR artifacts that are put into work system use. In the analyzed
literature, four studies managed to deploy artifacts into their
respective work systems, while three conducted some form of follow-
up study (Asatiani et al., 2020; Giessmann & Legner, 2016; Gregor et
al., 2014).

To understand the ensemble trajectory after researchers exited the
cooperation, Gregor et al. (2014) and Asatiani et al. (2020) captured
the perspectives of users and practitioners through interviews.
Additionally, Gregor et al. (2014) complemented such perspectives by
collecting more structural evidence. This material included
observing the continued refinement of interventional artifacts (not
guided by researchers), performing an independent external

37 This terminology is consistent with later publications addressing ADR
projects leading to actual uses (Asatiani et al., 2020; Sein & Rossi, 2019).
38 Since the other two studies reporting on work system implementation
(Gregor et al. (2014); Hustad and Olsen (2014) did not follow the beta
release sequence, this type of release version modification was not evident.

Designing Platform Emulation

 82

are inscribed into the beta version by analyzing the signals from the
alpha version ensemble. Besides investigating a more refined artifact,
the BIE environment at this stage starts to transition from a pure
building system toward incorporating more facets from the work
system. In the reviewed articles, beta version environments involved
more “genuine” users and use situations (Asatiani et al., 2020; Ebel et
al., 2016; Giesbrecht et al., 2017; Giessmann & Legner, 2016; Gregor et
al., 2014; Mettler, 2017). However, all studied beta version target
environments come with authenticity constraints such as indicating
formative artifact status (Asatiani et al., 2020; Mettler, 2017), expert
(as a proxy for actual market/user) assessment of utility (Ebel et al.,
2016; Giessmann & Legner, 2016), impersonation of clients (rather
than interaction with real ones) (Giesbrecht et al., 2017), and/or only
deploying the solution to selected parts of the work system (Gregor
et al., 2014; Mettler, 2017).

7.3.3 Release version
Given the artifact’s continued molding into the work system, the
evaluation becomes less controlled, while the reflection and learning
phases gain potential access to a broader spectrum of ensemble
signals. However, most of the reviewed research relied on user
perceptions to assess the beta version’s utility (Asatiani et al., 2020;
Ebel et al., 2016; Giesbrecht et al., 2017; Giessmann & Legner, 2016;
Mettler, 2017). In addition to experiential cues such as user
perceptions, researchers may examine the actual results of artifact
use (Ebel et al., 2016). Signals may also be collected from actors that
can legitimize the release version’s deployment in the client
organization (Asatiani et al., 2020; Giessmann & Legner, 2016; Gregor
et al., 2014).

In the studied research, six out of seven artifacts were refined
through an explicit alpha and beta stage (Asatiani et al., 2020; Ebel et
al., 2016; Giesbrecht et al., 2017; Giessmann & Legner, 2016; Gregor et
al., 2014; Mettler, 2017). Out of these six, three eventually molded
their ensemble artifact into the work system (Asatiani et al., 2020;
Giessmann & Legner, 2016; Gregor et al., 2014). Since Sein et al. (2011)
only implicitly deals with a final live version of the artifact, I

Daniel Rudmark

 83

considered this stage’s ensemble as the release version37. When
making the transition into the release version, two articles included
the client organization’s management to wield resources and
authority to deploy a live version of the artifacts (Asatiani et al., 2020;
Giessmann & Legner, 2016). Another essential activity in this stage is
the reciprocal shaping of design knowledge into production-ready
artifacts, which can include aligning the culture code with the
organization’s visual identity (Asatiani et al., 2020) and modifying
app marketplaces to fit new business models (Giessmann & Legner,
2016)38. Notably, three of the reviewed projects that were ready for
real-world deployment had not yet been implemented in their
respective client systems (Ebel et al., 2016; Giesbrecht et al., 2017;
Mettler, 2017).

7.3.4 Maintenance Version
If ADR projects manage to refine artifacts from initial hypotheses to
deployed full-fledged solutions, understanding the continued
maintenance of released artifacts is of great interest for researchers
using an ensemble view of technology (Mullarkey & Hevner, 2019).
Since this artifact version is not explicitly defined within the ADR
literature, I am suggesting the term maintenance version to refer to
ADR artifacts that are put into work system use. In the analyzed
literature, four studies managed to deploy artifacts into their
respective work systems, while three conducted some form of follow-
up study (Asatiani et al., 2020; Giessmann & Legner, 2016; Gregor et
al., 2014).

To understand the ensemble trajectory after researchers exited the
cooperation, Gregor et al. (2014) and Asatiani et al. (2020) captured
the perspectives of users and practitioners through interviews.
Additionally, Gregor et al. (2014) complemented such perspectives by
collecting more structural evidence. This material included
observing the continued refinement of interventional artifacts (not
guided by researchers), performing an independent external

37 This terminology is consistent with later publications addressing ADR
projects leading to actual uses (Asatiani et al., 2020; Sein & Rossi, 2019).
38 Since the other two studies reporting on work system implementation
(Gregor et al. (2014); Hustad and Olsen (2014) did not follow the beta
release sequence, this type of release version modification was not evident.

Designing Platform Emulation

 84

maturity assessment regarding e-Government, and even altering
national budget priorities that could be traced to the ADR project.

7.3.5 Guided Emergence Revisited
ADR seeks to conduct interventions to design innovative artifacts
that resolve organizational problems. While working directly with
real-world problems has much potential, it also poses a dilemma for
ADR researchers: since innovation often requires profound
organizational change, the change must start in a relatively artificial
organizational environment (i.e., a building system). However, as
ADR draws on technology as structure, valid ADR research must also
reflect essential structures from the organization’s daily operations
(i.e., the work system). Therefore, under the ADR team’s supervision,
this type of research seeks to manage a gradual movement from the
building system toward the work system. This movement is at the
core of the guided emergence principle, which is a core tenet of ADR.
Unfortunately, as shown in the literature review earlier in this
chapter, this principle’s more specific content is largely overlooked
by existing research.

Based on both existing research and the ADR conducted in this
thesis, I argue that ADR researchers must acknowledge two principal
parts: the role of ADR phases and signal variance.

7.3.6 ADR Phases
In this section, I argue that ADR researchers need to be more
attentive to the roles of individual phases and the transitions
between them. While the phases themselves are partially explained
by Sein et al. (2011), the critical role that transitions play in an
artifact’s gradual movement into the work system (Lyytinen &
Newman, 2008) has yet to be articulated. In what follows, I offer a set
of recommendations to help ADR teams manage these transitions.

ADR is a research method that aims to resolve organizational
problems through artifact design. However, resolving prevalent
problems at sufficient depth typically requires that significant
resources are made available, trust among the involved parties is
established, and credible evidence supporting that a proposed
solution will indeed resolve the problematic situation at hand exists.
In early formative phases such as alpha version materialization, these

Daniel Rudmark

 85

necessary preconditions are seldom present. Thus, researchers must
design arenas that allow for theoretical ideas to be artificially
demonstrated and problem owners must make proportional resource
commitments.

Following the chronology of ADR, researchers start by framing a
problem in the work system for epistemological reasons (Iivari, 2015).
Once the most prominent structural misalignments have been
identified and appropriate remedying theories have been selected,
the BIE form (Sein et al., 2011, p. 43) can be appointed. As such, the
target environment for evaluation must be chosen. I argue that ADR
teams make a critical transition from the work system to the building
system. As such, ADR researchers should design the building system
evaluation context to resemble the essential traits of the “real”
ensemble (Kock, 2003; Lee, 2007). Here, the ADR team must
mindfully design the target building environment in a way that
allows for the problem’s cardinal structural contours to determine
the fitness of the artifact. In the reviewed research, ADR teams
typically took some (implicit) measures to accommodate this. For
instance, Giessmann and Legner (2016) illustrated the business
model through a canvas for current problems to surface, which
allowed for a detailed discussion regarding improvements.
Furthermore, Mettler (2017) exposed actual users to social network
mockups in the alpha version to detect essential tensions. In the
present research, we ensured that third-party developers were
present at the workshop evaluating the alpha version. This way, the
environmental structures became more evident, which represents a
crucial objective in the knowledge development process.

While an alpha version is tentative by nature, the ADR team’s goal
(i.e., to achieve the trifecta of ADR contributions) should be to
deploy the artifact into the work system. An essential aspect of this
transition is organizational actors’ involvement, which legitimizes
and sanctions this process. Hence, during alpha version
development, ADR teams should also consider involving actors that
can authorize release version implementations into the ensemble.
For example, Gregor et al. (2014) chose early intervention in target
environments containing influential officials, while Asatiani et al.
(2020) decided to run a series of workshops with the leadership team
during the early formative phases. In the present study, we chose to

Designing Platform Emulation

 84

maturity assessment regarding e-Government, and even altering
national budget priorities that could be traced to the ADR project.

7.3.5 Guided Emergence Revisited
ADR seeks to conduct interventions to design innovative artifacts
that resolve organizational problems. While working directly with
real-world problems has much potential, it also poses a dilemma for
ADR researchers: since innovation often requires profound
organizational change, the change must start in a relatively artificial
organizational environment (i.e., a building system). However, as
ADR draws on technology as structure, valid ADR research must also
reflect essential structures from the organization’s daily operations
(i.e., the work system). Therefore, under the ADR team’s supervision,
this type of research seeks to manage a gradual movement from the
building system toward the work system. This movement is at the
core of the guided emergence principle, which is a core tenet of ADR.
Unfortunately, as shown in the literature review earlier in this
chapter, this principle’s more specific content is largely overlooked
by existing research.

Based on both existing research and the ADR conducted in this
thesis, I argue that ADR researchers must acknowledge two principal
parts: the role of ADR phases and signal variance.

7.3.6 ADR Phases
In this section, I argue that ADR researchers need to be more
attentive to the roles of individual phases and the transitions
between them. While the phases themselves are partially explained
by Sein et al. (2011), the critical role that transitions play in an
artifact’s gradual movement into the work system (Lyytinen &
Newman, 2008) has yet to be articulated. In what follows, I offer a set
of recommendations to help ADR teams manage these transitions.

ADR is a research method that aims to resolve organizational
problems through artifact design. However, resolving prevalent
problems at sufficient depth typically requires that significant
resources are made available, trust among the involved parties is
established, and credible evidence supporting that a proposed
solution will indeed resolve the problematic situation at hand exists.
In early formative phases such as alpha version materialization, these

Daniel Rudmark

 85

necessary preconditions are seldom present. Thus, researchers must
design arenas that allow for theoretical ideas to be artificially
demonstrated and problem owners must make proportional resource
commitments.

Following the chronology of ADR, researchers start by framing a
problem in the work system for epistemological reasons (Iivari, 2015).
Once the most prominent structural misalignments have been
identified and appropriate remedying theories have been selected,
the BIE form (Sein et al., 2011, p. 43) can be appointed. As such, the
target environment for evaluation must be chosen. I argue that ADR
teams make a critical transition from the work system to the building
system. As such, ADR researchers should design the building system
evaluation context to resemble the essential traits of the “real”
ensemble (Kock, 2003; Lee, 2007). Here, the ADR team must
mindfully design the target building environment in a way that
allows for the problem’s cardinal structural contours to determine
the fitness of the artifact. In the reviewed research, ADR teams
typically took some (implicit) measures to accommodate this. For
instance, Giessmann and Legner (2016) illustrated the business
model through a canvas for current problems to surface, which
allowed for a detailed discussion regarding improvements.
Furthermore, Mettler (2017) exposed actual users to social network
mockups in the alpha version to detect essential tensions. In the
present research, we ensured that third-party developers were
present at the workshop evaluating the alpha version. This way, the
environmental structures became more evident, which represents a
crucial objective in the knowledge development process.

While an alpha version is tentative by nature, the ADR team’s goal
(i.e., to achieve the trifecta of ADR contributions) should be to
deploy the artifact into the work system. An essential aspect of this
transition is organizational actors’ involvement, which legitimizes
and sanctions this process. Hence, during alpha version
development, ADR teams should also consider involving actors that
can authorize release version implementations into the ensemble.
For example, Gregor et al. (2014) chose early intervention in target
environments containing influential officials, while Asatiani et al.
(2020) decided to run a series of workshops with the leadership team
during the early formative phases. In the present study, we chose to

Designing Platform Emulation

 86

include the Head of Passenger Information into our target
environment to increase knowledge and commitment to our
knowledge development venture.

If the alpha version demonstration is successful, an ADR project
enters the beta stage. I argue that the core of the beta version phase
involves materializing premises that facilitate authentic artifact
experimentation. To the greatest extent possible, researchers should
embrace and develop their artifacts based on the possibilities and
restrictions that authentic situations present.

Given the focus on increased authenticity, the beta version target
environment is fundamentally different since the alpha version
environment is contingent on having an ADR team design the most
important structural element in the alpha target environment.
However, the beta version target environment is mostly identical to
the work system. For instance, Ebel et al. (2016) offered a business
model development tool to expected users within the ERP system
manufacturer SAP SE. Moreover, Giesbrecht et al. (2017) offered their
service encounter thinklets to actual advisors for use in citizen
interactions. This way, the beta version environment offers a much
richer opportunity for ensemble artifact theorization. However,
being a beta version, the evaluation environment comes with
deliberate limitations to ensemble authenticity. Here, I argue that
ADR researchers should choose beta version constraints that allow
for the broadest spectrum of organizational structures to appear. To
this end, the business models produced in the beta phase of Ebel et
al. (2016) were subject to expert implementation (rather than being
put to use within the company). Additionally, the citizen interactions
that occurred in the beta phase of Giesbrecht et al. (2017) involved
citizens impersonating real issues. In this research, we wanted to use
the beta version to examine whether developers appropriated our
platform’s resources. Given this objective, it was instrumental to have
these developers invest a similar amount of time, energy, and
commitment into their work as they would if the platform were to be
sustained over time. To this end, we publicly launched the new APIs
into the Trafiklab.se platform with a time constraint that we assessed
as sufficiently distant for developers to consider constraining.

Daniel Rudmark

 87

If the beta version development results are sufficiently positive, an
ADR team approaches the release version phase. I argue that the core
of the release version phase is the implementation of design
knowledge into an artifact that can be used to deliver end-user utility
in a work system.

While this implementation step is not explicitly mentioned in Sein et
al. (2011), it has been vital to the theorization in two of the analyzed
research papers (Asatiani et al., 2020; Giessmann & Legner, 2016) as
well as this dissertation. This step is critical since ADR teams must
handle the realities that shape operational systems. For example,
Asatiani et al. (2020) had to refine their handbook with graphical
designers based on the organization's graphical profile to mold its
way into the work system. Similarly, the business models created by
Giessmann and Legner (2016) required the software vendor’s
application marketplace to be redesigned. In the present research,
moving from the beta to the release version implied a radically
different architectural implementation. Rather than having one
interface for coherent searches and another for flexible searches (as
per the beta version), the STA only wanted to support one interface
in their production system. This change was a requirement from STA
to enable continued platform use for their purposes. However, this
requirement meant that catering for coherent searches needed to
mutate. After lengthy discussions, we arrived at publishing the
common use cases as example code instead of the fixed endpoints (as
per the beta version). I argue that in this beta-to-release transition, it
was important for the ADR team to ensure the knowledge gained
during the alpha and beta versions was not “thrown out with the
bathwater,” but instead fortified in a possibly mutated form in the
release version. From a theorization standpoint, the ADR team now
has access to a broader spectrum of ensemble signals since the beta
version was deployed to a hybrid work system. These new signals
allow for new types of analysis regarding artifact utility and fit that
could not be addressed in earlier phases.

Even though a release version has been deployed to the work system,
this does not imply that a functioning ensemble has been established.
The materialization of a structural arrangement requires that the
artifact’s material properties be put into—and possibly reshaped
by—subsequent use. While researchers may have limited influence

Designing Platform Emulation

 86

include the Head of Passenger Information into our target
environment to increase knowledge and commitment to our
knowledge development venture.

If the alpha version demonstration is successful, an ADR project
enters the beta stage. I argue that the core of the beta version phase
involves materializing premises that facilitate authentic artifact
experimentation. To the greatest extent possible, researchers should
embrace and develop their artifacts based on the possibilities and
restrictions that authentic situations present.

Given the focus on increased authenticity, the beta version target
environment is fundamentally different since the alpha version
environment is contingent on having an ADR team design the most
important structural element in the alpha target environment.
However, the beta version target environment is mostly identical to
the work system. For instance, Ebel et al. (2016) offered a business
model development tool to expected users within the ERP system
manufacturer SAP SE. Moreover, Giesbrecht et al. (2017) offered their
service encounter thinklets to actual advisors for use in citizen
interactions. This way, the beta version environment offers a much
richer opportunity for ensemble artifact theorization. However,
being a beta version, the evaluation environment comes with
deliberate limitations to ensemble authenticity. Here, I argue that
ADR researchers should choose beta version constraints that allow
for the broadest spectrum of organizational structures to appear. To
this end, the business models produced in the beta phase of Ebel et
al. (2016) were subject to expert implementation (rather than being
put to use within the company). Additionally, the citizen interactions
that occurred in the beta phase of Giesbrecht et al. (2017) involved
citizens impersonating real issues. In this research, we wanted to use
the beta version to examine whether developers appropriated our
platform’s resources. Given this objective, it was instrumental to have
these developers invest a similar amount of time, energy, and
commitment into their work as they would if the platform were to be
sustained over time. To this end, we publicly launched the new APIs
into the Trafiklab.se platform with a time constraint that we assessed
as sufficiently distant for developers to consider constraining.

Daniel Rudmark

 87

If the beta version development results are sufficiently positive, an
ADR team approaches the release version phase. I argue that the core
of the release version phase is the implementation of design
knowledge into an artifact that can be used to deliver end-user utility
in a work system.

While this implementation step is not explicitly mentioned in Sein et
al. (2011), it has been vital to the theorization in two of the analyzed
research papers (Asatiani et al., 2020; Giessmann & Legner, 2016) as
well as this dissertation. This step is critical since ADR teams must
handle the realities that shape operational systems. For example,
Asatiani et al. (2020) had to refine their handbook with graphical
designers based on the organization's graphical profile to mold its
way into the work system. Similarly, the business models created by
Giessmann and Legner (2016) required the software vendor’s
application marketplace to be redesigned. In the present research,
moving from the beta to the release version implied a radically
different architectural implementation. Rather than having one
interface for coherent searches and another for flexible searches (as
per the beta version), the STA only wanted to support one interface
in their production system. This change was a requirement from STA
to enable continued platform use for their purposes. However, this
requirement meant that catering for coherent searches needed to
mutate. After lengthy discussions, we arrived at publishing the
common use cases as example code instead of the fixed endpoints (as
per the beta version). I argue that in this beta-to-release transition, it
was important for the ADR team to ensure the knowledge gained
during the alpha and beta versions was not “thrown out with the
bathwater,” but instead fortified in a possibly mutated form in the
release version. From a theorization standpoint, the ADR team now
has access to a broader spectrum of ensemble signals since the beta
version was deployed to a hybrid work system. These new signals
allow for new types of analysis regarding artifact utility and fit that
could not be addressed in earlier phases.

Even though a release version has been deployed to the work system,
this does not imply that a functioning ensemble has been established.
The materialization of a structural arrangement requires that the
artifact’s material properties be put into—and possibly reshaped
by—subsequent use. While researchers may have limited influence

Designing Platform Emulation

 88

over this continued post-release trajectory, it can have important
implications for the ensemble theorization.

As previously mentioned, this fourth and concluding step in ADR is
not explicitly defined within the existing ADR literature. However,
while this phase has not been treated explicitly, some of the
aforementioned empirical studies have conducted follow-up studies
to assess its impact, use patterns, and other ensemble characteristics.
In the present research, this fourth phase has been instrumental for
the resulting theorization. First, by following the actual uptake by
third-party developers, I concluded that self-resourcing as a practice
appeared to have come to an end. Second, the emulation established
by the ADR projects had persevered long after the ADR project had
finished. Finally, and perhaps most importantly, the emulated
platform had begun a different journey within the STA. Since the
capabilities sought by external third-party developers were also of
interest to internal developers within the STA, the platform started
to gain traction internally. Here, different projects consequently
mutated the open platform internally for other purposes to the point
that the STA appointed DataCache as the default integration engine
of the STA. This surprising turn allowed me to suggest that emulation
can be used also to harness external requirements for internal
purposes.

7.3.7 Signal Variance
The second process contribution concerns signals that are captured
when conducting ADR. These signals are critical since the reflection
and learning as prescribed by ADR are essentially fueled by the
signals that the ADR team capture during the preceding BIE cycle (or
possibly during the reflection and learning). In this research, I argue
that signal variance was crucial to guiding the artifact from the
problematic work system into a pure building system and then
gradually back into the work system again. Moreover, I argue that
signal types could be demarcated across the emic-etic dimension
(Barley, 1986; Brooks & Alam, 2015; Morris, Leung, Ames, & Lickel,
1999).

Signals subscribing to the emic perspective emphasize inside
perspectives and lived experiences from the ensemble under
scrutiny. Such signals may be captured in workshops, interviews,

Daniel Rudmark

 89

user diaries, or written comments. Conversely, signals subscribing to
the etic perspective focus on the environmental results of ensemble
interactions. Within ADR, signals in this vein could concern the
product of actual uses, the number of registered users, and the digital
traces of workarounds.

Within the reviewed research, there is a strong tendency to rely
entirely on emic signals (Asatiani et al., 2020; Giessmann & Legner,
2016; Hustad & Olsen, 2014; Mettler, 2017). Signals more strongly
connected to the etic perspective include video observations of user
interactions (Giesbrecht et al., 2017), careful external analysis of the
output of the ensemble artifact (i.e., business models) (Ebel et al.,
2016), and the external assessment of an ensemble after the
intervention (Gregor et al., 2014). However, the literature review did
not identify any deliberate combination of the two.

In the present research, several complementary emic and etic signals
helped transition the artifact into the work system.

1. In the alpha version problem formulation phase, the
emic signals highlighted a structural misalignment
between existing contractual routines at the STA and
developers’ preference for non-discriminatory access
openness. However, based on etic cues from SL and
Trafiklab (Rudmark et al., 2012), we could be
relatively comfortable in our assumption that
developer adoption would increase should more
open platform governance be employed.

2. In the beta version platform, we could operationalize
the need for coherent search capabilities that
developers expressed in interviews. We did this by
collecting the actual use cases supported by
smartphone apps and unsanctioned APIs.

Designing Platform Emulation

 88

over this continued post-release trajectory, it can have important
implications for the ensemble theorization.

As previously mentioned, this fourth and concluding step in ADR is
not explicitly defined within the existing ADR literature. However,
while this phase has not been treated explicitly, some of the
aforementioned empirical studies have conducted follow-up studies
to assess its impact, use patterns, and other ensemble characteristics.
In the present research, this fourth phase has been instrumental for
the resulting theorization. First, by following the actual uptake by
third-party developers, I concluded that self-resourcing as a practice
appeared to have come to an end. Second, the emulation established
by the ADR projects had persevered long after the ADR project had
finished. Finally, and perhaps most importantly, the emulated
platform had begun a different journey within the STA. Since the
capabilities sought by external third-party developers were also of
interest to internal developers within the STA, the platform started
to gain traction internally. Here, different projects consequently
mutated the open platform internally for other purposes to the point
that the STA appointed DataCache as the default integration engine
of the STA. This surprising turn allowed me to suggest that emulation
can be used also to harness external requirements for internal
purposes.

7.3.7 Signal Variance
The second process contribution concerns signals that are captured
when conducting ADR. These signals are critical since the reflection
and learning as prescribed by ADR are essentially fueled by the
signals that the ADR team capture during the preceding BIE cycle (or
possibly during the reflection and learning). In this research, I argue
that signal variance was crucial to guiding the artifact from the
problematic work system into a pure building system and then
gradually back into the work system again. Moreover, I argue that
signal types could be demarcated across the emic-etic dimension
(Barley, 1986; Brooks & Alam, 2015; Morris, Leung, Ames, & Lickel,
1999).

Signals subscribing to the emic perspective emphasize inside
perspectives and lived experiences from the ensemble under
scrutiny. Such signals may be captured in workshops, interviews,

Daniel Rudmark

 89

user diaries, or written comments. Conversely, signals subscribing to
the etic perspective focus on the environmental results of ensemble
interactions. Within ADR, signals in this vein could concern the
product of actual uses, the number of registered users, and the digital
traces of workarounds.

Within the reviewed research, there is a strong tendency to rely
entirely on emic signals (Asatiani et al., 2020; Giessmann & Legner,
2016; Hustad & Olsen, 2014; Mettler, 2017). Signals more strongly
connected to the etic perspective include video observations of user
interactions (Giesbrecht et al., 2017), careful external analysis of the
output of the ensemble artifact (i.e., business models) (Ebel et al.,
2016), and the external assessment of an ensemble after the
intervention (Gregor et al., 2014). However, the literature review did
not identify any deliberate combination of the two.

In the present research, several complementary emic and etic signals
helped transition the artifact into the work system.

1. In the alpha version problem formulation phase, the
emic signals highlighted a structural misalignment
between existing contractual routines at the STA and
developers’ preference for non-discriminatory access
openness. However, based on etic cues from SL and
Trafiklab (Rudmark et al., 2012), we could be
relatively comfortable in our assumption that
developer adoption would increase should more
open platform governance be employed.

2. In the beta version platform, we could operationalize
the need for coherent search capabilities that
developers expressed in interviews. We did this by
collecting the actual use cases supported by
smartphone apps and unsanctioned APIs.

Designing Platform Emulation

 90

3. When more experienced developers did not adopt
the beta version API despite earlier emic signals
pointing in this direction (“anything but HTML will
suffice”), we collected etic cues from SL by capturing
the data sources that were actually used some two
years after the launch of Trafiklab.se. We then
collected complementary emic signals to understand
why these unsanctioned resources were still used.

While the importance of emic and etic perspectives in ADR has
previously been highlighted by Brooks and Alam (2015), their
argument was made to define an elaborated version of ADR known
as action design ethnographic research (ADER). While such research
is applicable in many circumstances, I argue that the use of
complementary emic and etic signals in the context of guided
emergence is quite useful in any ADR venture.

7.3.8 Concluding thoughts
In Chapter 7.3, I have sought to provide reflections on guided
emergence based on the different ADR phases and the variance of
ensemble signals. Since ADR draws on technology as structure
(Orlikowski & Iacono, 2001), the mindful assessment of ensemble
cues and their relationships to surrounding structures is at the heart
of any ADR endeavor.

At one end of this continuum, an ADR project may be classified as a
pure building system. By this, I refer to an intervention that is
performed in a researcher-practitioner collaboration where the BIE
is conducted in a temporal, artificial ensemble, outside the daily
operations, and never infused into the work system. As a result,
important in situ experimentation opportunities that were nearly
impossible to achieve within the work system can open up. On the
other hand, the building system may lack the necessary structures
from the work system due to the building system’s deliberately
external placement.

At the other end of this continuum, an ensemble artifact may be
classified as an institutionalized work system. By this, I refer to the
ensemble as being equivalent to the clinical setting in which the
artifact is intended to work. Thus, the end of the continuum reflects

Daniel Rudmark

 91

the full range of ecological factors that must be inscribed for the
ensemble artifact to function and solve the problem at hand. Since
work systems are inherently difficult to modify, many ADR ventures
will never be fully infused into a work system. Moreover, those that
do eventually succeed will need to be able to gradually transform the
ensemble from a building system to a work system. In the wake of
such a truly authentic ensemble, researchers have suitable
opportunities to both note and theorize anticipated and
unanticipated behaviors.

I posit that such awareness is an essential trait of guided emergence
since it will determine the types of traces that the surrounding
ecology can inscribe into the ensemble artifact. This way, building
system ensembles can only resemble the ecological factors that ADR
teams included. Consequently, they may lack the structural traces of
elements left out of such ensembles. While this mode of research
holds potential for truly innovative and disruptive research,
researchers must recognize the artificial nature of ensembles
(although clinical) in their reflections and learning.

Consequently, I argue that work system ensembles will allow for
more solid theorizing due to their full-fledged authenticity. Once an
ensemble artifact is deployed into a truly authentic setting, new
unforeseen use trajectories may open up (as per the internal
integration of self-resourcing at the STA). Consequently, ADR
theorizing efforts are strengthened by the type of traces that work
system implementations provide.

7.4 Limitations and Future Research Opportunities
As with any research, this thesis comes with limitations. The first
limitation, concerns that this research has been conducted within a
single setting (albeit with more than one organization). As such, the
principles presented in thesis should not uncritically be transferred
to another setting before their mutability has been proven in other
settings, or their scope has been more properly defined (Gregor &
Jones, 2007).

To clarify this with an example, currently (May 2021), within the
Swedish context, there is a publicly discussed case of outlaw

Designing Platform Emulation

 90

3. When more experienced developers did not adopt
the beta version API despite earlier emic signals
pointing in this direction (“anything but HTML will
suffice”), we collected etic cues from SL by capturing
the data sources that were actually used some two
years after the launch of Trafiklab.se. We then
collected complementary emic signals to understand
why these unsanctioned resources were still used.

While the importance of emic and etic perspectives in ADR has
previously been highlighted by Brooks and Alam (2015), their
argument was made to define an elaborated version of ADR known
as action design ethnographic research (ADER). While such research
is applicable in many circumstances, I argue that the use of
complementary emic and etic signals in the context of guided
emergence is quite useful in any ADR venture.

7.3.8 Concluding thoughts
In Chapter 7.3, I have sought to provide reflections on guided
emergence based on the different ADR phases and the variance of
ensemble signals. Since ADR draws on technology as structure
(Orlikowski & Iacono, 2001), the mindful assessment of ensemble
cues and their relationships to surrounding structures is at the heart
of any ADR endeavor.

At one end of this continuum, an ADR project may be classified as a
pure building system. By this, I refer to an intervention that is
performed in a researcher-practitioner collaboration where the BIE
is conducted in a temporal, artificial ensemble, outside the daily
operations, and never infused into the work system. As a result,
important in situ experimentation opportunities that were nearly
impossible to achieve within the work system can open up. On the
other hand, the building system may lack the necessary structures
from the work system due to the building system’s deliberately
external placement.

At the other end of this continuum, an ensemble artifact may be
classified as an institutionalized work system. By this, I refer to the
ensemble as being equivalent to the clinical setting in which the
artifact is intended to work. Thus, the end of the continuum reflects

Daniel Rudmark

 91

the full range of ecological factors that must be inscribed for the
ensemble artifact to function and solve the problem at hand. Since
work systems are inherently difficult to modify, many ADR ventures
will never be fully infused into a work system. Moreover, those that
do eventually succeed will need to be able to gradually transform the
ensemble from a building system to a work system. In the wake of
such a truly authentic ensemble, researchers have suitable
opportunities to both note and theorize anticipated and
unanticipated behaviors.

I posit that such awareness is an essential trait of guided emergence
since it will determine the types of traces that the surrounding
ecology can inscribe into the ensemble artifact. This way, building
system ensembles can only resemble the ecological factors that ADR
teams included. Consequently, they may lack the structural traces of
elements left out of such ensembles. While this mode of research
holds potential for truly innovative and disruptive research,
researchers must recognize the artificial nature of ensembles
(although clinical) in their reflections and learning.

Consequently, I argue that work system ensembles will allow for
more solid theorizing due to their full-fledged authenticity. Once an
ensemble artifact is deployed into a truly authentic setting, new
unforeseen use trajectories may open up (as per the internal
integration of self-resourcing at the STA). Consequently, ADR
theorizing efforts are strengthened by the type of traces that work
system implementations provide.

7.4 Limitations and Future Research Opportunities
As with any research, this thesis comes with limitations. The first
limitation, concerns that this research has been conducted within a
single setting (albeit with more than one organization). As such, the
principles presented in thesis should not uncritically be transferred
to another setting before their mutability has been proven in other
settings, or their scope has been more properly defined (Gregor &
Jones, 2007).

To clarify this with an example, currently (May 2021), within the
Swedish context, there is a publicly discussed case of outlaw

Designing Platform Emulation

 92

innovation occurring on top of the City of Stockholm’s systems. This
example concerns a digital school platform where parents, students,
and teachers e.g., can interact and record study progress. Due to a
perceived lack of usability, external developers have reverse-
engineered the platform’s internal APIs and built new end-user
applications with a presumably more delightful user experience39,
using these unsanctioned interfaces. This action has prompted the
City of Stockholm to first investigate40 and later litigate the outlaw
innovators. The city has chosen to engage in an attack response as
they consider this product hacking an infringement on the city’s data
policies. Should the city reconsider this position and opt for the
influencing response, perhaps even using an open platform, this
could constitute an opportunity for testing the viability of these
principles.

However, this context also differs in terms of ecological factors that
may influence the ensemble design. For instance, the response from
Stockholm city was exercised prior to outlaw innovations reached
any substantial user base penetration. Consequently, since use
patterns still is in a formative phase, what constitutes stable use cases
with reuse potential may at the current time be difficult to
determine. Second, given the attack response by the city, there is
currently a high degree of conflict between the city and the outlaw
innovators being portrayed in media. As such, the starting point from
a relational standpoint might be different compared to the empirical
setting in this research, and thus influence the process aspects of
emulation.

Another important limitation and opportunity for future research,
concerns elaborating more on the design principles in Chapter 6. To
further develop these principles into a design theory following the
recommendation per Walls and associates (Walls et al., 1992, 2004),
further work is necessary on establishing formal meta requirements
alongside supporting kernel theories for the process principles.

39 See https://skolplattformen.org/ (In Swedish)
40 https://start.stockholm/globalassets/start/forskola-och-
skola/skolplattformen/pm---rattsutredning-oppna-skolplattformen-2021-
04-14-final.pdf (In Swedish)

Daniel Rudmark

 93

Moreover, more research to understand the intricate details of what
constitutes a flexible search is called for. Currently, my principles for
the beta version, suggests conducting evaluation authentically to
untangle the more precise meaning of flexible searches in a given
context. More research, and possibly additional sub-principles
(Gregor et al., 2020), may prove such a stage in the beta version
development obsolete.

Designing Platform Emulation

 92

innovation occurring on top of the City of Stockholm’s systems. This
example concerns a digital school platform where parents, students,
and teachers e.g., can interact and record study progress. Due to a
perceived lack of usability, external developers have reverse-
engineered the platform’s internal APIs and built new end-user
applications with a presumably more delightful user experience39,
using these unsanctioned interfaces. This action has prompted the
City of Stockholm to first investigate40 and later litigate the outlaw
innovators. The city has chosen to engage in an attack response as
they consider this product hacking an infringement on the city’s data
policies. Should the city reconsider this position and opt for the
influencing response, perhaps even using an open platform, this
could constitute an opportunity for testing the viability of these
principles.

However, this context also differs in terms of ecological factors that
may influence the ensemble design. For instance, the response from
Stockholm city was exercised prior to outlaw innovations reached
any substantial user base penetration. Consequently, since use
patterns still is in a formative phase, what constitutes stable use cases
with reuse potential may at the current time be difficult to
determine. Second, given the attack response by the city, there is
currently a high degree of conflict between the city and the outlaw
innovators being portrayed in media. As such, the starting point from
a relational standpoint might be different compared to the empirical
setting in this research, and thus influence the process aspects of
emulation.

Another important limitation and opportunity for future research,
concerns elaborating more on the design principles in Chapter 6. To
further develop these principles into a design theory following the
recommendation per Walls and associates (Walls et al., 1992, 2004),
further work is necessary on establishing formal meta requirements
alongside supporting kernel theories for the process principles.

39 See https://skolplattformen.org/ (In Swedish)
40 https://start.stockholm/globalassets/start/forskola-och-
skola/skolplattformen/pm---rattsutredning-oppna-skolplattformen-2021-
04-14-final.pdf (In Swedish)

Daniel Rudmark

 93

Moreover, more research to understand the intricate details of what
constitutes a flexible search is called for. Currently, my principles for
the beta version, suggests conducting evaluation authentically to
untangle the more precise meaning of flexible searches in a given
context. More research, and possibly additional sub-principles
(Gregor et al., 2020), may prove such a stage in the beta version
development obsolete.

D
es

ig
ni

ng
 P

la
tf

or
m

 E
m

ul
at

io
n

 94

A
rt

ic
le

En

se
m

bl
e

ar
ti

fa
ct

Ex

pl
ic

it
 u

se

of
 G

ui
de

d
Em

er
ge

n
ce

En
se

m
bl

e
si

gn
al

s
gu

id
in

g
tr

an
si

ti
on

s
D

ep
lo

ye
d

re
le

as
e

ve
rs

io
n

 a
n

d
fo

ll
ow

ed
-u

p
st

ud
y

Pr
ob

le
m

 t
o

A
lp

ha
 v

er
si

on

A
lp

ha
 t

o
Be

ta
 v

er
si

on

Be
ta

 t
o

re
le

as
e

ve
rs

io
n

A
sa

ti
an

i e
t a

l.
(2

02
0)

O

rg
an

iz
at

io
na

l
cu

lt
ur

e
ha

nd
bo

ok

N
o

- W

or
ks

ho
ps

- I

nt
er

vi
ew

s
w

it
h

th
e

cl
ie

nt

- O
pe

n
gr

ou
p

di
sc

us
si

on
s

- A

no
ny

m
ou

s
w

ri
tt

en

fe
ed

ba
ck

- A
no

ny
m

ou
s

w
ri

tt
en

 fe
ed

ba
ck

- A

cc
ep

ta
nc

e
fr

om
 le

ad
er

sh
ip

te

am

D
ep

lo
ye

d
ve

rs
io

n,

fo
llo

w
-u

p
st

ud
y

co
nd

uc
te

d

Eb
el

 e
t a

l.
(2

01
6)

Bu

si
ne

ss
 m

od
el

de

ve
lo

pm
en

t t
oo

l
N

o

- R
ev

ie
w

in
g

cl
ie

nt
 p

ro
du

ct

po
rt

fo
lio

s

- I
nt

er
vi

ew
s

w
it

h
ex

te
rn

al
 d

om
ai

n
ex

pe
rt

s

- Q
ue

st
io

nn
ai

re
s

fr
om

te

st
er

s
- U

se
r-

ge
ne

ra
te

d
bu

si
ne

ss

m
od

el
s

ra
te

d
by

 r
es

ea
rc

he
rs

an

d
ex

te
rn

al
 e

xp
er

ts

N
o

de
pl

oy
ed

 v
er

si
on

(d

ep
lo

ym
en

t
in

it
ia

te
d)

G
ie

sb
re

ch
t e

t a
l.

(2
01

7)

Se
rv

ic
e

En
co

un
te

r
Th

in
kl

et
s

N
o

- O

bs
er

va
ti

on
s

of
 s

er
vi

ce

en
co

un
te

rs
 c

lie
nt

 o
rg

an
iz

at
io

n
- E

va
lu

at
io

ns
 w

it
h

en
d-

us
er

s

- w
or

ks
ho

ps
 w

it
h

A
D

R
te

am

- V
id

eo
 o

bs
er

va
ti

on
s

of

si
m

ul
at

ed
 e

nc
ou

nt
er

s
- U

se
r

Q
ue

st
io

nn
ai

re
s/

In

te
rv

ie
w

s

N
o

de
pl

oy
ed

 v
er

si
on

G
ie

ss
m

an
n

an
d

Le
gn

er
 (2

01
6)

Pa

aS
 B

us
in

es
s

M
od

el
s

N

o

- E
xp

lic
at

in
g

cu
rr

en
t b

us
in

es
s

m
od

el

- A
na

ly
si

s
of

 c
om

pe
ti

to
r

bu
si

ne
ss

m

od
el

s

- W
or

ks
ho

ps
 w

it
h

A
D

R
te

am

- Q
ua

lit
at

iv
e

an
d

qu
an

ti
ta

ti
ve

as

se
ss

m
en

t b
y

cl
ie

nt
 b

us
in

es
s

m
od

el
s

le
ad

er
sh

ip
 r

ol
es

D
ep

lo
ye

d
ve

rs
io

n,

fo
llo

w
-u

p
st

ud
y

co
nd

uc
te

d

G
re

go
r

et
 a

l.
(2

01
4)

Sw

ee
t s

po
t c

ha
ng

e
st

ra
te

gy
 e

-
go

ve
rn

m
en

t i
n

le
as

t
de

ve
lo

pe
d

co
un

tr
ie

s

Ye
s

- F
oc

us
 g

ro
up

s
w

it
h

cl
ie

nt

or
ga

ni
za

ti
on

s

- I
nt

er
vi

ew
s

w
it

h
ex

te
rn

al

st
ak

eh
ol

de
rs

- R
ou

nd
ta

bl
e

di
sc

us
si

on
s

w
it

h
ex

te
rn

al
 s

ta
ke

ho
ld

er
s

an
d

co
ur

se

pa
rt

ic
ip

an
t f

ee
db

ac
k

D
ep

lo
ye

d
ve

rs
io

n,

fo
llo

w
-u

p
st

ud
y

co
nd

uc
te

d

H
us

ta
d

an
d

O
ls

en

(2
01

4)

Te
ac

hi
ng

 fr
am

ew
or

k
En

te
rp

ri
se

 S
ys

te
m

s
fo

r
IS

 g
ra

du
at

es

N
o

- S

tu
de

nt
 c

ou
rs

e
ev

al
ua

ti
on

s
an

d
le

ar
ni

ng
 o

ut
co

m
es

 w
er

e
us

ed
 d

ur
in

g
th

e
en

ti
re

 s
tu

dy
 a

s
th

e
te

ac
hi

ng

fr
am

ew
or

k
w

as
 b

ei
ng

 s
ub

je
ct

ed
 to

 th
re

e
re

vi
si

on
s.

 A
ll

re
vi

si
on

s
w

er
e

m
ad

e
di

re
ct

ly
 to

 th
e

w
or

k
sy

st
em

.

D
ep

lo
ye

d
ve

rs
io

n,
 n

o
fo

llo
w

-u
p

st
ud

y
co

nd
uc

te
d

 95

A
rt

ic
le

En

se
m

bl
e

ar
ti

fa
ct

Ex

pl
ic

it
 u

se

of
 G

ui
de

d
Em

er
ge

n
ce

En
se

m
bl

e
si

gn
al

s
gu

id
in

g
tr

an
si

ti
on

s
D

ep
lo

ye
d

re
le

as
e

ve
rs

io
n

 a
n

d
fo

ll
ow

ed
-u

p
st

ud
y

Pr
ob

le
m

 t
o

A
lp

ha
 v

er
si

on

A
lp

ha
 t

o
Be

ta
 v

er
si

on

Be
ta

 t
o

re
le

as
e

ve
rs

io
n

M
et

tl
er

 (2
01

7)

Pr
of

es
si

on
al

 s
oc

ia
l

ne
tw

or
ks

N

o

- I
nt

er
vi

ew
s

w
it

h
re

le
va

nt

pr
of

es
si

on
al

s
- U

se
r

fe
ed

ba
ck

 o
n

m
oc

ku
p

sc
re

en
s

- F
oc

us
 g

ro
up

 fe
ed

ba
ck

 o
n

be
ta

- I

nt
er

vi
ew

 fe
ed

ba
ck

 o
n

be
ta

N

o
de

pl
oy

ed
 v

er
si

on

Ta
bl

e
14

 –
 T

ra
ns

iti
on

s
fr

om
 b

ui
ld

in
g

to
 w

or
k

sy
st

em
s

in
 e

xt
an

t
A

D
R

Re
se

ar
ch

, p
ub

lis
he

d
in

 A
IS

 S
en

io
r

Sc
ho

la
rs

'
Ba

sk
et

 o
f J

ou
rn

al
s

Designing Platform Emulation

 40

The interventional design in this research was conducted between

January 2010 and August 2014, with two full ADR cycles occurring

between May 2012 and August 2014. The overarching objective was to

design an open digital platform by emulating unsanctioned

development and increase the STAs pool of potential innovators. An

overview of these cycles and the concluding product design

principles
22

 can be found in Table 9
23

.

22 In chapter 6, the product (and process) principles are elaborated.
23 While paper 5 includes the design interventions, the outlet space
requirement did not allow for the full empirical narrative and supporting
evidence. To this end, this narrative can be found in Appendix G.

4 GUIDED EMERGENCE

Daniel Rudmark

 39

EMPIRICAL DATA N LENGTH

Analyzed third-
party applications
using STA data

35 (gross)
28 (net)

n/a

Emails third-party
developers on data
source

4 Tot words: 1587

Interview third-
party developers on
data source

2 Tot mins: 32

Workshops with the
Swedish Public
Transport Industry

6 Tot mins: 1800

Interviews with key
STA personnel

4 Tot mins: 374
Tot words: 55787

Platform changelog
entries

19 Tot words: 281

Usage statistics
spreadsheet

1 Number of API calls between
2015 and 2020, separated on
internal and external calls

Table 8- Empirical material related to the maintenance version
(September 2014-April 2021)

While this chapter has outlined the overall structure of this research,

it was not merely a series of data collection and analysis

opportunities. Instead, it was a process that contained an intricate

interplay between deliberate guidance from myself and my fellow

ADR team members and emergent environment results. I expand on

this process in the following chapter.

Designing Platform Emulation

 94

Article Ensemble artifact Explicit use
of Guided
Emergence

Ensemble signals guiding transitions Deployed release
version and
followed-up study

Problem to Alpha version Alpha to Beta version Beta to release version

Asatiani et al.
(2020)

Organizational
culture handbook

No - Workshops
- Interviews with the client

- Open group discussions
- Anonymous written
feedback

- Anonymous written feedback
- Acceptance from leadership
team

Deployed version,
follow-up study
conducted

Ebel et al. (2016) Business model
development tool

No - Reviewing client product
portfolios
- Interviews with external domain
experts

- Questionnaires from
testers

- User-generated business
models rated by researchers
and external experts

No deployed version
(deployment
initiated)

Giesbrecht et al.
(2017)

Service Encounter
Thinklets

No - Observations of service
encounters client organization

- Evaluations with end-users
- workshops with ADR team

- Video observations of
simulated encounters
- User Questionnaires/
Interviews

No deployed version

Giessmann and
Legner (2016)

PaaS Business
Models

No - Explicating current business
model
- Analysis of competitor business
models

- Workshops with ADR team - Qualitative and quantitative
assessment by client business
models leadership roles

Deployed version,
follow-up study
conducted

Gregor et al.
(2014)

Sweet spot change
strategy e-
government in least
developed countries

Yes - Focus groups with client
organizations
- Interviews with external
stakeholders

- Roundtable discussions with external stakeholders and course
participant feedback

Deployed version,
follow-up study
conducted

Hustad and Olsen
(2014)

Teaching framework
Enterprise Systems
for IS graduates

No - Student course evaluations and learning outcomes were used during the entire study as the teaching
framework was being subjected to three revisions. All revisions were made directly to the work
system.

Deployed version, no
follow-up study
conducted

 95

A
rt

ic
le

En

se
m

bl
e

ar
ti

fa
ct

Ex

pl
ic

it
 u

se

of
 G

ui
de

d
Em

er
ge

n
ce

En
se

m
bl

e
si

gn
al

s
gu

id
in

g
tr

an
si

ti
on

s
D

ep
lo

ye
d

re
le

as
e

ve
rs

io
n

 a
n

d
fo

ll
ow

ed
-u

p
st

ud
y

Pr
ob

le
m

 t
o

A
lp

ha
 v

er
si

on

A
lp

ha
 t

o
Be

ta
 v

er
si

on

Be
ta

 t
o

re
le

as
e

ve
rs

io
n

M
et

tl
er

 (2
01

7)

Pr
of

es
si

on
al

 s
oc

ia
l

ne
tw

or
ks

N

o

- I
nt

er
vi

ew
s

w
it

h
re

le
va

nt

pr
of

es
si

on
al

s
- U

se
r

fe
ed

ba
ck

 o
n

m
oc

ku
p

sc
re

en
s

- F
oc

us
 g

ro
up

 fe
ed

ba
ck

 o
n

be
ta

- I

nt
er

vi
ew

 fe
ed

ba
ck

 o
n

be
ta

N

o
de

pl
oy

ed
 v

er
si

on

Ta
bl

e
14

 –
 T

ra
ns

iti
on

s
fr

om
 b

ui
ld

in
g

to
 w

or
k

sy
st

em
s

in
 e

xt
an

t
A

D
R

Re
se

ar
ch

, p
ub

lis
he

d
in

 A
IS

 S
en

io
r

Sc
ho

la
rs

'
Ba

sk
et

 o
f J

ou
rn

al
s

Designing Platform Emulation

 40

The interventional design in this research was conducted between

January 2010 and August 2014, with two full ADR cycles occurring

between May 2012 and August 2014. The overarching objective was to

design an open digital platform by emulating unsanctioned

development and increase the STAs pool of potential innovators. An

overview of these cycles and the concluding product design

principles
22

 can be found in Table 9
23

.

22 In chapter 6, the product (and process) principles are elaborated.
23 While paper 5 includes the design interventions, the outlet space
requirement did not allow for the full empirical narrative and supporting
evidence. To this end, this narrative can be found in Appendix G.

4 GUIDED EMERGENCE

Daniel Rudmark

 39

EMPIRICAL DATA N LENGTH

Analyzed third-
party applications
using STA data

35 (gross)
28 (net)

n/a

Emails third-party
developers on data
source

4 Tot words: 1587

Interview third-
party developers on
data source

2 Tot mins: 32

Workshops with the
Swedish Public
Transport Industry

6 Tot mins: 1800

Interviews with key
STA personnel

4 Tot mins: 374
Tot words: 55787

Platform changelog
entries

19 Tot words: 281

Usage statistics
spreadsheet

1 Number of API calls between
2015 and 2020, separated on
internal and external calls

Table 8- Empirical material related to the maintenance version
(September 2014-April 2021)

While this chapter has outlined the overall structure of this research,

it was not merely a series of data collection and analysis

opportunities. Instead, it was a process that contained an intricate

interplay between deliberate guidance from myself and my fellow

ADR team members and emergent environment results. I expand on

this process in the following chapter.

 95

Article Ensemble artifact Explicit use
of Guided
Emergence

Ensemble signals guiding transitions Deployed release
version and
followed-up study

Problem to Alpha version Alpha to Beta version Beta to release version

Mettler (2017) Professional social
networks

No - Interviews with relevant
professionals

- User feedback on mockup
screens

- Focus group feedback on beta
- Interview feedback on beta

No deployed version

Table 14 – Transitions from building to work systems in extant ADR Research, published in AIS Senior Scholars'
Basket of Journals

Designing Platform Emulation

 96

Arnestrand, E., Lundh, A., Rudmark, D., & Östlund, H. (2017).
Kraftsamling Öppna Trafikdata - en målbild för Sverige.
Samtrafiken. Retrieved from https://samtrafiken.se/wp-
content/uploads/2017/04/Slutrapport-_-Kraftsamling-
%C3%96ppna-Trafikdata-en-m%C3%A5lbild-f%C3%B6r-
Sverige-v-1.0-_-Diarienummer-Vinnova-2016-03467.pdf

Asatiani, A., Hämäläinen, J., Penttinen, E., & Rossi, M. (2020).
Constructing Continuity Across the Organisational Culture
Boundary in a Highly Virtual Work Environment. Information
Systems Journal, 31, 62 - 93. doi:10.1111/isj.12293

Baldwin, C., & Clark, K. (2000). Design Rules. Cambridge, MA: MIT
Press.

Baldwin, C., & Woodard, J. (2009). The architecture of platforms: a
unified view. In A. Gawer (Ed.), Platforms, Markets and
Innovation (pp. 19-44). Cheltenham, UK: Edward Elgar
Publishing.

Barley, S. (1986). Technology as an Occasion for Structuring: Evidence
from Observations of CT Scanners and the Social Order of
Radiology Departments. Administrative science quarterly,
31(1), 78-108. doi:10.2307/2392767

Barrett, M., & Holeman, I. (2017). Insights from an ICT4D Initiative in
Kenya’s Immunization Program: Designing for the Emergence
of Sociomaterial Practices. Journal of the Association for
Information Systems, 18(12), 900-930. doi:10.17705/1jais.00476

Bonina, C., & Eaton, B. (2020). Cultivating Open Government Data
Platform Ecosystems Through Governance: Lessons From
Buenos Aires, Mexico City and Montevideo. Government
Information Quarterly, 37(3), 101479.
doi:https://doi.org/10.1016/j.giq.2020.101479

Boudreau, K. (2010). Open Platform Strategies and Innovation:
Granting Access vs. Devolving Control. Management Science,
56, 1849-1872. doi:10.1287/mnsc.1100.1215

REFERENCES

 97

Boudreau, K., & Lakhani, K. (2009). How to Manage Outside
Innovation. MIT Sloan Management Review, 50(4), 69-75.

Braun, V., & Herstatt, C. (2008). The Freedom-Fighters: How
Incumbent Corporations are Attempting to Control User-
Innovation. International Journal of Innovation Management,
12(03), 543-572. doi:10.1142/S1363919608002059

Brooks, L., & Alam, M. S. (2015). Designing an Information System for
Updating Land Records in Bangladesh: Action Design
Ethnographic Research (ADER). Information Systems
Frontiers, 17(1), 79-93. doi:10.1007/s10796-014-9512-7

Brunswicker, S., & Schecter, A. (2019). Coherence or Flexibility? The
Paradox of Change for Developers’ Digital Innovation
Trajectory on Open Platforms. Research Policy, 48(8), 103771.
doi:https://doi.org/10.1016/j.respol.2019.03.016

Cennamo, C., Ozalp, H., & Kretschmer, T. (2018). Platform
Architecture and Quality Trade-offs of Multihoming
Complements. Information Systems Research, 29(2), 461-478.
doi:10.1287/isre.2018.0779

Coff, R., Coff, D., & Eastvold, R. (2006). The Knowledge-Leveraging
Paradox: How to Achieve Scale without Making Knowledge
Imitable. Academy of Management Review, 31(2), 452-465.
doi:10.5465/amr.2006.20208690

Dattée, B., Alexy, O., & Autio, E. (2018). Maneuvering in Poor
Visibility: How Firms Play the Ecosystem Game when
Uncertainty is High. Academy of Management Journal, 61(2),
466-498. doi:10.5465/amj.2015.0869

de Reuver, M., Sørensen, C., & Basole, R. (2018). The Digital Platform:
A Research Agenda. Journal of Information Technology, 33(2),
124-135. doi:10.1057/s41265-016-0033-3

DiMaggio, P., & Powell, W. (1983). The Iron Cage Revisited:
Institutional Isomorphism and Collective Rationality in
Organizational Fields. American Sociological Review, 48(2),
147-160. doi:10.2307/2095101

Eaton, B., Elaluf-Calderwood, S., Sørensen, C., & Yoo, Y. (2015).
Distributed Tuning of Boundary Resources - The Case of
Apple’s iOS Service System. MIS Quarterly, 39(1), 217-244.

Designing Platform Emulation

 96

Arnestrand, E., Lundh, A., Rudmark, D., & Östlund, H. (2017).
Kraftsamling Öppna Trafikdata - en målbild för Sverige.
Samtrafiken. Retrieved from https://samtrafiken.se/wp-
content/uploads/2017/04/Slutrapport-_-Kraftsamling-
%C3%96ppna-Trafikdata-en-m%C3%A5lbild-f%C3%B6r-
Sverige-v-1.0-_-Diarienummer-Vinnova-2016-03467.pdf

Asatiani, A., Hämäläinen, J., Penttinen, E., & Rossi, M. (2020).
Constructing Continuity Across the Organisational Culture
Boundary in a Highly Virtual Work Environment. Information
Systems Journal, 31, 62 - 93. doi:10.1111/isj.12293

Baldwin, C., & Clark, K. (2000). Design Rules. Cambridge, MA: MIT
Press.

Baldwin, C., & Woodard, J. (2009). The architecture of platforms: a
unified view. In A. Gawer (Ed.), Platforms, Markets and
Innovation (pp. 19-44). Cheltenham, UK: Edward Elgar
Publishing.

Barley, S. (1986). Technology as an Occasion for Structuring: Evidence
from Observations of CT Scanners and the Social Order of
Radiology Departments. Administrative science quarterly,
31(1), 78-108. doi:10.2307/2392767

Barrett, M., & Holeman, I. (2017). Insights from an ICT4D Initiative in
Kenya’s Immunization Program: Designing for the Emergence
of Sociomaterial Practices. Journal of the Association for
Information Systems, 18(12), 900-930. doi:10.17705/1jais.00476

Bonina, C., & Eaton, B. (2020). Cultivating Open Government Data
Platform Ecosystems Through Governance: Lessons From
Buenos Aires, Mexico City and Montevideo. Government
Information Quarterly, 37(3), 101479.
doi:https://doi.org/10.1016/j.giq.2020.101479

Boudreau, K. (2010). Open Platform Strategies and Innovation:
Granting Access vs. Devolving Control. Management Science,
56, 1849-1872. doi:10.1287/mnsc.1100.1215

REFERENCES

 97

Boudreau, K., & Lakhani, K. (2009). How to Manage Outside
Innovation. MIT Sloan Management Review, 50(4), 69-75.

Braun, V., & Herstatt, C. (2008). The Freedom-Fighters: How
Incumbent Corporations are Attempting to Control User-
Innovation. International Journal of Innovation Management,
12(03), 543-572. doi:10.1142/S1363919608002059

Brooks, L., & Alam, M. S. (2015). Designing an Information System for
Updating Land Records in Bangladesh: Action Design
Ethnographic Research (ADER). Information Systems
Frontiers, 17(1), 79-93. doi:10.1007/s10796-014-9512-7

Brunswicker, S., & Schecter, A. (2019). Coherence or Flexibility? The
Paradox of Change for Developers’ Digital Innovation
Trajectory on Open Platforms. Research Policy, 48(8), 103771.
doi:https://doi.org/10.1016/j.respol.2019.03.016

Cennamo, C., Ozalp, H., & Kretschmer, T. (2018). Platform
Architecture and Quality Trade-offs of Multihoming
Complements. Information Systems Research, 29(2), 461-478.
doi:10.1287/isre.2018.0779

Coff, R., Coff, D., & Eastvold, R. (2006). The Knowledge-Leveraging
Paradox: How to Achieve Scale without Making Knowledge
Imitable. Academy of Management Review, 31(2), 452-465.
doi:10.5465/amr.2006.20208690

Dattée, B., Alexy, O., & Autio, E. (2018). Maneuvering in Poor
Visibility: How Firms Play the Ecosystem Game when
Uncertainty is High. Academy of Management Journal, 61(2),
466-498. doi:10.5465/amj.2015.0869

de Reuver, M., Sørensen, C., & Basole, R. (2018). The Digital Platform:
A Research Agenda. Journal of Information Technology, 33(2),
124-135. doi:10.1057/s41265-016-0033-3

DiMaggio, P., & Powell, W. (1983). The Iron Cage Revisited:
Institutional Isomorphism and Collective Rationality in
Organizational Fields. American Sociological Review, 48(2),
147-160. doi:10.2307/2095101

Eaton, B., Elaluf-Calderwood, S., Sørensen, C., & Yoo, Y. (2015).
Distributed Tuning of Boundary Resources - The Case of
Apple’s iOS Service System. MIS Quarterly, 39(1), 217-244.

Designing Platform Emulation

 98

Ebel, P., Bretschneider, U., & Leimeister, J. M. (2016). Leveraging
Virtual Business Model Innovation: A Framework for
Designing Business Model Development Tools: Leveraging
Virtual Business Model Innovation. Information Systems
Journal, 26(5), 519-550. doi:10.1111/isj.12103

Eisenmann, T., Parker, G., & van Alstyne, M. (2009). Opening
Platforms: How, When and Why? In A. Gawer (Ed.),
Platforms, Markets and Innovation (pp. 131-162). Cheltenham,
UK: Edward Elgar Publishing.

Ethiraj, S., & Levinthal, D. (2004). Modularity and Innovation in
Complex Systems. Management Science, 50(2), 159-173.
doi:10.1287/mnsc.1030.0145

Evans, D. S., Hagiu, A., & Schmalensee, R. (2006). Invisible Engines:
How Software Platforms Drive Innovation and Transform
Industries. Cambridge, MA: The MIT Press.

Flowers, S. (2008). Harnessing the Hackers: The Emergence and
Exploitation of Outlaw Innovation. Research Policy, 37(2), 177-
193. doi:10.1016/j.respol.2007.10.006

Foerderer, J., Kude, T., Schuetz, S., & Heinzl, A. (2019). Knowledge
Boundaries in Enterprise Software Platform Development:
Antecedents and Consequences for Platform Governance.
Information Systems Journal, 29(1), 119-144. doi:10.1111/isj.12186

Gawer, A. (2014). Bridging Differing Perspectives on Technological
Platforms: Toward an Integrative Framework. Research Policy,
43(7), 1239-1249.
doi:https://doi.org/10.1016/j.respol.2014.03.006

Ghazawneh, A., & Henfridsson, O. (2013). Balancing Platform Control
and External Contribution in Third‐Party Development: The
Boundary Resources Model. Information Systems Journal,
23(2), 173-192.

Giesbrecht, T., Schwabe, G., & Schenk, B. (2017). Service Encounter
Thinklets: How to Empower Service Agents to Put Value Co-
Creation Into Practice: Service Encounter Thinklets.
Information Systems Journal, 27(2), 171-196. doi:10.1111/isj.12099

Giessmann, A., & Legner, C. (2016). Designing Business Models for
Cloud Platforms: Designing Business Models for Cloud

 99

Platforms. Information Systems Journal, 26(5), 551-579.
doi:10.1111/isj.12107

Gioia, D., & Thomas, J. (1996). Identity, Image, and Issue
Interpretation: Sensemaking During Strategic Change in
Academia. Administrative science quarterly, 41(3), 370-403.
doi:10.2307/2393936

Gregor, S., Imran, A., & Turner, T. (2014). A ‘Sweet Spot’ Change
Strategy for a Least Developed Country: Leveraging E-
Government in Bangladesh. European Journal of Information
Systems, 23(6), 655-671. doi:10.1057/ejis.2013.14

Gregor, S., & Jones, D. (2007). The Anatomy of a Design Theory.
Journal of the Association for Information Systems, 8, 312-335.

Gregor, S., Kruse, L., & Seidel, S. (2020). Research Perspectives: The
Anatomy of a Design Principle. Journal of the Association for
Information Systems, 21, 1622-1652. doi:10.17705/1jais.00649

Hartman, R., & Teece, D. (1990). Product Emulation Strategies in the
Presence of Reputation Effects and Network Externalities:
Some Evidence From the Minicomputer Industry. Economics
of Innovation and New Technology, 1(1-2), 157-182.
doi:10.1080/10438599000000009

Hjalmarsson, A., & Rudmark, D. (2012). Designing Digital Innovation
Contests. In K. Peffers, M. Rothenberger, & B. Kuechler (Eds.),
Design Science Research in Information Systems. Advances in
Theory and Practice (Vol. 7286, pp. 9-27): Springer Berlin.

Hustad, E., & Olsen, D. (2014). Educating Reflective Enterprise
Systems Practitioners: A Design Research Study of the
Iterative Building of a Teaching Framework: Educating
Reflective ES Practitioners. Information Systems Journal,
24(5), 445-473. doi:10.1111/isj.12032

Iivari, J. (2015). Distinguishing and Contrasting Two Strategies for
Design Science Research. European Journal of Information
Systems, 24(1), 107-115. doi:10.1057/ejis.2013.35

Jha, S., & Pinsonneault, S. (2016). The Evolution of an ICT Platform-
Enabled Ecosystem for Poverty Alleviation: The Case of
eKutir. MIS Quarterly, 40(2), 431-445.
doi:10.25300/MISQ/2016/40.2.08

Designing Platform Emulation

 98

Ebel, P., Bretschneider, U., & Leimeister, J. M. (2016). Leveraging
Virtual Business Model Innovation: A Framework for
Designing Business Model Development Tools: Leveraging
Virtual Business Model Innovation. Information Systems
Journal, 26(5), 519-550. doi:10.1111/isj.12103

Eisenmann, T., Parker, G., & van Alstyne, M. (2009). Opening
Platforms: How, When and Why? In A. Gawer (Ed.),
Platforms, Markets and Innovation (pp. 131-162). Cheltenham,
UK: Edward Elgar Publishing.

Ethiraj, S., & Levinthal, D. (2004). Modularity and Innovation in
Complex Systems. Management Science, 50(2), 159-173.
doi:10.1287/mnsc.1030.0145

Evans, D. S., Hagiu, A., & Schmalensee, R. (2006). Invisible Engines:
How Software Platforms Drive Innovation and Transform
Industries. Cambridge, MA: The MIT Press.

Flowers, S. (2008). Harnessing the Hackers: The Emergence and
Exploitation of Outlaw Innovation. Research Policy, 37(2), 177-
193. doi:10.1016/j.respol.2007.10.006

Foerderer, J., Kude, T., Schuetz, S., & Heinzl, A. (2019). Knowledge
Boundaries in Enterprise Software Platform Development:
Antecedents and Consequences for Platform Governance.
Information Systems Journal, 29(1), 119-144. doi:10.1111/isj.12186

Gawer, A. (2014). Bridging Differing Perspectives on Technological
Platforms: Toward an Integrative Framework. Research Policy,
43(7), 1239-1249.
doi:https://doi.org/10.1016/j.respol.2014.03.006

Ghazawneh, A., & Henfridsson, O. (2013). Balancing Platform Control
and External Contribution in Third‐Party Development: The
Boundary Resources Model. Information Systems Journal,
23(2), 173-192.

Giesbrecht, T., Schwabe, G., & Schenk, B. (2017). Service Encounter
Thinklets: How to Empower Service Agents to Put Value Co-
Creation Into Practice: Service Encounter Thinklets.
Information Systems Journal, 27(2), 171-196. doi:10.1111/isj.12099

Giessmann, A., & Legner, C. (2016). Designing Business Models for
Cloud Platforms: Designing Business Models for Cloud

 99

Platforms. Information Systems Journal, 26(5), 551-579.
doi:10.1111/isj.12107

Gioia, D., & Thomas, J. (1996). Identity, Image, and Issue
Interpretation: Sensemaking During Strategic Change in
Academia. Administrative science quarterly, 41(3), 370-403.
doi:10.2307/2393936

Gregor, S., Imran, A., & Turner, T. (2014). A ‘Sweet Spot’ Change
Strategy for a Least Developed Country: Leveraging E-
Government in Bangladesh. European Journal of Information
Systems, 23(6), 655-671. doi:10.1057/ejis.2013.14

Gregor, S., & Jones, D. (2007). The Anatomy of a Design Theory.
Journal of the Association for Information Systems, 8, 312-335.

Gregor, S., Kruse, L., & Seidel, S. (2020). Research Perspectives: The
Anatomy of a Design Principle. Journal of the Association for
Information Systems, 21, 1622-1652. doi:10.17705/1jais.00649

Hartman, R., & Teece, D. (1990). Product Emulation Strategies in the
Presence of Reputation Effects and Network Externalities:
Some Evidence From the Minicomputer Industry. Economics
of Innovation and New Technology, 1(1-2), 157-182.
doi:10.1080/10438599000000009

Hjalmarsson, A., & Rudmark, D. (2012). Designing Digital Innovation
Contests. In K. Peffers, M. Rothenberger, & B. Kuechler (Eds.),
Design Science Research in Information Systems. Advances in
Theory and Practice (Vol. 7286, pp. 9-27): Springer Berlin.

Hustad, E., & Olsen, D. (2014). Educating Reflective Enterprise
Systems Practitioners: A Design Research Study of the
Iterative Building of a Teaching Framework: Educating
Reflective ES Practitioners. Information Systems Journal,
24(5), 445-473. doi:10.1111/isj.12032

Iivari, J. (2015). Distinguishing and Contrasting Two Strategies for
Design Science Research. European Journal of Information
Systems, 24(1), 107-115. doi:10.1057/ejis.2013.35

Jha, S., & Pinsonneault, S. (2016). The Evolution of an ICT Platform-
Enabled Ecosystem for Poverty Alleviation: The Case of
eKutir. MIS Quarterly, 40(2), 431-445.
doi:10.25300/MISQ/2016/40.2.08

Designing Platform Emulation

 100

Kapoor, R., & Agarwal, S. (2017). Sustaining Superior Performance in
Business Ecosystems: Evidence from Application Software
Developers in the iOS and Android Smartphone Ecosystems.
Organization Science, 28(3), 531-551. doi:10.1287/orsc.2017.1122

Karhu, K., Gustafsson, R., & Lyytinen, K. (2018). Exploiting and
Defending Open Digital Platforms with Boundary Resources:
Android’s Five Platform Forks. Information Systems Research,
29(2), 479-497. doi:10.1287/isre.2018.0786

Kartas, A., & Goode, S. (2012). Use, Perceived Deterrence and the Role
of Software Piracy in Video Game Console Adoption.
Information Systems Frontiers, 14(2), 261-277.
doi:10.1007/s10796-010-9236-2

Kazan, E., Tan, C.-W., Lim, E., Sørensen, C., & Damsgaard, J. (2018).
Disentangling Digital Platform Competition: The Case of UK
Mobile Payment Platforms. Journal of Management
Information Systems, 35(1), 180-219.
doi:10.1080/07421222.2018.1440772

Kock, N. (2003). Action Research: Lessons Learned From a Multi-
Iteration Study of Computer-Mediated Communication in
Groups. IEEE Transactions on Professional Communication,
46(2), 105-128. doi:10.1109/TPC.2003.813164

Koutsikouri, D., Lindgren, R., & Henfridsson, O. (2017). Building
Digital Infrastructures: Towards an Evolutionary Theory of
Contextual Triggers. In Proceedings of the 50th Hawaii
International Conference on system Sciences.

Koutsikouri, D., Lindgren, R., Henfridsson, O., & Rudmark, D. (2018).
Extending Digital Infrastructures: A Typology of Growth
Tactics. Journal of the Association for Information Systems,
19(10), 1001-1019. doi:10.17705/1jais.00517

Labianca, G., Fairbank, J., Thomas, J., Gioia, D., & Umphress, E. (2001).
Emulation in Academia: Balancing Structure and Identity.
Organization Science, 12(3), 312-330.
doi:10.1287/orsc.12.3.312.10101

Lee, A. (2007). Action is an Artifact. In N. Kock (Ed.), Information
Systems Action Research (Vol. 13, pp. 43-60). Boston, MA:
Springer US.

 101

Lessig, L. (2004). Free Culture: How Big Media Uses Technology and
the Law to Lock Down Culture and Control Creativity. New
York: Penguin Press.

Li, X., Sun, S., Chen, K., Fung, T., & Wang, H. (2015). Design Theory
for Market Surveillance Systems. Journal of Management
Information Systems, 32(2), 278-313.
doi:10.1080/07421222.2015.1063312

Lyytinen, K., & Newman, M. (2008). Explaining Information Systems
Change: A Punctuated Socio-Technical Change Model.
European Journal of Information Systems, 17(6), 589-613.
doi:10.1057/ejis.2008.50

Mandviwalla, M. (2015). Generating and Justifying Design Theory.
Journal of the Association for Information Systems, 16(5), 314-
344.

Markus, L., Majchrzak, A., & Gasser, L. (2002). A Design Theory for
Systems That Support Emergent Knowledge Processes. MIS
Quarterly, 26, 179-212.

Mettler, T. (2017). Contextualizing a Professional Social Network for
Health Care: Experiences From an Action Design Research
Study. Information Systems Journal, 28. doi:10.1111/isj.12154

Mollick, E. (2005). Tapping Into the Underground. MIT Sloan
Management Review, 46(4), 21.

Morris, M., Leung, K., Ames, D., & Lickel, B. (1999). Views from Inside
and Outside: Integrating Emic and Etic Insights about Culture
and Justice Judgment. The Academy of Management Review,
24(4), 781-796. doi:10.2307/259354

Mukhopadhyay, S., Bouwman, H., & Jaiswal, M. P. (2019). An Open
Platform Centric Approach for Scalable Government Service
Delivery to the Poor: The Aadhaar Case. Government
Information Quarterly, 36(3), 437-448.
doi:https://doi.org/10.1016/j.giq.2019.05.001

Mullarkey, M., & Hevner, A. (2019). An Elaborated Action Design
Research Process Model. European Journal of Information
Systems, 28(1), 6-20. doi:10.1080/0960085X.2018.1451811

O'Mahony, S., & Karp, R. (2020). From Proprietary to Collective
Governance: How Do Platform Participation Strategies

Designing Platform Emulation

 100

Kapoor, R., & Agarwal, S. (2017). Sustaining Superior Performance in
Business Ecosystems: Evidence from Application Software
Developers in the iOS and Android Smartphone Ecosystems.
Organization Science, 28(3), 531-551. doi:10.1287/orsc.2017.1122

Karhu, K., Gustafsson, R., & Lyytinen, K. (2018). Exploiting and
Defending Open Digital Platforms with Boundary Resources:
Android’s Five Platform Forks. Information Systems Research,
29(2), 479-497. doi:10.1287/isre.2018.0786

Kartas, A., & Goode, S. (2012). Use, Perceived Deterrence and the Role
of Software Piracy in Video Game Console Adoption.
Information Systems Frontiers, 14(2), 261-277.
doi:10.1007/s10796-010-9236-2

Kazan, E., Tan, C.-W., Lim, E., Sørensen, C., & Damsgaard, J. (2018).
Disentangling Digital Platform Competition: The Case of UK
Mobile Payment Platforms. Journal of Management
Information Systems, 35(1), 180-219.
doi:10.1080/07421222.2018.1440772

Kock, N. (2003). Action Research: Lessons Learned From a Multi-
Iteration Study of Computer-Mediated Communication in
Groups. IEEE Transactions on Professional Communication,
46(2), 105-128. doi:10.1109/TPC.2003.813164

Koutsikouri, D., Lindgren, R., & Henfridsson, O. (2017). Building
Digital Infrastructures: Towards an Evolutionary Theory of
Contextual Triggers. In Proceedings of the 50th Hawaii
International Conference on system Sciences.

Koutsikouri, D., Lindgren, R., Henfridsson, O., & Rudmark, D. (2018).
Extending Digital Infrastructures: A Typology of Growth
Tactics. Journal of the Association for Information Systems,
19(10), 1001-1019. doi:10.17705/1jais.00517

Labianca, G., Fairbank, J., Thomas, J., Gioia, D., & Umphress, E. (2001).
Emulation in Academia: Balancing Structure and Identity.
Organization Science, 12(3), 312-330.
doi:10.1287/orsc.12.3.312.10101

Lee, A. (2007). Action is an Artifact. In N. Kock (Ed.), Information
Systems Action Research (Vol. 13, pp. 43-60). Boston, MA:
Springer US.

 101

Lessig, L. (2004). Free Culture: How Big Media Uses Technology and
the Law to Lock Down Culture and Control Creativity. New
York: Penguin Press.

Li, X., Sun, S., Chen, K., Fung, T., & Wang, H. (2015). Design Theory
for Market Surveillance Systems. Journal of Management
Information Systems, 32(2), 278-313.
doi:10.1080/07421222.2015.1063312

Lyytinen, K., & Newman, M. (2008). Explaining Information Systems
Change: A Punctuated Socio-Technical Change Model.
European Journal of Information Systems, 17(6), 589-613.
doi:10.1057/ejis.2008.50

Mandviwalla, M. (2015). Generating and Justifying Design Theory.
Journal of the Association for Information Systems, 16(5), 314-
344.

Markus, L., Majchrzak, A., & Gasser, L. (2002). A Design Theory for
Systems That Support Emergent Knowledge Processes. MIS
Quarterly, 26, 179-212.

Mettler, T. (2017). Contextualizing a Professional Social Network for
Health Care: Experiences From an Action Design Research
Study. Information Systems Journal, 28. doi:10.1111/isj.12154

Mollick, E. (2005). Tapping Into the Underground. MIT Sloan
Management Review, 46(4), 21.

Morris, M., Leung, K., Ames, D., & Lickel, B. (1999). Views from Inside
and Outside: Integrating Emic and Etic Insights about Culture
and Justice Judgment. The Academy of Management Review,
24(4), 781-796. doi:10.2307/259354

Mukhopadhyay, S., Bouwman, H., & Jaiswal, M. P. (2019). An Open
Platform Centric Approach for Scalable Government Service
Delivery to the Poor: The Aadhaar Case. Government
Information Quarterly, 36(3), 437-448.
doi:https://doi.org/10.1016/j.giq.2019.05.001

Mullarkey, M., & Hevner, A. (2019). An Elaborated Action Design
Research Process Model. European Journal of Information
Systems, 28(1), 6-20. doi:10.1080/0960085X.2018.1451811

O'Mahony, S., & Karp, R. (2020). From Proprietary to Collective
Governance: How Do Platform Participation Strategies

Designing Platform Emulation

 102

Evolve? Strategic Management Journal, n/a(n/a).
doi:https://doi.org/10.1002/smj.3150

Ondrus, J., Gannamaneni, A., & Lyytinen, K. (2015). The Impact of
Openness on the Market Potential Of Multi-Sided Platforms:
A Case Study of Mobile Payment Platforms. Journal of
Information Technology, 30(3), 260-275. doi:10.1057/jit.2015.7

Orlikowski, W., & Iacono, S. (2001). Research Commentary:
Desperately Seeking the “IT” in IT Research—A Call to
Theorizing the IT Artifact. Information Systems Research,
12(2), 121-134. doi:10.1287/isre.12.2.121.9700

Oxford English Dictionary. (2019). ”Emulation, n.". Retrieved from
http://www.oed.com/view/Entry/61461

Parker, G., & Van Alstyne, M. (2017). Innovation, Openness, and
Platform Control. Management Science, 64(7), 3015-3032.
doi:10.1287/mnsc.2017.2757

Parker, G., Van Alstyne, M., & Choudary, S. (2016). Platform
Revolution: How Networked Markets Are Transforming the
Economy and How to Make Them Work for You. New York,
NY: WW Norton & Company.

Parnas, D. (1972). On the Criteria to Be Used in Decomposing Systems
Into Modules. Communications of the ACM, 15, 1053-1058.
doi:10.1145/361598.361623

Parnas, D., Clements, P., & Weiss, D. (1985). The Modular Structure
of Complex Systems. IEEE Transactions on Software
Engineering, SE-11(3), 259-266. doi:10.1109/TSE.1985.232209

Pil, F., & Cohen, S. (2006). Modularity: Implications for Imitation,
Innovation, and Sustained Advantage. Academy of
Management Review, 31(4), 995-1011.
doi:10.5465/amr.2006.22528166

Postigo, H. (2003). From Pong to Planet Quake: Post-Industrial
Transitions from Leisure to Work. Information,
Communication and Society, 6(4), 593-607.
doi:10.1080/1369118032000163277

Rivkin, J. (2001). Reproducing Knowledge: Replication without
Imitation at Moderate Complexity. Organization Science,
12(3), 274-293.

 103

Rudmark, D. (2013). The Practices of Unpaid Third-Party Developers
– Implications for API Design. In Proceedings of the 19th
Americas Conference on Information Systems (AMCIS 2013).

Rudmark, D. (2021). Designing Open Platform Emulation. Paper
presented at the Under review at the 42nd International
Conference on Information Systems (ICIS 2021).

Rudmark, D., Arnestrand, E., & Avital, M. (2012). Crowdpushing: The
Flipside of Crowdsourcing. In Proceedings of the 20th
European Conference on Information Systems (ECIS 2012).

Rudmark, D., & Ghazawneh, A. (2011). Third-Party Development for
Multi-Contextual Services: On the Mechanisms of Control. In
Proceedings of the 19th European Conference on Information
Systems (ECIS 2011).

Rudmark, D., & Lind, M. (2011). Design Science Research
Demonstrators for Punctuation – The Establishment of a
Service Ecosystem. In H. Jain, A. Sinha, & P. Vitharana (Eds.),
Service-Oriented Perspectives in Design Science Research (Vol.
6629, pp. 153-165): Springer Berlin Heidelberg.

Saadatmand, F., Lindgren, R., & Schultze, U. (2019). Configurations of
Platform Organizations: Implications for Complementor
Engagement. Research Policy, 48(8), 103770.
doi:https://doi.org/10.1016/j.respol.2019.03.015

Schulz, C., & Wagner, S. (2008). Outlaw Community Innovations.
International Journal of Innovation Management, 12(03), 399-
418. doi:10.1142/S1363919608002084

Schäfer, M. (2011). Bastard Culture! How User Participation
Transforms Cultural Production. Amsterdam: Amsterdam
University Press.

Sein, M., Henfridsson, O., Purao, S., Rossi, M., & Lindgren, R. (2011).
Action Design Research. MIS Quarterly, 35(1), 37-56.

Sein, M., & Rossi, M. (2019). Elaborating ADR While Drifting Away
From Its Essence: A Commentary on Mullarkey and Hevner.
European Journal of Information Systems, 28(1), 21-25.
doi:10.1080/0960085X.2018.1527189

Designing Platform Emulation

 102

Evolve? Strategic Management Journal, n/a(n/a).
doi:https://doi.org/10.1002/smj.3150

Ondrus, J., Gannamaneni, A., & Lyytinen, K. (2015). The Impact of
Openness on the Market Potential Of Multi-Sided Platforms:
A Case Study of Mobile Payment Platforms. Journal of
Information Technology, 30(3), 260-275. doi:10.1057/jit.2015.7

Orlikowski, W., & Iacono, S. (2001). Research Commentary:
Desperately Seeking the “IT” in IT Research—A Call to
Theorizing the IT Artifact. Information Systems Research,
12(2), 121-134. doi:10.1287/isre.12.2.121.9700

Oxford English Dictionary. (2019). ”Emulation, n.". Retrieved from
http://www.oed.com/view/Entry/61461

Parker, G., & Van Alstyne, M. (2017). Innovation, Openness, and
Platform Control. Management Science, 64(7), 3015-3032.
doi:10.1287/mnsc.2017.2757

Parker, G., Van Alstyne, M., & Choudary, S. (2016). Platform
Revolution: How Networked Markets Are Transforming the
Economy and How to Make Them Work for You. New York,
NY: WW Norton & Company.

Parnas, D. (1972). On the Criteria to Be Used in Decomposing Systems
Into Modules. Communications of the ACM, 15, 1053-1058.
doi:10.1145/361598.361623

Parnas, D., Clements, P., & Weiss, D. (1985). The Modular Structure
of Complex Systems. IEEE Transactions on Software
Engineering, SE-11(3), 259-266. doi:10.1109/TSE.1985.232209

Pil, F., & Cohen, S. (2006). Modularity: Implications for Imitation,
Innovation, and Sustained Advantage. Academy of
Management Review, 31(4), 995-1011.
doi:10.5465/amr.2006.22528166

Postigo, H. (2003). From Pong to Planet Quake: Post-Industrial
Transitions from Leisure to Work. Information,
Communication and Society, 6(4), 593-607.
doi:10.1080/1369118032000163277

Rivkin, J. (2001). Reproducing Knowledge: Replication without
Imitation at Moderate Complexity. Organization Science,
12(3), 274-293.

 103

Rudmark, D. (2013). The Practices of Unpaid Third-Party Developers
– Implications for API Design. In Proceedings of the 19th
Americas Conference on Information Systems (AMCIS 2013).

Rudmark, D. (2021). Designing Open Platform Emulation. Paper
presented at the Under review at the 42nd International
Conference on Information Systems (ICIS 2021).

Rudmark, D., Arnestrand, E., & Avital, M. (2012). Crowdpushing: The
Flipside of Crowdsourcing. In Proceedings of the 20th
European Conference on Information Systems (ECIS 2012).

Rudmark, D., & Ghazawneh, A. (2011). Third-Party Development for
Multi-Contextual Services: On the Mechanisms of Control. In
Proceedings of the 19th European Conference on Information
Systems (ECIS 2011).

Rudmark, D., & Lind, M. (2011). Design Science Research
Demonstrators for Punctuation – The Establishment of a
Service Ecosystem. In H. Jain, A. Sinha, & P. Vitharana (Eds.),
Service-Oriented Perspectives in Design Science Research (Vol.
6629, pp. 153-165): Springer Berlin Heidelberg.

Saadatmand, F., Lindgren, R., & Schultze, U. (2019). Configurations of
Platform Organizations: Implications for Complementor
Engagement. Research Policy, 48(8), 103770.
doi:https://doi.org/10.1016/j.respol.2019.03.015

Schulz, C., & Wagner, S. (2008). Outlaw Community Innovations.
International Journal of Innovation Management, 12(03), 399-
418. doi:10.1142/S1363919608002084

Schäfer, M. (2011). Bastard Culture! How User Participation
Transforms Cultural Production. Amsterdam: Amsterdam
University Press.

Sein, M., Henfridsson, O., Purao, S., Rossi, M., & Lindgren, R. (2011).
Action Design Research. MIS Quarterly, 35(1), 37-56.

Sein, M., & Rossi, M. (2019). Elaborating ADR While Drifting Away
From Its Essence: A Commentary on Mullarkey and Hevner.
European Journal of Information Systems, 28(1), 21-25.
doi:10.1080/0960085X.2018.1527189

Designing Platform Emulation

 104

Strauss, A., & Corbin, J. (1990). Basics of Qualitative Research:
Grounded Theory Procedures and Techniques. Newbury Park:
Sage.

Teece, D. (2007). Explicating Dynamic Capabilities: The Nature and
Microfoundations of (Sustainable) Enterprise Performance.
Strategic Management Journal, 28(13), 1319-1350.
doi:10.1002/smj.640

Teece, D., Pisano, G., & Shuen, A. (1997). Dynamic Capabilities and
Strategic Management. Strategic Management Journal, 18(7),
509-533. doi:10.1002/(SICI)1097-0266(199708)18:7<509::AID-
SMJ882>3.0.CO;2-Z

Tennie, C., Call, J., & Tomasello, M. (2010). Evidence for Emulation in
Chimpanzees in Social Settings Using the Floating Peanut
Task. PLOS ONE, 5(5), e10544.
doi:10.1371/journal.pone.0010544

Tilson, D., Lyytinen, K., & Sørensen, C. (2010). Research Commentary
—Digital Infrastructures: The Missing IS Research Agenda.
Information Systems Research, 21(4), 748-759.
doi:10.1287/isre.1100.0318

Tiwana, A. (2014). Platform ecosystems: aligning architecture,
governance, and strategy (1st ed.). Waltham, MA: Morgan
Kaufman.

Tiwana, A. (2015). Platform Desertion by App Developers. Journal of
Management Information Systems, 32(4), 40-77.
doi:10.1080/07421222.2015.1138365

Tiwana, A., Konsynski, B., & Bush, A. A. (2010). Research
Commentary--Platform Evolution: Coevolution of Platform
Architecture, Governance, and Environmental Dynamics.
Information Systems Research, 21, 675-687.
doi:10.1287/isre.1100.0323

Tucker, S. (1965). Emulation of large systems. Communications of the
ACM, 8(12), 753-761.

Venable, J., Pries-Heje, J., & Baskerville, R. (2016). FEDS: a Framework
for Evaluation in Design Science Research. European Journal
of Information Systems, 25(1), 77-89. doi:10.1057/ejis.2014.36

 105

von Hippel, E., & Katz, R. (2002). Shifting Innovation to Users via
Toolkits. Management Science, 48, 821-833.
doi:10.1287/mnsc.48.7.821.2817

Walls, J., Widmeyer, G., & El Sawy, O. (1992). Building an Information
System Design Theory for Vigilant EIS. Information Systems
Research, 3(1), 36-59. doi:10.1287/isre.3.1.36

Walls, J., Widmeyer, G., & El Sawy, O. (2004). Assessing Information
System Design Theory in Perspective: How Useful Was Our
1992 Initial Rendition? JITTA: Journal of Information
Technology Theory and Application, 6(2), 43-58.

Wareham, J., Fox, P., & Cano Giner, J. (2014). Technology Ecosystem
Governance. Organization Science, 25(4), 1195-1215.
doi:10.1287/orsc.2014.0895

West, J. (2003). How Open Is Open Enough? Melding Proprietary and
Open Source Platform Strategies. Research Policy, 32(7), 1259-
1285. doi:10.1016/S0048-7333(03)00052-0

Westin, S., & Sein, M. (2015). The Design and Emergence of a
Data/Information Quality System. Scandinavian Journal of
Information Systems, 27(1), 3-26.

Designing Platform Emulation

 104

Strauss, A., & Corbin, J. (1990). Basics of Qualitative Research:
Grounded Theory Procedures and Techniques. Newbury Park:
Sage.

Teece, D. (2007). Explicating Dynamic Capabilities: The Nature and
Microfoundations of (Sustainable) Enterprise Performance.
Strategic Management Journal, 28(13), 1319-1350.
doi:10.1002/smj.640

Teece, D., Pisano, G., & Shuen, A. (1997). Dynamic Capabilities and
Strategic Management. Strategic Management Journal, 18(7),
509-533. doi:10.1002/(SICI)1097-0266(199708)18:7<509::AID-
SMJ882>3.0.CO;2-Z

Tennie, C., Call, J., & Tomasello, M. (2010). Evidence for Emulation in
Chimpanzees in Social Settings Using the Floating Peanut
Task. PLOS ONE, 5(5), e10544.
doi:10.1371/journal.pone.0010544

Tilson, D., Lyytinen, K., & Sørensen, C. (2010). Research Commentary
—Digital Infrastructures: The Missing IS Research Agenda.
Information Systems Research, 21(4), 748-759.
doi:10.1287/isre.1100.0318

Tiwana, A. (2014). Platform ecosystems: aligning architecture,
governance, and strategy (1st ed.). Waltham, MA: Morgan
Kaufman.

Tiwana, A. (2015). Platform Desertion by App Developers. Journal of
Management Information Systems, 32(4), 40-77.
doi:10.1080/07421222.2015.1138365

Tiwana, A., Konsynski, B., & Bush, A. A. (2010). Research
Commentary--Platform Evolution: Coevolution of Platform
Architecture, Governance, and Environmental Dynamics.
Information Systems Research, 21, 675-687.
doi:10.1287/isre.1100.0323

Tucker, S. (1965). Emulation of large systems. Communications of the
ACM, 8(12), 753-761.

Venable, J., Pries-Heje, J., & Baskerville, R. (2016). FEDS: a Framework
for Evaluation in Design Science Research. European Journal
of Information Systems, 25(1), 77-89. doi:10.1057/ejis.2014.36

 105

von Hippel, E., & Katz, R. (2002). Shifting Innovation to Users via
Toolkits. Management Science, 48, 821-833.
doi:10.1287/mnsc.48.7.821.2817

Walls, J., Widmeyer, G., & El Sawy, O. (1992). Building an Information
System Design Theory for Vigilant EIS. Information Systems
Research, 3(1), 36-59. doi:10.1287/isre.3.1.36

Walls, J., Widmeyer, G., & El Sawy, O. (2004). Assessing Information
System Design Theory in Perspective: How Useful Was Our
1992 Initial Rendition? JITTA: Journal of Information
Technology Theory and Application, 6(2), 43-58.

Wareham, J., Fox, P., & Cano Giner, J. (2014). Technology Ecosystem
Governance. Organization Science, 25(4), 1195-1215.
doi:10.1287/orsc.2014.0895

West, J. (2003). How Open Is Open Enough? Melding Proprietary and
Open Source Platform Strategies. Research Policy, 32(7), 1259-
1285. doi:10.1016/S0048-7333(03)00052-0

Westin, S., & Sein, M. (2015). The Design and Emergence of a
Data/Information Quality System. Scandinavian Journal of
Information Systems, 27(1), 3-26.

Designing Platform Emulation

 106

TRANSCRIPT EXCERPT OPEN
CODE

AXIAL
CODE

“I'll just finish, I will not talk more about
it - but with this Philips TV as information
service SL bought the service from a
contractor, because they don’t know how
to do it, you have a function procurement
in some way instead”

Insufficient End-
user Technology

Development
Capabilities Difficulties

Creating End-
user Services
with Extensive
Coverage

“For a while we implemented a service for
Nokia with a java client so you could get a
map exactly where the train was, a very
cool service but with the next java version
it was gone because we did not get money
to upgrade it – it caused much
frustration!”

Application
Adaptation to

Specific Devices
Costly

“It reads as follows: In the so-called PSI
directive - PSI stands for public service
information - the EU has decided that
authorities must provide unprocessed raw
data at self-cost price. Sweden considered
for a long time that the Swedish
agreement would be amended to comply
with the directive, but after the EU
Commission initiated an investigation
into Sweden's breach of the directive, they
will initiate an investigation that proposes
that PSI adapt - a PSI adaptation of
Swedish law.”

Legislative
pressures

Pressure to
release data

more publicly

“But what has happened is that a
number of pirate services have been
created where there are clever boys
and girls who have hacked their
mobile service against our web service
and created services that they had on
the agenda. They really slapped us on
the wrist!”

Pressures from
existing
unsanctioned
developers

APPENDIX A. CODE EXAMPLES DART GROUP

 107

INCIDENT TRANSCRIPT INCIDENT
CODE
INSTANCES

(D1) Wasn’t there something where you could find
distances in road traffic. The Google Maps Road Traffic
API? Västtrafik?
(D2)What did you say? For streets or?
(D1)Yes, for distance to work? Västtrafik API, it did not
work at all or? Labs?
(D2)I can’t even find the base URL. You should obviously
log in with e-mail then, but once you get in there, there
are no links to type but only method names, so you sit
and "yeah, now what?"
(D1) You have managed to log in but nothing happens
after that?
(D2)No, no, there is no page that says "this is how you do
it", how-to. Nothing.
(D1) Should you use e-mail?
(D2)Email, I also thought it was name I should use so I
"argh!" I'm thinking about whether I should try with
Trafiklab services instead where they have existing API
keys
(D1)Yes. "For developers. Join this group to take part in
Västtrafik's APIs". "APIs and documentation". "Traffic
disruptions". "Documentation of new API". Here we have
it!
(D2)Did you find it? I clicked around like crazy.
(D1) Pdf file is there and sample file to generate correct
calls
(D2)I clicked on “for developers” and then I just got to my
login box. Strange!
(D2)This is what it looks like for me when I click on "For
developers"
(D1)And then you click on the developer group
(D2)It still looks like this
(Ju) You click on the API documentation
(D2)Ah… [Sigh]

API ::
TrafficInformation

Incident
Manifestation ::
Asking for peer
support

IncidentCause ::
Base URL Location

Use Trajectory ::
Continued Use

User Feelings ::
Frustration

APPENDIX B. TRAVELHACK CODE EXAMPLE

Designing Platform Emulation

 106

TRANSCRIPT EXCERPT OPEN
CODE

AXIAL
CODE

“I'll just finish, I will not talk more about
it - but with this Philips TV as information
service SL bought the service from a
contractor, because they don’t know how
to do it, you have a function procurement
in some way instead”

Insufficient End-
user Technology

Development
Capabilities Difficulties

Creating End-
user Services
with Extensive
Coverage

“For a while we implemented a service for
Nokia with a java client so you could get a
map exactly where the train was, a very
cool service but with the next java version
it was gone because we did not get money
to upgrade it – it caused much
frustration!”

Application
Adaptation to

Specific Devices
Costly

“It reads as follows: In the so-called PSI
directive - PSI stands for public service
information - the EU has decided that
authorities must provide unprocessed raw
data at self-cost price. Sweden considered
for a long time that the Swedish
agreement would be amended to comply
with the directive, but after the EU
Commission initiated an investigation
into Sweden's breach of the directive, they
will initiate an investigation that proposes
that PSI adapt - a PSI adaptation of
Swedish law.”

Legislative
pressures

Pressure to
release data

more publicly

“But what has happened is that a
number of pirate services have been
created where there are clever boys
and girls who have hacked their
mobile service against our web service
and created services that they had on
the agenda. They really slapped us on
the wrist!”

Pressures from
existing
unsanctioned
developers

APPENDIX A. CODE EXAMPLES DART GROUP

 107

INCIDENT TRANSCRIPT INCIDENT
CODE
INSTANCES

(D1) Wasn’t there something where you could find
distances in road traffic. The Google Maps Road Traffic
API? Västtrafik?
(D2)What did you say? For streets or?
(D1)Yes, for distance to work? Västtrafik API, it did not
work at all or? Labs?
(D2)I can’t even find the base URL. You should obviously
log in with e-mail then, but once you get in there, there
are no links to type but only method names, so you sit
and "yeah, now what?"
(D1) You have managed to log in but nothing happens
after that?
(D2)No, no, there is no page that says "this is how you do
it", how-to. Nothing.
(D1) Should you use e-mail?
(D2)Email, I also thought it was name I should use so I
"argh!" I'm thinking about whether I should try with
Trafiklab services instead where they have existing API
keys
(D1)Yes. "For developers. Join this group to take part in
Västtrafik's APIs". "APIs and documentation". "Traffic
disruptions". "Documentation of new API". Here we have
it!
(D2)Did you find it? I clicked around like crazy.
(D1) Pdf file is there and sample file to generate correct
calls
(D2)I clicked on “for developers” and then I just got to my
login box. Strange!
(D2)This is what it looks like for me when I click on "For
developers"
(D1)And then you click on the developer group
(D2)It still looks like this
(Ju) You click on the API documentation
(D2)Ah… [Sigh]

API ::
TrafficInformation

Incident
Manifestation ::
Asking for peer
support

IncidentCause ::
Base URL Location

Use Trajectory ::
Continued Use

User Feelings ::
Frustration

APPENDIX B. TRAVELHACK CODE EXAMPLE

Designing Platform Emulation

 108

• Intro

• Recording
• Background us
• Background project

• Background and third-party development

• Describe your background and role at the Swedish Transport
Administration?

• How does the Swedish Transport Administration support
external parties who want to develop innovative services on
STA data?

• What needs do you think these have?
• How well are you familiar with what third-party developers

exist? Are there others in the organization who are aware of
this?

• What does it mean that many third-party developers use
unsanctioned data deliveries?

• What does it mean that many travelers use services based on
unofficial data deliveries?

• Have you acted against any third party actor?

• Current data deliveries

• What types of data deliveries for rail are available today?
• What data is available?

• Who are the recipients of the information?
• Depending on the person: Describe UTIN / Lastkajen?

- Purpose
- History
- What works well / needs improvement

• What deliveries are missing?

APPENDIX C. INTERVIEW GUIDE THE STA

 109

• In an ideal world: How would the Swedish Transport
Administration's deliveries of traffic information for railways
work and look like?

• How does the Swedish Transport Administration view Open
Data? The PSI Directive? In what way does the PSI directive
affect the Swedish Transport Administration's information
supply?

• Check-out

- How do you view the goal of this project?
- In an ideal world, what would you like to achieve with the

project?
- How does it relate to organizational goals at the Swedish

Transport Administration?
- Contact again, for example on Skype.

Designing Platform Emulation

 108

• Intro

• Recording
• Background us
• Background project

• Background and third-party development

• Describe your background and role at the Swedish Transport
Administration?

• How does the Swedish Transport Administration support
external parties who want to develop innovative services on
STA data?

• What needs do you think these have?
• How well are you familiar with what third-party developers

exist? Are there others in the organization who are aware of
this?

• What does it mean that many third-party developers use
unsanctioned data deliveries?

• What does it mean that many travelers use services based on
unofficial data deliveries?

• Have you acted against any third party actor?

• Current data deliveries

• What types of data deliveries for rail are available today?
• What data is available?

• Who are the recipients of the information?
• Depending on the person: Describe UTIN / Lastkajen?

- Purpose
- History
- What works well / needs improvement

• What deliveries are missing?

APPENDIX C. INTERVIEW GUIDE THE STA

 109

• In an ideal world: How would the Swedish Transport
Administration's deliveries of traffic information for railways
work and look like?

• How does the Swedish Transport Administration view Open
Data? The PSI Directive? In what way does the PSI directive
affect the Swedish Transport Administration's information
supply?

• Check-out

- How do you view the goal of this project?
- In an ideal world, what would you like to achieve with the

project?
- How does it relate to organizational goals at the Swedish

Transport Administration?
- Contact again, for example on Skype.

Designing Platform Emulation

 110

§ Intro

o Recording

o Background myself

o Background project

§ The service

o What service (s) have you created?

o When did the development begin?

o How did you come up with the idea?

o Why did you create the service? Motivations

o Long-term plan, maintenance - when and how did the
service become more than a prototype?

o How did the service spread and when?

o What dialogue / contact / feedback do you have with
end users of the service?

• In such cases, how have your users
expressed a need for information from
the Swedish Transport
Administration?

• How did you communicate this to the
Swedish Transport Administration? In
what way did you experience the STA
attitude towards this?

o What contact have you had with the Swedish
Transport Administration and the actors with data /
information?

• What do you think have been critical
issues for the STA to release
information to external actors?

APPENDIX D. INTERVIEW TEMPLATE DEVELOPERS
ALPHA VERSION

 111

• Do you see a change in the response to
these issues from the Swedish
Transport Administration?

• In what way has the STA attitude
influenced your / your work and
development of services?

o What data source do you use today?

• Technology

o How does the service work? How do you retrieve
information?

o Changes in the course of development?

o In an ideal world - how would information be
delivered from the Swedish Transport
Administration? What support or other help / support
would you receive (or receive)?

o Do you make money from the service? What does the
business model look like?

o The future of the service? Development ideas? Other
projects / services?

o What other services are on the market that we should
contact

Designing Platform Emulation

 110

§ Intro

o Recording

o Background myself

o Background project

§ The service

o What service (s) have you created?

o When did the development begin?

o How did you come up with the idea?

o Why did you create the service? Motivations

o Long-term plan, maintenance - when and how did the
service become more than a prototype?

o How did the service spread and when?

o What dialogue / contact / feedback do you have with
end users of the service?

• In such cases, how have your users
expressed a need for information from
the Swedish Transport
Administration?

• How did you communicate this to the
Swedish Transport Administration? In
what way did you experience the STA
attitude towards this?

o What contact have you had with the Swedish
Transport Administration and the actors with data /
information?

• What do you think have been critical
issues for the STA to release
information to external actors?

APPENDIX D. INTERVIEW TEMPLATE DEVELOPERS
ALPHA VERSION

 111

• Do you see a change in the response to
these issues from the Swedish
Transport Administration?

• In what way has the STA attitude
influenced your / your work and
development of services?

o What data source do you use today?

• Technology

o How does the service work? How do you retrieve
information?

o Changes in the course of development?

o In an ideal world - how would information be
delivered from the Swedish Transport
Administration? What support or other help / support
would you receive (or receive)?

o Do you make money from the service? What does the
business model look like?

o The future of the service? Development ideas? Other
projects / services?

o What other services are on the market that we should
contact

Designing Platform Emulation

 112

Interview template new developers

Below are suggestions for questions to third-party developers. The
text in parentheses is so-called " probes " which are extra interesting
and should be asked in a suitable context .

Background and service

Tell me about the service you have developed

 (Target group: yourself / others, etc.)

 (why build the service: solve a problem, learning, mission,
commercial service)

 (What have you spent the most time on?)

 (how do you develop: leisure, service: at home / at work)

Tell me about previous experience of development

 (programming, APIs, mobile / web services)

 (More projects?)

 (In those projects, what do you work on the most?

What APIs have you used?

 (how did you execute the selection?)

Simple and inviting registration and access

How did you experience the process of accessing the API
(" time to first request ")?

 (Long / short, smooth / frustrating, simple / cumbersome)

Do you have any idea about what’s in the user agreement?

 (If so, what did you think of it?)

Which ev. possible improvements could be made to access the API?

Understand content, possibilities, and limitations

APPENDIX E. EVALUATION INTERVIEW PROTOCOL
BETA VERSION

 113

For the API (s) you used, how did you go about understanding what
data was available and what could be done?

 (Documentation, code sample, sample response, API
console)

What is your experience of understanding what the API contains,
what can and cannot be done with the API?

 (smooth / frustrating, simple / cumbersome, inspiring /
disappointing)

How did your assessment of the content of the API affect your work
with the service?

 (Did not affect, had to change (what?), Did not want to
continue)

Which ev. could improvements be made to better understand
the API 's content, capabilities and limitations ?

Working with the API

Can you describe for which environment the service was developed?

 (This may have been described in the previous question
about the service)

 (Development environment / language, user platform,
integrated services (eg map services))

Given the environment, and the service you wanted to develop, how
did you experience the API?

 (Did anything change in the service? What in that case .?

What is your overall experience of working with the API?

Production set-up

Do you think the service will go into production?

 (When in that case .?)

Isf ., Would you need to make any changes to your service (regarding
the API)?

 (Own server environment)

 (More calls at trafiklab.se)

Designing Platform Emulation

 112

Interview template new developers

Below are suggestions for questions to third-party developers. The
text in parentheses is so-called " probes " which are extra interesting
and should be asked in a suitable context .

Background and service

Tell me about the service you have developed

 (Target group: yourself / others, etc.)

 (why build the service: solve a problem, learning, mission,
commercial service)

 (What have you spent the most time on?)

 (how do you develop: leisure, service: at home / at work)

Tell me about previous experience of development

 (programming, APIs, mobile / web services)

 (More projects?)

 (In those projects, what do you work on the most?

What APIs have you used?

 (how did you execute the selection?)

Simple and inviting registration and access

How did you experience the process of accessing the API
(" time to first request ")?

 (Long / short, smooth / frustrating, simple / cumbersome)

Do you have any idea about what’s in the user agreement?

 (If so, what did you think of it?)

Which ev. possible improvements could be made to access the API?

Understand content, possibilities, and limitations

APPENDIX E. EVALUATION INTERVIEW PROTOCOL
BETA VERSION

 113

For the API (s) you used, how did you go about understanding what
data was available and what could be done?

 (Documentation, code sample, sample response, API
console)

What is your experience of understanding what the API contains,
what can and cannot be done with the API?

 (smooth / frustrating, simple / cumbersome, inspiring /
disappointing)

How did your assessment of the content of the API affect your work
with the service?

 (Did not affect, had to change (what?), Did not want to
continue)

Which ev. could improvements be made to better understand
the API 's content, capabilities and limitations ?

Working with the API

Can you describe for which environment the service was developed?

 (This may have been described in the previous question
about the service)

 (Development environment / language, user platform,
integrated services (eg map services))

Given the environment, and the service you wanted to develop, how
did you experience the API?

 (Did anything change in the service? What in that case .?

What is your overall experience of working with the API?

Production set-up

Do you think the service will go into production?

 (When in that case .?)

Isf ., Would you need to make any changes to your service (regarding
the API)?

 (Own server environment)

 (More calls at trafiklab.se)

Designing Platform Emulation

 114

How do you experience the work that must be done to take a job in
production?

(Point out that this applies to work that is linked to the API)

 (The process of getting more calls)

 (Lack of written agreements - good or bad)

Scraping

In the past, the services developed have been based on scraped
data. Would that be an option for you?

 (Why / why not?)

 (Describe the advantages / disadvantages of scraping / APIs)

If so, what, if anything, would need to be changed for you to use
official APIs instead?

Summary

What is your overall impression of the Swedish Transport
Administration's APIs at Trafiklab ?

Want to add something else we haven’t covered?

Interview template existing developers

Background and service

Can you briefly describe your service and why you created it?

How do you retrieve data today?

How has this mechanism worked so far?

 (Possible problems, more degrees of freedom)

What APIs have you used?

 (how did you execute the selection?)

 (how did you find out what APIs existed?)

Get access

How did you experience the process of accessing the API
(" time to first request ")?

 115

 (Long / short, smooth / frustrating, simple / cumbersome)

Do you have any idea about the user agreement?

 (If so, what did you think of it?)

How do you see the API being provided via the traffic lab ?

 (Together with other traffic APIs etc. ?)

Which ev. possible improvements could be made to access the API?

Understand content, opportunities and limitations

For the API (s) you used, how did you go about understanding what
data was available and what could be done?

 (Documentation, code sample, sample response, API
console)

What is your experience of understanding what the API contains,
what can and cannot be done with the API?

 (smooth / frustrating, simple / cumbersome, inspiring /
disappointing)

How did your assessment of the API's content affect your work with
your existing service?

 (Matched in terms of content, not possible to move)

Which ev. could improvements be made to better understand
the API 's content, capabilities and limitations ?

Working with the API

Can you describe for which environment the service was developed?

 (This may have been described in the previous question
about the service)

 (Development environment / language, user platform,
integrated services (eg map services))

Given the environment, and the service you wanted to develop, how
did you experience the API?

 (Was there something in the service that was not compatible
with the API? What in that case .?

What is your overall experience of working with the API?

Designing Platform Emulation

 114

How do you experience the work that must be done to take a job in
production?

(Point out that this applies to work that is linked to the API)

 (The process of getting more calls)

 (Lack of written agreements - good or bad)

Scraping

In the past, the services developed have been based on scraped
data. Would that be an option for you?

 (Why / why not?)

 (Describe the advantages / disadvantages of scraping / APIs)

If so, what, if anything, would need to be changed for you to use
official APIs instead?

Summary

What is your overall impression of the Swedish Transport
Administration's APIs at Trafiklab ?

Want to add something else we haven’t covered?

Interview template existing developers

Background and service

Can you briefly describe your service and why you created it?

How do you retrieve data today?

How has this mechanism worked so far?

 (Possible problems, more degrees of freedom)

What APIs have you used?

 (how did you execute the selection?)

 (how did you find out what APIs existed?)

Get access

How did you experience the process of accessing the API
(" time to first request ")?

 115

 (Long / short, smooth / frustrating, simple / cumbersome)

Do you have any idea about the user agreement?

 (If so, what did you think of it?)

How do you see the API being provided via the traffic lab ?

 (Together with other traffic APIs etc. ?)

Which ev. possible improvements could be made to access the API?

Understand content, opportunities and limitations

For the API (s) you used, how did you go about understanding what
data was available and what could be done?

 (Documentation, code sample, sample response, API
console)

What is your experience of understanding what the API contains,
what can and cannot be done with the API?

 (smooth / frustrating, simple / cumbersome, inspiring /
disappointing)

How did your assessment of the API's content affect your work with
your existing service?

 (Matched in terms of content, not possible to move)

Which ev. could improvements be made to better understand
the API 's content, capabilities and limitations ?

Working with the API

Can you describe for which environment the service was developed?

 (This may have been described in the previous question
about the service)

 (Development environment / language, user platform,
integrated services (eg map services))

Given the environment, and the service you wanted to develop, how
did you experience the API?

 (Was there something in the service that was not compatible
with the API? What in that case .?

What is your overall experience of working with the API?

Designing Platform Emulation

 116

Production set-up

Do you think you will move the service towards the official APIs ?

 (When in such case .?)

 (If not, why? What would need to change for this to happen?)

What do you need to do to take the service in production against the
official API (regarding the API)?

 (Dedicated server environment)

 (Changes in the service)

 (More calls at trafiklab.se)

How do you experience the work that needs to be done to move a
service from scraping to official APIs?

 (Point out that this applies to work that is linked to the API,
after development of the service)

 (The process of getting more calls)

 (Lack of written agreements - good or bad)

Summary

What is your overall impression of the Swedish Transport
Administration's APIs at traffic labs ?

Comments on your participation in the project?

 (interview 1, workshop, spec , launch, interview 2)

Want to add something else?.

 117

New developers

Below are questions to third-party developers. The text in
parentheses is so-called "probes" which are extra interesting and
should be asked in a suitable context.

Background and service

Tell us a little about the service you have developed

 (Target group: yourself / others, in that case which)

 (why build the service: solve a problem, learning, mission,
commercial service)

 (What have you spent the most time on?)

 (how do you develop: leisure, service: at home / at work)

Tell about previous experience of development

 (programming, APIs, mobile / web services)

 (More projects?)

 (In those projects, what do you work on the most?

Registration and access

How did you experience the process of accessing the API ("time to
first request")?

 (Long / short, smooth / frustrating, simple / cumbersome)

Do you have any idea about the user agreement?

 (If so, what did you think of it?)

Which ev. possible improvements could be made to access the API?

Content, opportunities and limitations

For the API (s) you used, how did you go about understanding what
data was available and what could be done?

 (Documentation, code sample, sample response, API
console)

APPENDIX F. EVALUATION INTERVIEW PROTOCOL
RELEASE VERSION

Designing Platform Emulation

 116

Production set-up

Do you think you will move the service towards the official APIs ?

 (When in such case .?)

 (If not, why? What would need to change for this to happen?)

What do you need to do to take the service in production against the
official API (regarding the API)?

 (Dedicated server environment)

 (Changes in the service)

 (More calls at trafiklab.se)

How do you experience the work that needs to be done to move a
service from scraping to official APIs?

 (Point out that this applies to work that is linked to the API,
after development of the service)

 (The process of getting more calls)

 (Lack of written agreements - good or bad)

Summary

What is your overall impression of the Swedish Transport
Administration's APIs at traffic labs ?

Comments on your participation in the project?

 (interview 1, workshop, spec , launch, interview 2)

Want to add something else?.

 117

New developers

Below are questions to third-party developers. The text in
parentheses is so-called "probes" which are extra interesting and
should be asked in a suitable context.

Background and service

Tell us a little about the service you have developed

 (Target group: yourself / others, in that case which)

 (why build the service: solve a problem, learning, mission,
commercial service)

 (What have you spent the most time on?)

 (how do you develop: leisure, service: at home / at work)

Tell about previous experience of development

 (programming, APIs, mobile / web services)

 (More projects?)

 (In those projects, what do you work on the most?

Registration and access

How did you experience the process of accessing the API ("time to
first request")?

 (Long / short, smooth / frustrating, simple / cumbersome)

Do you have any idea about the user agreement?

 (If so, what did you think of it?)

Which ev. possible improvements could be made to access the API?

Content, opportunities and limitations

For the API (s) you used, how did you go about understanding what
data was available and what could be done?

 (Documentation, code sample, sample response, API
console)

APPENDIX F. EVALUATION INTERVIEW PROTOCOL
RELEASE VERSION

Designing Platform Emulation

 118

 Were these supports useful? How?

 What could be better to understand what the API contains?

What is your experience of understanding what the API contains,
what can and cannot be done with the API?

 (smooth / frustrating, simple / cumbersome, inspiring /
disappointing)

How did your assessment of the API's content affect your work with
your existing service?

 (Matched in terms of content, not possible to move)

Which ev. could improvements be made to better understand the
API's content, capabilities, and limitations?

Working with the API

Can you describe for which environment the service was developed?

 (This may have been described in the previous question
about the service)

 (Development environment / language, user platform,
integrated services (eg map services))

Given the environment, and the service you wanted to develop, how
did you experience the API?

 (Was there something in the service that was not compatible
with the API? What in that case?

Was it harder or easier than expected?

Did you use the examples?

 How did you experience these as support?

Could you develop what you wanted?

 If not why?

Did it take a reasonable amount of time to solve what you wanted?

 If not, what took too long?

What is your overall experience of working with the API?

Production set-up

 119

Do you think the service will go into production?

 (When in such case?)

In such case, would you need to make any changes to your service
(regarding the API)?

 (Own server environment)

How do you assess the work that must be done to take a job in
production?

 (Point out that this applies to work that is linked to the API)

 (Lack of written agreements - good or bad)

Scraping

In the past, the services developed have been based on scraped
data. Would that be an option for you?

 (Why / why not?)

 (Describe the advantages / disadvantages of scraping / APIs)

If so, what, if anything, would need to be changed for you to use
official APIs instead?

Summary

What is your overall impression of the Swedish Transport
Administration's Open API?

Would you recommend the API to others? Why, why not?

Want to add something else?

Designing Platform Emulation

 118

 Were these supports useful? How?

 What could be better to understand what the API contains?

What is your experience of understanding what the API contains,
what can and cannot be done with the API?

 (smooth / frustrating, simple / cumbersome, inspiring /
disappointing)

How did your assessment of the API's content affect your work with
your existing service?

 (Matched in terms of content, not possible to move)

Which ev. could improvements be made to better understand the
API's content, capabilities, and limitations?

Working with the API

Can you describe for which environment the service was developed?

 (This may have been described in the previous question
about the service)

 (Development environment / language, user platform,
integrated services (eg map services))

Given the environment, and the service you wanted to develop, how
did you experience the API?

 (Was there something in the service that was not compatible
with the API? What in that case?

Was it harder or easier than expected?

Did you use the examples?

 How did you experience these as support?

Could you develop what you wanted?

 If not why?

Did it take a reasonable amount of time to solve what you wanted?

 If not, what took too long?

What is your overall experience of working with the API?

Production set-up

 119

Do you think the service will go into production?

 (When in such case?)

In such case, would you need to make any changes to your service
(regarding the API)?

 (Own server environment)

How do you assess the work that must be done to take a job in
production?

 (Point out that this applies to work that is linked to the API)

 (Lack of written agreements - good or bad)

Scraping

In the past, the services developed have been based on scraped
data. Would that be an option for you?

 (Why / why not?)

 (Describe the advantages / disadvantages of scraping / APIs)

If so, what, if anything, would need to be changed for you to use
official APIs instead?

Summary

What is your overall impression of the Swedish Transport
Administration's Open API?

Would you recommend the API to others? Why, why not?

Want to add something else?

Designing Platform Emulation

 120

Interview template for existing developers

Background and service

Can you briefly describe your service and why you created it?

How do you retrieve data today?

How has the data retrieval worked so far?

 (Possible problems, more degrees of freedom)

Get access

How did you experience the process of accessing the API ("time to
first request")?

 (Long / short, smooth / frustrating, simple / cumbersome)

Do you have any idea about the user agreement?

 (If so, what did you think of it?)

How do you see the API being provided via the traffic lab?

 (Together with other traffic APIs etc.?)

Which ev. possible improvements could be made to access the API?

Understand content, opportunities and limitations

For the API (s) you used, how did you go about understanding what
data was available and what could be done?

 (Documentation, code sample, sample response, API
console)

 Were these supports useful? How?

 What could be better to understand what the API contains?

What is your experience of understanding what the API contains,
what can and cannot be done with the API?

 (smooth / frustrating, simple / cumbersome, inspiring /
disappointing)

How did your assessment of the API's content affect your work with
your existing service?

 (Matched in terms of content, not possible to move)

 121

 Which ev. could improvements be made to better understand
the API's content, capabilities, and limitations?

Working with the API

Can you describe for which environment the service was developed?

 (This may have been described in the previous question
about the service)

 (Development environment / language, user platform,
integrated services (eg map services))

Given the environment, and the service you wanted to develop, how
did you experience the API?

 (Was there something in the service that was not compatible
with the API? What in that case?

Was it harder or easier than expected?

Did you use the existing examples?

 How did you experience these as support?

Could you develop what you wanted?

 If not why?

What is your overall experience of working with the API?

Production set-up

Do you think you will move the service towards the official APIs?

 (When in that case?)

 (If not, why? What would need to change for this to happen?)

What do you need to do to take the service in production against the
official API (regarding the API)?

 (Own server environment)

 (Changes in the service)

How do you experience the work that needs to be done to move a
service from scraping to official APIs?

Designing Platform Emulation

 120

Interview template for existing developers

Background and service

Can you briefly describe your service and why you created it?

How do you retrieve data today?

How has the data retrieval worked so far?

 (Possible problems, more degrees of freedom)

Get access

How did you experience the process of accessing the API ("time to
first request")?

 (Long / short, smooth / frustrating, simple / cumbersome)

Do you have any idea about the user agreement?

 (If so, what did you think of it?)

How do you see the API being provided via the traffic lab?

 (Together with other traffic APIs etc.?)

Which ev. possible improvements could be made to access the API?

Understand content, opportunities and limitations

For the API (s) you used, how did you go about understanding what
data was available and what could be done?

 (Documentation, code sample, sample response, API
console)

 Were these supports useful? How?

 What could be better to understand what the API contains?

What is your experience of understanding what the API contains,
what can and cannot be done with the API?

 (smooth / frustrating, simple / cumbersome, inspiring /
disappointing)

How did your assessment of the API's content affect your work with
your existing service?

 (Matched in terms of content, not possible to move)

 121

 Which ev. could improvements be made to better understand
the API's content, capabilities, and limitations?

Working with the API

Can you describe for which environment the service was developed?

 (This may have been described in the previous question
about the service)

 (Development environment / language, user platform,
integrated services (eg map services))

Given the environment, and the service you wanted to develop, how
did you experience the API?

 (Was there something in the service that was not compatible
with the API? What in that case?

Was it harder or easier than expected?

Did you use the existing examples?

 How did you experience these as support?

Could you develop what you wanted?

 If not why?

What is your overall experience of working with the API?

Production set-up

Do you think you will move the service towards the official APIs?

 (When in that case?)

 (If not, why? What would need to change for this to happen?)

What do you need to do to take the service in production against the
official API (regarding the API)?

 (Own server environment)

 (Changes in the service)

How do you experience the work that needs to be done to move a
service from scraping to official APIs?

Designing Platform Emulation

 122

 (Point out that this applies to work that is linked to the API,
after development of the service)

 (Lack of written agreements - good or bad)

Summary

What is your overall impression of the Swedish Transport
Administration's Open API?

Comments on your participation in the project?

 (interview 1, workshop, spec, launch, interview 2)

Want to add something more?

 123

APPENDIX G. DESIGN INTERVENTIONS AND
OUTCOME

1.1. Artificial Platform Demonstration

Following the launch of Trafiklab.se and its relatively quick success,
Sweden's Innovation Agency (Vinnova) was interested in funding
projects that would lead to more actors publishing public transport
data to third-party developers. One of Sweden's most important
actors was the Swedish Transport Administration's, particularly their
passenger train data. Trafiklab.se, together with researchers,
approached STA and discussed whether publishing train data on
Trafiklab.se was a viable option. The discussions led to a mutual
agreement on engaging in a joint problem formulation phase, and in
the case the results were positive, a pilot API would be developed and
tested on Trafiklab.se. However, at this point, no promises on more
permanent APIs were given.

At the outset of this investigation, third-party developers were not
granted access to rail-related data, while data stemming from roads
(such as accidents, road works, and traffic flows) were distributed
freely. The primary rationale for the difference in third-party
development on the rail and the road data was both due to 1)
historical organizational factors41, 2) uncertainties whether
ownership of data was with the STA or the train operators, and, with
mutual researcher-practitioner interest 3) how train data should
potentially be made available to third-party developers, as
commented by an STA strategist in charge of compiling a new third-
party development strategy:

41 The Swedish Transport Administration was the result of merger between
The Swedish Road Administration, The Swedish Rail Administration and
parts of the Swedish Maritime Administration, the Swedish Civil Aviation
Administration and the Swedish Institute for Communications Analysis. In
this context the Swedish Road Administration had a history of working
closely with third-party developers while the Swedish Rail Administration
did not.

Designing Platform Emulation

 122

 (Point out that this applies to work that is linked to the API,
after development of the service)

 (Lack of written agreements - good or bad)

Summary

What is your overall impression of the Swedish Transport
Administration's Open API?

Comments on your participation in the project?

 (interview 1, workshop, spec, launch, interview 2)

Want to add something more?

 123

APPENDIX G. DESIGN INTERVENTIONS AND
OUTCOME

1.1. Artificial Platform Demonstration

Following the launch of Trafiklab.se and its relatively quick success,
Sweden's Innovation Agency (Vinnova) was interested in funding
projects that would lead to more actors publishing public transport
data to third-party developers. One of Sweden's most important
actors was the Swedish Transport Administration's, particularly their
passenger train data. Trafiklab.se, together with researchers,
approached STA and discussed whether publishing train data on
Trafiklab.se was a viable option. The discussions led to a mutual
agreement on engaging in a joint problem formulation phase, and in
the case the results were positive, a pilot API would be developed and
tested on Trafiklab.se. However, at this point, no promises on more
permanent APIs were given.

At the outset of this investigation, third-party developers were not
granted access to rail-related data, while data stemming from roads
(such as accidents, road works, and traffic flows) were distributed
freely. The primary rationale for the difference in third-party
development on the rail and the road data was both due to 1)
historical organizational factors41, 2) uncertainties whether
ownership of data was with the STA or the train operators, and, with
mutual researcher-practitioner interest 3) how train data should
potentially be made available to third-party developers, as
commented by an STA strategist in charge of compiling a new third-
party development strategy:

41 The Swedish Transport Administration was the result of merger between
The Swedish Road Administration, The Swedish Rail Administration and
parts of the Swedish Maritime Administration, the Swedish Civil Aviation
Administration and the Swedish Institute for Communications Analysis. In
this context the Swedish Road Administration had a history of working
closely with third-party developers while the Swedish Rail Administration
did not.

Designing Platform Emulation

 124

We need to understand what needs developers have
regarding things like formats, delivery qualities, and
content. We also need to know why they need this
to understand the value of actually delivering it in a
better way, not just that they want something free
of charge.
Strategist at the STA

Despite this lack of an official third-party developer program for train
data, many rail-related apps relying on scraping had emerged. These
apps were written by independent developers, primarily driven by
self-experienced needs. A handful of these applications had gained a
high number of downloads in application marketplaces42. The
developer of one the leading smartphone applications explained why
he started and persevered in his efforts:

In the beginning, I was only developing to meet my
own needs. I do a lot of these little experiments out
of curiosity and without a commercial goal. It is
only when I see that it is being used and that there
is a demand that I start to think commercially
about it. But before the app made it to the top-ten
list on App Store, I didn't really believe that so many
other people had the same combination of being
both a control freak and frustrated that they
actually would search for an app that solved this for
them. But apparently, there were… And this is still
nothing you get rich by doing, but it's a service that
is enjoyable to manage since it is so appreciated.
You get in direct contact with other people in a way
that I haven't experienced previously. You get
thank-you-emails, it's quite bizarre but also makes
it very rewarding to manage this kind of service.
Developer A1

A more careful investigation of the existing apps revealed that the
apps typically implemented a standard set of use cases. These
included searching for a station based on a search string, getting

42 Tågtavlan (using scraped data) was even installed by default on all of the
STAs smartphones

 125

departures/arrivals from a station and platform, and getting a
particular train's status.

The data were scraped from a variety of interfaces. Some relied on an
obscure web page designed for mobile use that, due to its minimalistic
use of HTML, made the page less complex to parse and re-process (see

Figure 4).

Figure 4 - Web page scraped by several developers

Another common way of accessing data was through a JavaScript
interface at the STAs web page. This JavaScript interface was
introduced when the STA deployed a new web page where the
JavaScript interface was used to create more dynamic web service. In
parallel to launching more dynamic services, the STA provided an
unsanctioned API (albeit without developer documentation) to a
system named Orion. Orion was designed to supply a range of end-

2014-4-2 Trafikinformation för Hallsberg

http://www4.banverket.se/trafikinformation/(S(yhmmnw45puqpo455nhh4utzg))/WebPage/TrafficSituationCity.aspx?JF=7&station=74,hpbg&arrivals=1&nost… 1/6

Trafikläget vid Hallsberg « Åter Startsidan

Ankommande tåg » Visa avgående tåg

Tid Information Spår

08:20
Ankom
08:22

Tåg nr 164 från
Göteborg Herrljunga Skövde
SJ

SJ Regional
Spårändrat

4

08:28
Ankom
08:28

Tåg nr 121 från
Stockholm Flen Katrineholm
SJ

SJ Regional
Spårändrat

5a

08:31
Beräknas
08:48

Tåg nr 8163 från
Borlänge Ludvika Örebro
TKAB

TiB/Tågkomp.
Prel. tid

1

08:35 Tåg nr 423 från
Stockholm Flemingsberg Katrineholm
SJ

SJ Snabbtåg 2

08:39 Tåg nr 624 från
Karlstad Kristinehamn Degerfors
SJ

SJ Snabbtåg 3

08:43 Tåg nr 8192 från
Laxå
TKAB

TiB/Tågkomp. 5a

08:44 Tåg nr 91 från
Luleå Umeå Örnsköldsvik
SJ

SJ Nattåget 2

09:06 Tåg nr 8168 från
Mjölby Motala
TKAB

TiB/Tågkomp. 1

09:14 Tåg nr 163 från
Stockholm Västerås Örebro
SJ

SJ Regional 5a

09:17 Tåg nr 8165 från
Gävle Falun Borlänge
TKAB

TiB/Tågkomp. 4

10:00 Tåg nr 51 från
Stockholm Södertälje Syd Katrineholm

SJ InterCity 2

Spåruppgifterna är preliminära och kan snabbt ändras. När du
kommer till stationen måste du alltid kontrollera igen vilket spår tåget avgår från, eller
ankommer till.

Trafikmeddelanden

Södra Sverige, Banarbete

2014­03­31 | 19:24

HALLSBERG­SKÖVDE: Ett planerat arbete på kontaktledningen kan orsaka mindre
förseningar i tågtrafiken då det på del av sträckan blir spårbrist. Gäller fram till den
2/6­2014 För ytterligare information om ditt tåg se: trafikverket.se/Läget i trafiken.

Södra Sverige, Banarbete

2014­02­25 | 13:02

HERRLJUNGA ­ LIDKÖPING ­ MARIESTAD ­ GÅRDSJÖ En tillfällig tidtabell gäller för
tågtrafik på linjen Göteborg­Herrljunga­Lidköping­Mariestad­Laxå­Hallsberg­Örebro
via Kinnekullebanan med längre restider och bussersatta tåg. Detta beror på spårfel
mellan Håkantorp och Gårdsjö som medfört att hastigheten på banan sänkts.
Åtgärderna gäller tills ett antal spårarbeten kunnat utföras då bland annat räls,
slipers och växlar byts ut. Kontakta Västtrafik för mer information och tidtabell.
www.vasttrafik.se

Designing Platform Emulation

 124

We need to understand what needs developers have
regarding things like formats, delivery qualities, and
content. We also need to know why they need this
to understand the value of actually delivering it in a
better way, not just that they want something free
of charge.
Strategist at the STA

Despite this lack of an official third-party developer program for train
data, many rail-related apps relying on scraping had emerged. These
apps were written by independent developers, primarily driven by
self-experienced needs. A handful of these applications had gained a
high number of downloads in application marketplaces42. The
developer of one the leading smartphone applications explained why
he started and persevered in his efforts:

In the beginning, I was only developing to meet my
own needs. I do a lot of these little experiments out
of curiosity and without a commercial goal. It is
only when I see that it is being used and that there
is a demand that I start to think commercially
about it. But before the app made it to the top-ten
list on App Store, I didn't really believe that so many
other people had the same combination of being
both a control freak and frustrated that they
actually would search for an app that solved this for
them. But apparently, there were… And this is still
nothing you get rich by doing, but it's a service that
is enjoyable to manage since it is so appreciated.
You get in direct contact with other people in a way
that I haven't experienced previously. You get
thank-you-emails, it's quite bizarre but also makes
it very rewarding to manage this kind of service.
Developer A1

A more careful investigation of the existing apps revealed that the
apps typically implemented a standard set of use cases. These
included searching for a station based on a search string, getting

42 Tågtavlan (using scraped data) was even installed by default on all of the
STAs smartphones

 125

departures/arrivals from a station and platform, and getting a
particular train's status.

The data were scraped from a variety of interfaces. Some relied on an
obscure web page designed for mobile use that, due to its minimalistic
use of HTML, made the page less complex to parse and re-process (see

Figure 4).

Figure 4 - Web page scraped by several developers

Another common way of accessing data was through a JavaScript
interface at the STAs web page. This JavaScript interface was
introduced when the STA deployed a new web page where the
JavaScript interface was used to create more dynamic web service. In
parallel to launching more dynamic services, the STA provided an
unsanctioned API (albeit without developer documentation) to a
system named Orion. Orion was designed to supply a range of end-

2014-4-2 Trafikinformation för Hallsberg

http://www4.banverket.se/trafikinformation/(S(yhmmnw45puqpo455nhh4utzg))/WebPage/TrafficSituationCity.aspx?JF=7&station=74,hpbg&arrivals=1&nost… 1/6

Trafikläget vid Hallsberg « Åter Startsidan

Ankommande tåg » Visa avgående tåg

Tid Information Spår

08:20
Ankom
08:22

Tåg nr 164 från
Göteborg Herrljunga Skövde
SJ

SJ Regional
Spårändrat

4

08:28
Ankom
08:28

Tåg nr 121 från
Stockholm Flen Katrineholm
SJ

SJ Regional
Spårändrat

5a

08:31
Beräknas
08:48

Tåg nr 8163 från
Borlänge Ludvika Örebro
TKAB

TiB/Tågkomp.
Prel. tid

1

08:35 Tåg nr 423 från
Stockholm Flemingsberg Katrineholm
SJ

SJ Snabbtåg 2

08:39 Tåg nr 624 från
Karlstad Kristinehamn Degerfors
SJ

SJ Snabbtåg 3

08:43 Tåg nr 8192 från
Laxå
TKAB

TiB/Tågkomp. 5a

08:44 Tåg nr 91 från
Luleå Umeå Örnsköldsvik
SJ

SJ Nattåget 2

09:06 Tåg nr 8168 från
Mjölby Motala
TKAB

TiB/Tågkomp. 1

09:14 Tåg nr 163 från
Stockholm Västerås Örebro
SJ

SJ Regional 5a

09:17 Tåg nr 8165 från
Gävle Falun Borlänge
TKAB

TiB/Tågkomp. 4

10:00 Tåg nr 51 från
Stockholm Södertälje Syd Katrineholm

SJ InterCity 2

Spåruppgifterna är preliminära och kan snabbt ändras. När du
kommer till stationen måste du alltid kontrollera igen vilket spår tåget avgår från, eller
ankommer till.

Trafikmeddelanden

Södra Sverige, Banarbete

2014­03­31 | 19:24

HALLSBERG­SKÖVDE: Ett planerat arbete på kontaktledningen kan orsaka mindre
förseningar i tågtrafiken då det på del av sträckan blir spårbrist. Gäller fram till den
2/6­2014 För ytterligare information om ditt tåg se: trafikverket.se/Läget i trafiken.

Södra Sverige, Banarbete

2014­02­25 | 13:02

HERRLJUNGA ­ LIDKÖPING ­ MARIESTAD ­ GÅRDSJÖ En tillfällig tidtabell gäller för
tågtrafik på linjen Göteborg­Herrljunga­Lidköping­Mariestad­Laxå­Hallsberg­Örebro
via Kinnekullebanan med längre restider och bussersatta tåg. Detta beror på spårfel
mellan Håkantorp och Gårdsjö som medfört att hastigheten på banan sänkts.
Åtgärderna gäller tills ett antal spårarbeten kunnat utföras då bland annat räls,
slipers och växlar byts ut. Kontakta Västtrafik för mer information och tidtabell.
www.vasttrafik.se

Designing Platform Emulation

 126

user services with data and therefore fused a broad range of transport-
related datasets (such as accidents, train departures, weather
forecasts, and ferry operations) into this data lake. On top of Orion,
STA had developed a flexible query language (similar to SQL) that
could be used to retrieve all information from Orion, accessible
through JavaScript. As developers quickly discovered through trial-
and-error, Orion contained a wealth of useful information. Still, given
that Orion's interfaces were not intended for external use, developers
needed to single-handedly figure out the underlying information
model's workings and query language through trial-and-error
exploration. Eventually, this lack of documentation prompted a more
experienced third-party developer to reverse-engineer the API and
provide instructions on how to support everyday rail traveler use
cases43 and thereby paving the way for inexperienced developers to
use this resource more efficiently.

Two of the leading app developers, however, had not only created
applications based on the scraped data. They also created "pirate
APIs" on top of the unsanctioned data to use in their applications.
These APIs were in some cases also offered to other third-party
developers that hence did not have engage in time-consuming data
retrieval activities, as commented by one of the "pirate API"
developers:

I have published this API based on the massive
effort I have put in to get some useful data out of
this messy, underlying dataset, so that no one else
will have to do again. So, I want to share what I
have done, so that others may do something fun or
useful or whatever it may be. My basic frustration is
that, as a traveler, I do not get the information I
think I deserve, not before, not during, or after my
train ride. But I am just a single individual, and I
can't possibly do all apps for all platforms or
services or whatever it may be that people need.
Developer A2

43 See http://tagtider.net/blogg/tjanster/trafikverket-exponerar-api/ and
https://gist.github.com/RickardPettersson/1247081

 127

These unsanctioned APIs had a very similar structure and
corresponded to the use cases implemented in popular apps (see
Table 15). Also, these interfaces were marked by quite limited data
models, only conveying the essential data points to implement a
specific use case (see Figure 5)

Figure 5 - Tågtider API, Retrieving Arlanda C station

 1

 2 GET /stations/9.xml

 3

 4 <?xml version="1.0" encoding="utf-8"?>

 5 <response>

 6 <stations>

 7 <station>

 8 <id>9</id>

 9 <name>Arlanda C</name>

 10 <code>74,arnc</code>

 11 <slug>arlanda-c</slug>

 12 <lat>59.6496</lat>

 13 <lng>17.9292</lng>

 14 </station>

 15 </stations>

 16 </response>

Designing Platform Emulation

 126

user services with data and therefore fused a broad range of transport-
related datasets (such as accidents, train departures, weather
forecasts, and ferry operations) into this data lake. On top of Orion,
STA had developed a flexible query language (similar to SQL) that
could be used to retrieve all information from Orion, accessible
through JavaScript. As developers quickly discovered through trial-
and-error, Orion contained a wealth of useful information. Still, given
that Orion's interfaces were not intended for external use, developers
needed to single-handedly figure out the underlying information
model's workings and query language through trial-and-error
exploration. Eventually, this lack of documentation prompted a more
experienced third-party developer to reverse-engineer the API and
provide instructions on how to support everyday rail traveler use
cases43 and thereby paving the way for inexperienced developers to
use this resource more efficiently.

Two of the leading app developers, however, had not only created
applications based on the scraped data. They also created "pirate
APIs" on top of the unsanctioned data to use in their applications.
These APIs were in some cases also offered to other third-party
developers that hence did not have engage in time-consuming data
retrieval activities, as commented by one of the "pirate API"
developers:

I have published this API based on the massive
effort I have put in to get some useful data out of
this messy, underlying dataset, so that no one else
will have to do again. So, I want to share what I
have done, so that others may do something fun or
useful or whatever it may be. My basic frustration is
that, as a traveler, I do not get the information I
think I deserve, not before, not during, or after my
train ride. But I am just a single individual, and I
can't possibly do all apps for all platforms or
services or whatever it may be that people need.
Developer A2

43 See http://tagtider.net/blogg/tjanster/trafikverket-exponerar-api/ and
https://gist.github.com/RickardPettersson/1247081

 127

These unsanctioned APIs had a very similar structure and
corresponded to the use cases implemented in popular apps (see
Table 15). Also, these interfaces were marked by quite limited data
models, only conveying the essential data points to implement a
specific use case (see Figure 5)

Figure 5 - Tågtider API, Retrieving Arlanda C station

 1

 2 GET /stations/9.xml

 3

 4 <?xml version="1.0" encoding="utf-8"?>

 5 <response>

 6 <stations>

 7 <station>

 8 <id>9</id>

 9 <name>Arlanda C</name>

 10 <code>74,arnc</code>

 11 <slug>arlanda-c</slug>

 12 <lat>59.6496</lat>

 13 <lng>17.9292</lng>

 14 </station>

 15 </stations>

 16 </response>

Designing Platform Emulation

 128

Coherent
search

Tåg.info API Tågtider API

Get all
stations

http://api.tagtider.net/v1/
stations.xml

http://tåg.info/
stationer.xml?apikey=[api
key]

Get a given
station

http://api.tagtider.net/v1/
stations/[station id].xml

http://tåg.info/[station_na
me].xml? apikey=[apikey]

Get
departures
and arrivals
from a given
station

http://api.tagtider.net/v1/
stations/[station id]/
transfers/

http://tåg.info/[station
name].xml?
apikey=[apikey]

Get
departures
from a given
station

http://api.tagtider.net/v1/
stations/[station id]/
transfers/departures

-

Get arrivals
from a given
station

http://api.tagtider.net/v1/
stations/[station id]/
transfers/arrivals

-

Get all
current trains

- http://tåg.info/tag.XML?a
pikey=[apikey]

Get a given
train

- http://tåg.info/[train
number].xml?apikey=[api
key]

Get train
operators

http://api.tagtider.net/v1/
operators.xml

-

Get a given
train
operator

http://api.tagtider.net/v1/
operators/[operator
id].xml

-

Table 15 - Coherent search manifestations in unsanctioned APIs

When asked about what they would like to see in an official API,
developers stressed capabilities focusing on simplicity and immediate

 129

problem-solving. The developer of the most downloaded app for
WindowsPhone expanded on this matter:

Well, simplicity is super-important – although it's
OK if you can choose whether to get JSON or XML.
I really prefer simple functions that actually work
over more advanced stuff. Some companies expose
their entire domain model to third parties, and I'm
sure their domain is super clear to the company but
not really understandable to anyone else. So, I
would prefer companies who design their APIs for
someone who doesn't know anything about their
domain
Developer A3

Another developer described the characteristics of an attractive API
to support common use cases:

What is important to me is whether the API reflects
the use case; if you start from what most users want
to do, such as travelers who need to travel from
point A to point B, be able to download those data
as quickly as possible and get it via a single API call
is ideal, instead of a call that just returns a lot of
information about a terminal and then you have to
look further from there - is not as attractive.
Developer A4

The STA, on their part, experienced unsanctioned third-party
developers as problematic from two perspectives:

First, as this development was anonymous, the STA could not
establish regulated third-party developer relationships – a stark
contrast to the STA's experiences from road data. For road data, the
STA did periodic surveys and arranged conferences to understand
third-party developers' satisfaction with the DATEX II feed from the
STA. The STA wanted to achieve similar types of relationships with
third-party developers using rail data.

Designing Platform Emulation

 128

Coherent
search

Tåg.info API Tågtider API

Get all
stations

http://api.tagtider.net/v1/
stations.xml

http://tåg.info/
stationer.xml?apikey=[api
key]

Get a given
station

http://api.tagtider.net/v1/
stations/[station id].xml

http://tåg.info/[station_na
me].xml? apikey=[apikey]

Get
departures
and arrivals
from a given
station

http://api.tagtider.net/v1/
stations/[station id]/
transfers/

http://tåg.info/[station
name].xml?
apikey=[apikey]

Get
departures
from a given
station

http://api.tagtider.net/v1/
stations/[station id]/
transfers/departures

-

Get arrivals
from a given
station

http://api.tagtider.net/v1/
stations/[station id]/
transfers/arrivals

-

Get all
current trains

- http://tåg.info/tag.XML?a
pikey=[apikey]

Get a given
train

- http://tåg.info/[train
number].xml?apikey=[api
key]

Get train
operators

http://api.tagtider.net/v1/
operators.xml

-

Get a given
train
operator

http://api.tagtider.net/v1/
operators/[operator
id].xml

-

Table 15 - Coherent search manifestations in unsanctioned APIs

When asked about what they would like to see in an official API,
developers stressed capabilities focusing on simplicity and immediate

 129

problem-solving. The developer of the most downloaded app for
WindowsPhone expanded on this matter:

Well, simplicity is super-important – although it's
OK if you can choose whether to get JSON or XML.
I really prefer simple functions that actually work
over more advanced stuff. Some companies expose
their entire domain model to third parties, and I'm
sure their domain is super clear to the company but
not really understandable to anyone else. So, I
would prefer companies who design their APIs for
someone who doesn't know anything about their
domain
Developer A3

Another developer described the characteristics of an attractive API
to support common use cases:

What is important to me is whether the API reflects
the use case; if you start from what most users want
to do, such as travelers who need to travel from
point A to point B, be able to download those data
as quickly as possible and get it via a single API call
is ideal, instead of a call that just returns a lot of
information about a terminal and then you have to
look further from there - is not as attractive.
Developer A4

The STA, on their part, experienced unsanctioned third-party
developers as problematic from two perspectives:

First, as this development was anonymous, the STA could not
establish regulated third-party developer relationships – a stark
contrast to the STA's experiences from road data. For road data, the
STA did periodic surveys and arranged conferences to understand
third-party developers' satisfaction with the DATEX II feed from the
STA. The STA wanted to achieve similar types of relationships with
third-party developers using rail data.

Designing Platform Emulation

 130

Since they already have our data, it must be much
better for both them and us that we agree on the
terms and liabilities so that we can communicate
when we change our interfaces. We are not able to
get in touch with our customers, and we don't know
who they are; we don't get any feedback. It is much
better to have a relationship for both parties; we
believe this, where we can negotiate each party's
liabilities and resolve issues as they occur.
Head of Traffic Information services, STA

Second, the scraped interfaces were fragile and subject to change that
periodically caused third-party applications to malfunction, which in
turn, given the unsanctioned apps’ popularity had invoked traveler
annoyances. To this end, and the fact that the access was unregulated,
the STA started to contact third-party developers of popular
applications before launching redesigns of resources known to be
used by scrapers. This interaction was necessary since hundreds of
thousands of travelers would be affected if any of these applications
malfunctioned, as commented by one developer:

They have contacted me before web server updates
to check that nothing breaks on my side, that it
works as intended, and as well as providing me
warnings when changes are in progress.
Developer A1

Based on this background material, the product manager of
Trafiklab.se and I assessed that the primary problem for the STA was
the lack of access to emulation capabilities regarding the coherent
searches that had emerged during app development. Moreover, given
the uncertainty regarding how, if at all, the STA would offer real-time
railway data to third-party developers, there was a need to provide
these data by providing access to them. This way, the STA could
decide what data, in what form, and under which terms and
conditions the potentially increased openness could be implemented.

To materialize the foreseen solution, we drew on Trafiklab.se and its
capabilities. More specifically, our solution blueprint included a new
software layer residing at Trafiklab.se's cloud software provider,
ApiGee. This layer would be used to effectively emulate the

 131

capabilities that third-party developers desire through an interface
offering access to coherent searches (like those exhibited in Table 15).
Integration protocols would be a bare minimum, containing the
coordinates and station name strings necessary to present correct
traveler information.

On 2012-04-19, the project held a joint workshop summoning nine
representatives from STA, two from Trafiklab.se, and myself. This
workshop's idea was to bring different stakeholders together for the
first time and test the design principles towards both third-party
developers and more stakeholders within STA.

During the workshop, the suggested solution blueprint (in the form
of a PowerPoint presentation, presenting both capabilities and overall
implementation structures) was introduced to the audience.
Regarding access openness through Trafiklab.se, developers were
quite content with this type of openness regime. Regarding solution
search mechanisms, the problem formulation phase revealed that
only a limited number of use cases were implemented recurrently
across third-party applications (such as list stations by name, recent
departures and arrivals for each station and platform, and the status
of a given train). Our idea was to package these recurrent use cases as
dedicated REST endpoints to minimize developers' need to invest in
industry-specific domain knowledge and create interfaces that would
be suitable for direct consumption from mobile clients. This idea was
also corroborated by the unsanctioned APIs that had emerged and
had a very similar structure.

While the more experienced developers confirmed the value of
having the coherent search interface as a natural entry point for novel
developers, they were surprisingly critical towards having such a
design as the only approach. More specifically, they wanted to have
access to all data points to design new types of services. One
developer explained this position to attendees of the workshop:

Designing Platform Emulation

 130

Since they already have our data, it must be much
better for both them and us that we agree on the
terms and liabilities so that we can communicate
when we change our interfaces. We are not able to
get in touch with our customers, and we don't know
who they are; we don't get any feedback. It is much
better to have a relationship for both parties; we
believe this, where we can negotiate each party's
liabilities and resolve issues as they occur.
Head of Traffic Information services, STA

Second, the scraped interfaces were fragile and subject to change that
periodically caused third-party applications to malfunction, which in
turn, given the unsanctioned apps’ popularity had invoked traveler
annoyances. To this end, and the fact that the access was unregulated,
the STA started to contact third-party developers of popular
applications before launching redesigns of resources known to be
used by scrapers. This interaction was necessary since hundreds of
thousands of travelers would be affected if any of these applications
malfunctioned, as commented by one developer:

They have contacted me before web server updates
to check that nothing breaks on my side, that it
works as intended, and as well as providing me
warnings when changes are in progress.
Developer A1

Based on this background material, the product manager of
Trafiklab.se and I assessed that the primary problem for the STA was
the lack of access to emulation capabilities regarding the coherent
searches that had emerged during app development. Moreover, given
the uncertainty regarding how, if at all, the STA would offer real-time
railway data to third-party developers, there was a need to provide
these data by providing access to them. This way, the STA could
decide what data, in what form, and under which terms and
conditions the potentially increased openness could be implemented.

To materialize the foreseen solution, we drew on Trafiklab.se and its
capabilities. More specifically, our solution blueprint included a new
software layer residing at Trafiklab.se's cloud software provider,
ApiGee. This layer would be used to effectively emulate the

 131

capabilities that third-party developers desire through an interface
offering access to coherent searches (like those exhibited in Table 15).
Integration protocols would be a bare minimum, containing the
coordinates and station name strings necessary to present correct
traveler information.

On 2012-04-19, the project held a joint workshop summoning nine
representatives from STA, two from Trafiklab.se, and myself. This
workshop's idea was to bring different stakeholders together for the
first time and test the design principles towards both third-party
developers and more stakeholders within STA.

During the workshop, the suggested solution blueprint (in the form
of a PowerPoint presentation, presenting both capabilities and overall
implementation structures) was introduced to the audience.
Regarding access openness through Trafiklab.se, developers were
quite content with this type of openness regime. Regarding solution
search mechanisms, the problem formulation phase revealed that
only a limited number of use cases were implemented recurrently
across third-party applications (such as list stations by name, recent
departures and arrivals for each station and platform, and the status
of a given train). Our idea was to package these recurrent use cases as
dedicated REST endpoints to minimize developers' need to invest in
industry-specific domain knowledge and create interfaces that would
be suitable for direct consumption from mobile clients. This idea was
also corroborated by the unsanctioned APIs that had emerged and
had a very similar structure.

While the more experienced developers confirmed the value of
having the coherent search interface as a natural entry point for novel
developers, they were surprisingly critical towards having such a
design as the only approach. More specifically, they wanted to have
access to all data points to design new types of services. One
developer explained this position to attendees of the workshop:

Designing Platform Emulation

 132

I want an API to present more exhaustive data that
don't have to be easy to understand – instead, I
would like a focus on correctness and structure, and
this goes for things like complete timestamps, not
just hours and minutes but complete timestamps
including dates. Also, I've seen 'train groups' in
Orion, and this is something that would help
immensely.
Developer A1

As illustrated by the viewpoint above, the more precise formats for
such flexible searches appeared less critical. The developers were
assigned to break out of the entire group and discuss what formats
would be of interest for such capabilities. During these discussions, a
joint position started to emerge, where data could be pretty crude, as
put by one of the developers:

I would be super happy if that freakin' HTML is just
transformed into XML so that everything looked
exactly the same. That would be enough for me. I do
not have higher requirements than that for an API
at the moment. Of course, they can develop this
further as much as they like and fine-tune and gold-
spray it, but I don't think it has to be so damn
advanced.
Developer A2

After these developer-internal discussions, one of the developers
summarized the talks to the other participants this way:

Regarding formats, we believe that there should be
a dedicated API with all data, but the exact format
is much less important. But HTML is not a
preferred format in our group; we don't want to
scrape web pages.
Developer A3

The reception of this event and the blueprint were overall positive.
All developers agreed to participate in potential further development
activities by providing feedback and input on how the STA could
make real-time railway data available for third-party developers.
Similarly, the STA appreciated the format and the ideas brought

 133

forward. One participant from the STA was in charge of compiling a
new third-party developer strategy for the STA. After the workshop,
he provided feedback by email stating that:

This was the best workshop of the year. I felt that
that the meeting gave a clearer picture of the needs
of the represented developer group and what
possibilities their engagement may lead to.
Third-Party Development Strategist, the STA

1.2. Authentic Platform Development

Given these overall positive signals from workshop participants, the
product owner of Trafiklab and I started to work on a suggestion on
how to materialize a more authentic beta version. We sent a refined
solution blueprint suggestion some two weeks after the workshop to
the head of passenger information at the STA (also a workshop
participant).

1.2.1. Problem formulation

The blueprint suggested the above-mentioned system, Orion, as the
underlying resource. Moreover, Trafiklab.se contained the
architectural modules necessary to emulate the desired capabilities.
Our suggestion also included a request to engage personnel within
the STA to become part of the ADR team that I would lead. Just one
day after receiving our offer, she gave the go-ahead to start the design
and deployment of a live beta version, alongside access to the
required personnel from the STA.

After forming the ADR team, we started to reformulate the problem
to develop the beta version. While many of the assumptions
addressed in the alpha version held true, the need for developers to
also be able to get platform access to beyond these common use cases
had surfaced. However, the participating developers also expressed
that this missing feature could be a less sophisticated capability; the
core issue was to have all data points attainable from the API.

1.2.2. Building, Intervention and Evaluation

As a next step, we started to address the more specific platform design
aspects. Given the problem formulation, we decided to include the
following elements:

Designing Platform Emulation

 132

I want an API to present more exhaustive data that
don't have to be easy to understand – instead, I
would like a focus on correctness and structure, and
this goes for things like complete timestamps, not
just hours and minutes but complete timestamps
including dates. Also, I've seen 'train groups' in
Orion, and this is something that would help
immensely.
Developer A1

As illustrated by the viewpoint above, the more precise formats for
such flexible searches appeared less critical. The developers were
assigned to break out of the entire group and discuss what formats
would be of interest for such capabilities. During these discussions, a
joint position started to emerge, where data could be pretty crude, as
put by one of the developers:

I would be super happy if that freakin' HTML is just
transformed into XML so that everything looked
exactly the same. That would be enough for me. I do
not have higher requirements than that for an API
at the moment. Of course, they can develop this
further as much as they like and fine-tune and gold-
spray it, but I don't think it has to be so damn
advanced.
Developer A2

After these developer-internal discussions, one of the developers
summarized the talks to the other participants this way:

Regarding formats, we believe that there should be
a dedicated API with all data, but the exact format
is much less important. But HTML is not a
preferred format in our group; we don't want to
scrape web pages.
Developer A3

The reception of this event and the blueprint were overall positive.
All developers agreed to participate in potential further development
activities by providing feedback and input on how the STA could
make real-time railway data available for third-party developers.
Similarly, the STA appreciated the format and the ideas brought

 133

forward. One participant from the STA was in charge of compiling a
new third-party developer strategy for the STA. After the workshop,
he provided feedback by email stating that:

This was the best workshop of the year. I felt that
that the meeting gave a clearer picture of the needs
of the represented developer group and what
possibilities their engagement may lead to.
Third-Party Development Strategist, the STA

1.2. Authentic Platform Development

Given these overall positive signals from workshop participants, the
product owner of Trafiklab and I started to work on a suggestion on
how to materialize a more authentic beta version. We sent a refined
solution blueprint suggestion some two weeks after the workshop to
the head of passenger information at the STA (also a workshop
participant).

1.2.1. Problem formulation

The blueprint suggested the above-mentioned system, Orion, as the
underlying resource. Moreover, Trafiklab.se contained the
architectural modules necessary to emulate the desired capabilities.
Our suggestion also included a request to engage personnel within
the STA to become part of the ADR team that I would lead. Just one
day after receiving our offer, she gave the go-ahead to start the design
and deployment of a live beta version, alongside access to the
required personnel from the STA.

After forming the ADR team, we started to reformulate the problem
to develop the beta version. While many of the assumptions
addressed in the alpha version held true, the need for developers to
also be able to get platform access to beyond these common use cases
had surfaced. However, the participating developers also expressed
that this missing feature could be a less sophisticated capability; the
core issue was to have all data points attainable from the API.

1.2.2. Building, Intervention and Evaluation

As a next step, we started to address the more specific platform design
aspects. Given the problem formulation, we decided to include the
following elements:

Designing Platform Emulation

 134

Regarding governance, we found support from the developers in both
interviews and the workshop to implement an access openness like in
the SL case. Thus, we concluded that we could mimic such
governance concerning platform access. However, the coherent
search capabilities were a bit more complex construct. The interviews
hinted at the concept of both concerned integration capabilities and
extracting the correct data. This finding was corroborated and
detailed in the video observations from TravelHack. Besides catering
for more general ease of integration, we concluded that the API
needed quality-assured "shortcuts" to datasets with high developer
demand. Thus, we decided to largely reverse-engineer the current app
behaviors and "pirate" API designs and offer these as interfaces in beta
platform architecture (see Table 16).

 135

Coherent search TrainInfo API
https://api.trafiklab.se/trafikverket/traininfo

Get all stations /stations/listAllCurrentlyUsed]?key=[api_key]

Search station by
name or
coordinates
(bounding box)

/stations/stations/search?name=[search_string]&
key=[api_key]
/stations/stations/search?lat_start=[SWEREFF99
_lat]&lat_end=[SWEREFF99_lat]&lon_start=
[SWEREFF99_lon]&on_end=[SWEREFF99_lon]&
key=[api_key]

Get a given station
by name or
signature44

/stations/stations/[name]/?key=[api_key]
/stations/stations/[sign]/]&?key=[api_key]

Get departures from
a given station

/stations/stations/[name]/
departures/key=[api_key]
/stations/stations/[sign]/
departures/key=[api_key]

Get arrivals from a
given station

/stations/stations/[name]/track/[track_id]/
arrivals/key=[api_key]
/stations/stations/[sign]/track/[track_id]/
arrivals/key=[api_key]

Get all operational
tracks at a given
station

/stations/stations/[name]/
listCurrentUsedTracks?key=[api_key]
/stations/stations/[sign]/
listCurrentUsedTracks?key=[api_key]

Get departures from
a given track

/stations/stations/[name]/track/[track_id]/
departures/key=[api_key]
/stations/stations/[sign]/track/[track_id]/
departures/key=[api_key]

Get arrivals from a
given track

/stations/stations/[name]/arrivals/key=[api_key]
/stations/stations/[sign]/arrivals/key=[api_key]

Get a given train /trains/[train_id]/?key=[api_key]

Table 16 - Coherent search implementations

Given the unanticipated developer response on the constraining
effect of merely publishing coherent searches, we concluded that the
platform also needed some mechanism to channel all data to allow

Designing Platform Emulation

 134

Regarding governance, we found support from the developers in both
interviews and the workshop to implement an access openness like in
the SL case. Thus, we concluded that we could mimic such
governance concerning platform access. However, the coherent
search capabilities were a bit more complex construct. The interviews
hinted at the concept of both concerned integration capabilities and
extracting the correct data. This finding was corroborated and
detailed in the video observations from TravelHack. Besides catering
for more general ease of integration, we concluded that the API
needed quality-assured "shortcuts" to datasets with high developer
demand. Thus, we decided to largely reverse-engineer the current app
behaviors and "pirate" API designs and offer these as interfaces in beta
platform architecture (see Table 16).

 135

Coherent search TrainInfo API
https://api.trafiklab.se/trafikverket/traininfo

Get all stations /stations/listAllCurrentlyUsed]?key=[api_key]

Search station by
name or
coordinates
(bounding box)

/stations/stations/search?name=[search_string]&
key=[api_key]
/stations/stations/search?lat_start=[SWEREFF99
_lat]&lat_end=[SWEREFF99_lat]&lon_start=
[SWEREFF99_lon]&on_end=[SWEREFF99_lon]&
key=[api_key]

Get a given station
by name or
signature44

/stations/stations/[name]/?key=[api_key]
/stations/stations/[sign]/]&?key=[api_key]

Get departures from
a given station

/stations/stations/[name]/
departures/key=[api_key]
/stations/stations/[sign]/
departures/key=[api_key]

Get arrivals from a
given station

/stations/stations/[name]/track/[track_id]/
arrivals/key=[api_key]
/stations/stations/[sign]/track/[track_id]/
arrivals/key=[api_key]

Get all operational
tracks at a given
station

/stations/stations/[name]/
listCurrentUsedTracks?key=[api_key]
/stations/stations/[sign]/
listCurrentUsedTracks?key=[api_key]

Get departures from
a given track

/stations/stations/[name]/track/[track_id]/
departures/key=[api_key]
/stations/stations/[sign]/track/[track_id]/
departures/key=[api_key]

Get arrivals from a
given track

/stations/stations/[name]/arrivals/key=[api_key]
/stations/stations/[sign]/arrivals/key=[api_key]

Get a given train /trains/[train_id]/?key=[api_key]

Table 16 - Coherent search implementations

Given the unanticipated developer response on the constraining
effect of merely publishing coherent searches, we concluded that the
platform also needed some mechanism to channel all data to allow

Designing Platform Emulation

 136

for flexible searches. However, based on the unanimous statement
from the developers participating in the workshop that they would be
pretty content with any format other than HTML, we also
hypothesized that such an arrangement could be cruder and, to this
end, decided to publish information objects in their original form,
channeled through an interface. This change consequently led to a
shift in the design framework to include flexible search capabilities.

Flexible search TrainInfo API
https://api.trafiklab.se/trafikverket/trainexport

Get all messages /messages?key=[api_key]

(retrieves all train traffic messages, regarding, e.g.,
track work, train disturbances, or facility
malfunctions)

Get all stations /stations?key=[api_key]

(retrieves all stations in Sweden, including those non-
operational)

Get all traffic
information

/traffic?key=[api_key]

(retrieves all current timetable information, e.g.,
information on trains at traffic junctions (stations,
stops). Each item corresponds to a specific train at a
specific traffic location).

Table 17 - Flexible search implementations

In the alpha version workshop, the blueprint was indeed
demonstrated to the participants. However, the ADR team saw two
reasons to evaluate the most important parts of the foreseen solution
further before realizing it further. First, the workshop had not
outlined the interfaces in detail, and TrainExport had not been part
of the prepared workshop material. Second, only a handful of
developers participated, and it was necessary to seek feedback from a

44 Signature is an institutionalized way of assigning all stations 2-4 letters,
used as identifier for that station. For instance, the signature of Stockholm
Central Station is CST.

 137

wider circle of developers. To this end, the interface specifications
were made publicly available on an open internet forum45 to gather
input.

Of the received replies, the feedback was overall positive. There were
individual suggestions to use additional technical standards, such as
GeoJSON, JSON Schemas, and HTTP caching headers (that the
ApiGee platform did not support and thus could not be
implemented). Another request, however, appeared twice. This
request concerned a task that developers currently struggled with,
detecting changes since their last API call. One developer elaborated
this request:

It would be great if each line could have a
timestamp that says when the line was last
modified, corresponding to "UpdatedTime" in
KartDB.messages. You are often interested in what
has happened since the last known time, and today
there is no reliable way to make such a selection
from Orion. The field must therefore be assigned
the current time when the line is created, and then
updated each time the line is changed - e.g., when
RealTimeArrival / RealTimeDivision updated, new
estimated times are entered, status messages
change, etc. Hopefully, it's a pretty simple thing to
add, and one such field would probably save a lot of
bandwidth and server capacity for the STA because
it allows developers to download only
delta/differences instead of the entire train traffic
model at each call.
Theodor Storm46

More specifically, this request concerned adding a timestamp when
each data item was updated. This way, developers would only need to
retrieve items updated since their last request (or any other arbitrary
point in time). Although seemingly simple, the STA was not able to
implement this due to underlying architectural constraints. Orion

45 https://groups.google.com/forum/#!forum/jarnvags-api-trafiklab
46 This user’s statement is not anonymized since it is posted on open
discussion group

Designing Platform Emulation

 136

for flexible searches. However, based on the unanimous statement
from the developers participating in the workshop that they would be
pretty content with any format other than HTML, we also
hypothesized that such an arrangement could be cruder and, to this
end, decided to publish information objects in their original form,
channeled through an interface. This change consequently led to a
shift in the design framework to include flexible search capabilities.

Flexible search TrainInfo API
https://api.trafiklab.se/trafikverket/trainexport

Get all messages /messages?key=[api_key]

(retrieves all train traffic messages, regarding, e.g.,
track work, train disturbances, or facility
malfunctions)

Get all stations /stations?key=[api_key]

(retrieves all stations in Sweden, including those non-
operational)

Get all traffic
information

/traffic?key=[api_key]

(retrieves all current timetable information, e.g.,
information on trains at traffic junctions (stations,
stops). Each item corresponds to a specific train at a
specific traffic location).

Table 17 - Flexible search implementations

In the alpha version workshop, the blueprint was indeed
demonstrated to the participants. However, the ADR team saw two
reasons to evaluate the most important parts of the foreseen solution
further before realizing it further. First, the workshop had not
outlined the interfaces in detail, and TrainExport had not been part
of the prepared workshop material. Second, only a handful of
developers participated, and it was necessary to seek feedback from a

44 Signature is an institutionalized way of assigning all stations 2-4 letters,
used as identifier for that station. For instance, the signature of Stockholm
Central Station is CST.

 137

wider circle of developers. To this end, the interface specifications
were made publicly available on an open internet forum45 to gather
input.

Of the received replies, the feedback was overall positive. There were
individual suggestions to use additional technical standards, such as
GeoJSON, JSON Schemas, and HTTP caching headers (that the
ApiGee platform did not support and thus could not be
implemented). Another request, however, appeared twice. This
request concerned a task that developers currently struggled with,
detecting changes since their last API call. One developer elaborated
this request:

It would be great if each line could have a
timestamp that says when the line was last
modified, corresponding to "UpdatedTime" in
KartDB.messages. You are often interested in what
has happened since the last known time, and today
there is no reliable way to make such a selection
from Orion. The field must therefore be assigned
the current time when the line is created, and then
updated each time the line is changed - e.g., when
RealTimeArrival / RealTimeDivision updated, new
estimated times are entered, status messages
change, etc. Hopefully, it's a pretty simple thing to
add, and one such field would probably save a lot of
bandwidth and server capacity for the STA because
it allows developers to download only
delta/differences instead of the entire train traffic
model at each call.
Theodor Storm46

More specifically, this request concerned adding a timestamp when
each data item was updated. This way, developers would only need to
retrieve items updated since their last request (or any other arbitrary
point in time). Although seemingly simple, the STA was not able to
implement this due to underlying architectural constraints. Orion

45 https://groups.google.com/forum/#!forum/jarnvags-api-trafiklab
46 This user’s statement is not anonymized since it is posted on open
discussion group

Designing Platform Emulation

 138

was only a cached layer of information, and the entire dataset of
Orion was replaced periodically, not just the records that had
changed since Orion's last update. Consequently, this seemingly
simple field addition required a significant redesign of the underlying
system that was not feasible under the project budget constraints.

Given the otherwise generally positive reception, the ADR team
started to materialize the architecture of the outlined solution. While
the data itself was readily available within the STA, their current
systems architecture could not afford to support it within the project's
resource boundaries. For this reason, we, as described above, used the
architecture of Trafiklab that could host the emulated capabilities.

From STAs system architecture perspective, their architecture was
inverted through a new module facing application developers. This
module was a cloud-based service hosted by ApiGee, a company
selling platforms that host and scale APIs. This new module handled
access control, caching of data (to relieve the underlying system of
redundant queries). In addition, this module provided the two new
interfaces, TrainInfo and TrainExport, facing third-party developers,
yet decoupled from the STAs underlying systems. Based on the
functional specification displayed on the open web forum, the ADR
team's Orion expert from the STA, together with the Trafiklab
architect, crafted a technical specification targeting ApiGee's
engineers. This document specified how to extract data
corresponding to the coherent and flexible searches, including how
the ApiGee interfaces should offer these interfaces as REST APIs (the
actual transformation was carried out by ApiGee personnel).

While the use cases were possible to implement, the solution could
not provide geographical coordinates in developer-friendly formats
but instead used the SWEREF99 grid for geographical positioning.
SWEREF99 is an official Swedish positioning system used by national
and local authorities and has thus become a de facto standard for
publicly administered digital geographic data. While the widespread
usage of SWEREF99 among Swedish authorities enables systems
operability on a national level, most modern technology platforms
instead use the American WGS84 standard for geographical
positioning. This fact meant that the beta version's use of SWEREF99
required all developers to resolve this conversion, a non-trivial task.

 139

To this end, we included references to existing conversion code
libraries as integration protocols that could help resolve this
translation.

Overall, the solution would also use other, existing integration
protocols of Trafiklab.se to enable third-party development. This
infrastructure included an API console at Trafiklab.se (that allowed
developers to execute API calls without a development environment)
and the user registration functionality (where API keys could be
dispensed). Finally, we also created a small tutorial that allowed
developers opting for coherent searches to expedite their
development process, alongside documentation of the data models.

Figure 6 - -The Beta Version Architecture

The solution was officially released in the late autumn of 2012. Anyone
could register for the API, and in three months, 59 developers had
registered. For evaluation, I contacted developers who had signed up
for the API, inquiring into whether they would like to participate in
an interview. Out of the 59 registered developers, 17 agreed to
participate in an interview. Among these, 8 developers had primarily
used the TrainInfo interface, 3 had focused on TrainExport, 2 used
both, and 4 had registered but not used the APIs to the extent that
they could provide evaluation feedback.

Summarizing their impressions, users that had focused on the
TrainInfo interface found it utile. In this category, two developers of

Third-Party
Applications

Trafiklab.se

User
Registration

Coordinate
Conversion

Code

ApiGee (API Gateway)

Authentication

Rate Limiting

TrainInfo TrainExport

ORION

Trafikverket.se

Legend

TrainInfo TrainExport

Interface

New modules

Existing Modules

Integration Protocols

End-user service

QueryInterface

Coherent
Search
Tutorial

API
Console

Documen-
tation

Designing Platform Emulation

 138

was only a cached layer of information, and the entire dataset of
Orion was replaced periodically, not just the records that had
changed since Orion's last update. Consequently, this seemingly
simple field addition required a significant redesign of the underlying
system that was not feasible under the project budget constraints.

Given the otherwise generally positive reception, the ADR team
started to materialize the architecture of the outlined solution. While
the data itself was readily available within the STA, their current
systems architecture could not afford to support it within the project's
resource boundaries. For this reason, we, as described above, used the
architecture of Trafiklab that could host the emulated capabilities.

From STAs system architecture perspective, their architecture was
inverted through a new module facing application developers. This
module was a cloud-based service hosted by ApiGee, a company
selling platforms that host and scale APIs. This new module handled
access control, caching of data (to relieve the underlying system of
redundant queries). In addition, this module provided the two new
interfaces, TrainInfo and TrainExport, facing third-party developers,
yet decoupled from the STAs underlying systems. Based on the
functional specification displayed on the open web forum, the ADR
team's Orion expert from the STA, together with the Trafiklab
architect, crafted a technical specification targeting ApiGee's
engineers. This document specified how to extract data
corresponding to the coherent and flexible searches, including how
the ApiGee interfaces should offer these interfaces as REST APIs (the
actual transformation was carried out by ApiGee personnel).

While the use cases were possible to implement, the solution could
not provide geographical coordinates in developer-friendly formats
but instead used the SWEREF99 grid for geographical positioning.
SWEREF99 is an official Swedish positioning system used by national
and local authorities and has thus become a de facto standard for
publicly administered digital geographic data. While the widespread
usage of SWEREF99 among Swedish authorities enables systems
operability on a national level, most modern technology platforms
instead use the American WGS84 standard for geographical
positioning. This fact meant that the beta version's use of SWEREF99
required all developers to resolve this conversion, a non-trivial task.

 139

To this end, we included references to existing conversion code
libraries as integration protocols that could help resolve this
translation.

Overall, the solution would also use other, existing integration
protocols of Trafiklab.se to enable third-party development. This
infrastructure included an API console at Trafiklab.se (that allowed
developers to execute API calls without a development environment)
and the user registration functionality (where API keys could be
dispensed). Finally, we also created a small tutorial that allowed
developers opting for coherent searches to expedite their
development process, alongside documentation of the data models.

Figure 6 - -The Beta Version Architecture

The solution was officially released in the late autumn of 2012. Anyone
could register for the API, and in three months, 59 developers had
registered. For evaluation, I contacted developers who had signed up
for the API, inquiring into whether they would like to participate in
an interview. Out of the 59 registered developers, 17 agreed to
participate in an interview. Among these, 8 developers had primarily
used the TrainInfo interface, 3 had focused on TrainExport, 2 used
both, and 4 had registered but not used the APIs to the extent that
they could provide evaluation feedback.

Summarizing their impressions, users that had focused on the
TrainInfo interface found it utile. In this category, two developers of

Third-Party
Applications

Trafiklab.se

User
Registration

Coordinate
Conversion

Code

ApiGee (API Gateway)

Authentication

Rate Limiting

TrainInfo TrainExport

ORION

Trafikverket.se

Legend

TrainInfo TrainExport

Interface

New modules

Existing Modules

Integration Protocols

End-user service

QueryInterface

Coherent
Search
Tutorial

API
Console

Documen-
tation

Designing Platform Emulation

 140

existing apps were found. The first had previously been using the
pirate APIs and now looked into transitioning their apps data source
to TrainInfo. Other than finding a few bugs, they found such a
transition straightforward and appreciated the official status of
TrainInfo. The second type of developer who had focused on
TrainInfo was new to the railway domain but could still use the API
to match their needs. Regarding negative experiences from using the
API, it concerned minor technical aspects, such as fields having
fluctuating positions of data points in the resulting data structures
(one developer), the effort required to execute the SWEREF99-to-
WGS84-conversion mentioned above (one developer), and
difficulties understanding how to retrieve the API key (three
developers). However, when asked to summarize their overall views
from using the API, all users of TrainInfo echoed a pleasant
experience:

I'm positively surprised; I think TrainInfo works
very well; it was straightforward to get started. Two
words describe it well, quick and easy…if you only
have a little knowledge of the world of APIs and
development, the rest will follow quickly.
Developer B4

The road to getting the API to work was very
straight. I made a test call from the API console to
see how the XML was structured, and then I wrote
my API client that called TrainInfo. I didn't even
look at documentation until last week; I understood
the API anyway. […] I think the developer
experience is bang on.
Developer B2

 141

I thought it was fantastic with the examples so that
you didn't have to write your API calls directly. You
could immediately get data through the console and
then convert the coordinates through the PHP
examples47 to build your web pages. I was able to
create an API request and get the data really fast.
Developer B7

TrainInfo is excellent. It was quick to get started
and find the information you needed to find a
solution to your problem. I don't think that STA
needs to change a thing.
Developer B13

However, third-party developers that had used TrainExport conveyed
a more complex picture. These users (two developers) that had tried
TrainExport but did not have any implemented services based on
scraping were quite content with the functionality of TrainExport,
although they would have preferred the possibility to retrieve smaller
batches of data, as were possible with the query language of Orion.
However, those users (two developers) that had existing, popular
applications based on scraping expressed disappointment and had,
for this reason, stuck with unsanctioned data access:

I've tried TrainExport, but I have not started to use
it. Unfortunately, there's no way to tell what's
happened at the last minute, but you need to
download the whole batch every time. I would like
to see some sort of timestamp, and I am well aware
that this isn't possible today; it's just not how Orion
works; the STA seems to load everything into their
database every minute. It's the most significant
disadvantage with TrainExport.
Developer B14

47 https://github.com/gnucifer/CoordinateTransformationLibrary

Designing Platform Emulation

 140

existing apps were found. The first had previously been using the
pirate APIs and now looked into transitioning their apps data source
to TrainInfo. Other than finding a few bugs, they found such a
transition straightforward and appreciated the official status of
TrainInfo. The second type of developer who had focused on
TrainInfo was new to the railway domain but could still use the API
to match their needs. Regarding negative experiences from using the
API, it concerned minor technical aspects, such as fields having
fluctuating positions of data points in the resulting data structures
(one developer), the effort required to execute the SWEREF99-to-
WGS84-conversion mentioned above (one developer), and
difficulties understanding how to retrieve the API key (three
developers). However, when asked to summarize their overall views
from using the API, all users of TrainInfo echoed a pleasant
experience:

I'm positively surprised; I think TrainInfo works
very well; it was straightforward to get started. Two
words describe it well, quick and easy…if you only
have a little knowledge of the world of APIs and
development, the rest will follow quickly.
Developer B4

The road to getting the API to work was very
straight. I made a test call from the API console to
see how the XML was structured, and then I wrote
my API client that called TrainInfo. I didn't even
look at documentation until last week; I understood
the API anyway. […] I think the developer
experience is bang on.
Developer B2

 141

I thought it was fantastic with the examples so that
you didn't have to write your API calls directly. You
could immediately get data through the console and
then convert the coordinates through the PHP
examples47 to build your web pages. I was able to
create an API request and get the data really fast.
Developer B7

TrainInfo is excellent. It was quick to get started
and find the information you needed to find a
solution to your problem. I don't think that STA
needs to change a thing.
Developer B13

However, third-party developers that had used TrainExport conveyed
a more complex picture. These users (two developers) that had tried
TrainExport but did not have any implemented services based on
scraping were quite content with the functionality of TrainExport,
although they would have preferred the possibility to retrieve smaller
batches of data, as were possible with the query language of Orion.
However, those users (two developers) that had existing, popular
applications based on scraping expressed disappointment and had,
for this reason, stuck with unsanctioned data access:

I've tried TrainExport, but I have not started to use
it. Unfortunately, there's no way to tell what's
happened at the last minute, but you need to
download the whole batch every time. I would like
to see some sort of timestamp, and I am well aware
that this isn't possible today; it's just not how Orion
works; the STA seems to load everything into their
database every minute. It's the most significant
disadvantage with TrainExport.
Developer B14

47 https://github.com/gnucifer/CoordinateTransformationLibrary

Designing Platform Emulation

 142

We are still using the unofficial API that STA
exposed, so we haven't switched to these other
TrainInfo and TrainExport. The reason was that we
already set up our services to get that data, so we
were already kind of tied up towards that API. It
would just mean more work to switch.
Developer B3

1.3. Target Platform Implementation

The first ADR iteration, the beta version, was a large-scale pilot
project to inform a potential release version platform design.
Although the problems had not been overall resolved, the overall
outcome of the trial convinced STA to create a more persistent
solution, as described in the official decision by the STAs director of
Business Area Society:

The Swedish Transport Administration has
developed and decided on a strategy for traffic
information as well as a strategy for service
provision, capacity allocation and pricing within the
railway operations, which will provide guidelines on
the Swedish Transport Administration's operations
in these areas. Regarding travel information based
on railway data, demand has increased from market
participants who develop services. Today, there are
actors who "scrape" information from the Swedish
Transport Administration's websites, as it is not
available to them in any other way. The Swedish
Transport Administration sees a need to provide
information via an established interface, also to
these actors in order to be able to ensure quality in
a better way and to start the development of
requested services. Which in turn contributes to the
fulfillment of the transport policy goals and to more
satisfied customers.
Excerpt from decision signed by the Director of
Society, the STA
(Registration number TRV 2012/87434)

Thus, the STA revised their third-party developer strategy that
hitherto had contained three segments, targeting different actors in

 143

the surrounding society. The new, fourth segment was denoted Basic.
This segment should include general terms of use, rudimentary
support in the form of FAQ and web-based support, and "simple, basic
information products."48 However, while many insights on the more
precise design of the boundary resources had been gained from the
last ADR loop, the more exact design for the Basic segment was still
debated within the STA.

1.3.1. Problem formulation

To resolve these platform design issues, a new ADR project was
formed. In the permanent solution, the solution should be
implemented within the realm of the STA systems rather than
through Trafiklab.se. A new ADR team was formed, consisting of a
project manager (participating in the previous iteration) and a
systems architect/developer from the STA, and the first author of this
paper. The project was funded internally and ran from August 2013
through March 2014. In contrast to the previous iteration (which was
researcher-led), this iteration was led by the STA and had a researcher
(the first author of this paper) as an ADR team member.

The overarching rationales from the previous ADR iteration were
intact, yet the beta version results had yielded mixed results. The
primary benefit of implementing common use cases had been the
enrollment of new developers. This way, the solution could expand
the number of developers quickly, both regarding minimized
platform access negotiation (through online registration and general
terms of use) and by lowering the barrier for extra-industry actors by
inverting common uses into dedicated REST interfaces.

As a next step, we reformulated the problem. In summary, third-party
developers that were new to the railway domain had used the
coherent search interface TrainInfo, found it pertinent, and echoed a
pleasant experience. However, existing and more seasoned third-
party developers that already had implemented services instead

48 Previously STA had three segments: Complete (for rail operators and
transport agencies); Societal (for society-critical functions); and Extended
(for larger software houses and information brokers). These segments were
more complex regarding both the administrative legislation and the
information products.

Designing Platform Emulation

 142

We are still using the unofficial API that STA
exposed, so we haven't switched to these other
TrainInfo and TrainExport. The reason was that we
already set up our services to get that data, so we
were already kind of tied up towards that API. It
would just mean more work to switch.
Developer B3

1.3. Target Platform Implementation

The first ADR iteration, the beta version, was a large-scale pilot
project to inform a potential release version platform design.
Although the problems had not been overall resolved, the overall
outcome of the trial convinced STA to create a more persistent
solution, as described in the official decision by the STAs director of
Business Area Society:

The Swedish Transport Administration has
developed and decided on a strategy for traffic
information as well as a strategy for service
provision, capacity allocation and pricing within the
railway operations, which will provide guidelines on
the Swedish Transport Administration's operations
in these areas. Regarding travel information based
on railway data, demand has increased from market
participants who develop services. Today, there are
actors who "scrape" information from the Swedish
Transport Administration's websites, as it is not
available to them in any other way. The Swedish
Transport Administration sees a need to provide
information via an established interface, also to
these actors in order to be able to ensure quality in
a better way and to start the development of
requested services. Which in turn contributes to the
fulfillment of the transport policy goals and to more
satisfied customers.
Excerpt from decision signed by the Director of
Society, the STA
(Registration number TRV 2012/87434)

Thus, the STA revised their third-party developer strategy that
hitherto had contained three segments, targeting different actors in

 143

the surrounding society. The new, fourth segment was denoted Basic.
This segment should include general terms of use, rudimentary
support in the form of FAQ and web-based support, and "simple, basic
information products."48 However, while many insights on the more
precise design of the boundary resources had been gained from the
last ADR loop, the more exact design for the Basic segment was still
debated within the STA.

1.3.1. Problem formulation

To resolve these platform design issues, a new ADR project was
formed. In the permanent solution, the solution should be
implemented within the realm of the STA systems rather than
through Trafiklab.se. A new ADR team was formed, consisting of a
project manager (participating in the previous iteration) and a
systems architect/developer from the STA, and the first author of this
paper. The project was funded internally and ran from August 2013
through March 2014. In contrast to the previous iteration (which was
researcher-led), this iteration was led by the STA and had a researcher
(the first author of this paper) as an ADR team member.

The overarching rationales from the previous ADR iteration were
intact, yet the beta version results had yielded mixed results. The
primary benefit of implementing common use cases had been the
enrollment of new developers. This way, the solution could expand
the number of developers quickly, both regarding minimized
platform access negotiation (through online registration and general
terms of use) and by lowering the barrier for extra-industry actors by
inverting common uses into dedicated REST interfaces.

As a next step, we reformulated the problem. In summary, third-party
developers that were new to the railway domain had used the
coherent search interface TrainInfo, found it pertinent, and echoed a
pleasant experience. However, existing and more seasoned third-
party developers that already had implemented services instead

48 Previously STA had three segments: Complete (for rail operators and
transport agencies); Societal (for society-critical functions); and Extended
(for larger software houses and information brokers). These segments were
more complex regarding both the administrative legislation and the
information products.

Designing Platform Emulation

 144

expressed dislike for the flexible search capabilities. Most had, for this
reason, stuck with unsanctioned data access. Second, not only were
these developers discontent with TrainExport capabilities vis-à-vis
what some scraped resources could afford. In addition, these
developers also expressed the need for additional flexible search
benefits to motivate the effort of changing the data source, as
commented by one developer during the beta version evaluations:

No, I won't stop scraping, and that's mostly because
I see no reason to, "if it ain't broken, don't fix it,"
something like that. There is nothing there that
attracts me; I will stick to the current solution as
long as there is no real reason to switch.
Developer B14

Consequently, we hypothesized that flexible searches also needed to
be emulated, not just offered in the beta version.

1.3.2. Building, Intervention, and Evaluation

This somewhat surprising reception by experienced third-party
developers instigated a substantial release version platform redesign.
Based on the feedback, we decided to implement a query language
similar to that of Orion to cater to flexible searches, as this provided
more precise flexible searches, as demanded by developers.

Moreover, from the beta version design and onwards, developers'
signals conveyed a need for functionality that allowed them to
retrieve records that changed since their last request. At this point,
developers had to download a complete snapshot of all running trains
in Sweden and then write an algorithm that detected any potential
changes since their last request. Such change-detections were a
challenging task, as explained by one developer:

We've spent quite a bit of time on the part where
we're detecting differences in the data and pass it on
to an internal real-time API that we are then using
throughout our service. I guess it's a necessary evil
to achieve what we're aiming for.
Developer B3

 145

However, as explained previously, offering this feature would require
a substantial redesign of the underlying system, and implementing
this feature had to this point not been considered financially
justifiable.

To further investigate whether this feature was necessary, I conducted
a data source experiment on apps using SLs real-time data. In
September 2013, 19 services for smartphones using real-time data from
SL were available in the application marketplaces for Apple iPhone,
Google Android, and WindowsPhone. Out of the 19 real-time services,
14 used the official API as the only data source, 2 used both scraping
and the Open API, 1 one relied solely on scraping, and one was not
possible to determine. The rationale given to use scraping over the
Open API was either 1) they had deployed their app before the launch
of the open API and did not see enough incentives to move data
retrieval to the open API and 2) there was currently data available on
the web site missing in the open API (where scraping hence was the
only way to get that data). To influence these developers to desert
unofficial interfaces, the STA thus decided to implement new
functionality that the current solution did not include – the ability to
deliver changes since the last request.

Moreover, the ADR team decided to apply a new governance regime
for the platform’s openness, resource openness, a far-reaching
decision that came about for several reasons. First, since the STA now
planned to offer its internal (albeit refactored) query language for
external developers there were less incentives to encapsulate it
behind a software layer offering access to the resource. Second, given
the data source experiment, developers at SL brought forward
capabilities not available in the official APIs as one reason for
continued self-resourcing. Consequently, any deviations between the
interfaces offered to third-party developers and for internally
developed public application risked introducing new self-resourcing.
Finally, the STA did want to maintain more interfaces than necessary.
By providing improved interfaces similar to those of Orion, but
through the new platform, DataCache, the STA could easily upgrade
its own applications while still serving the needs of external third-
party developers.

Designing Platform Emulation

 144

expressed dislike for the flexible search capabilities. Most had, for this
reason, stuck with unsanctioned data access. Second, not only were
these developers discontent with TrainExport capabilities vis-à-vis
what some scraped resources could afford. In addition, these
developers also expressed the need for additional flexible search
benefits to motivate the effort of changing the data source, as
commented by one developer during the beta version evaluations:

No, I won't stop scraping, and that's mostly because
I see no reason to, "if it ain't broken, don't fix it,"
something like that. There is nothing there that
attracts me; I will stick to the current solution as
long as there is no real reason to switch.
Developer B14

Consequently, we hypothesized that flexible searches also needed to
be emulated, not just offered in the beta version.

1.3.2. Building, Intervention, and Evaluation

This somewhat surprising reception by experienced third-party
developers instigated a substantial release version platform redesign.
Based on the feedback, we decided to implement a query language
similar to that of Orion to cater to flexible searches, as this provided
more precise flexible searches, as demanded by developers.

Moreover, from the beta version design and onwards, developers'
signals conveyed a need for functionality that allowed them to
retrieve records that changed since their last request. At this point,
developers had to download a complete snapshot of all running trains
in Sweden and then write an algorithm that detected any potential
changes since their last request. Such change-detections were a
challenging task, as explained by one developer:

We've spent quite a bit of time on the part where
we're detecting differences in the data and pass it on
to an internal real-time API that we are then using
throughout our service. I guess it's a necessary evil
to achieve what we're aiming for.
Developer B3

 145

However, as explained previously, offering this feature would require
a substantial redesign of the underlying system, and implementing
this feature had to this point not been considered financially
justifiable.

To further investigate whether this feature was necessary, I conducted
a data source experiment on apps using SLs real-time data. In
September 2013, 19 services for smartphones using real-time data from
SL were available in the application marketplaces for Apple iPhone,
Google Android, and WindowsPhone. Out of the 19 real-time services,
14 used the official API as the only data source, 2 used both scraping
and the Open API, 1 one relied solely on scraping, and one was not
possible to determine. The rationale given to use scraping over the
Open API was either 1) they had deployed their app before the launch
of the open API and did not see enough incentives to move data
retrieval to the open API and 2) there was currently data available on
the web site missing in the open API (where scraping hence was the
only way to get that data). To influence these developers to desert
unofficial interfaces, the STA thus decided to implement new
functionality that the current solution did not include – the ability to
deliver changes since the last request.

Moreover, the ADR team decided to apply a new governance regime
for the platform’s openness, resource openness, a far-reaching
decision that came about for several reasons. First, since the STA now
planned to offer its internal (albeit refactored) query language for
external developers there were less incentives to encapsulate it
behind a software layer offering access to the resource. Second, given
the data source experiment, developers at SL brought forward
capabilities not available in the official APIs as one reason for
continued self-resourcing. Consequently, any deviations between the
interfaces offered to third-party developers and for internally
developed public application risked introducing new self-resourcing.
Finally, the STA did want to maintain more interfaces than necessary.
By providing improved interfaces similar to those of Orion, but
through the new platform, DataCache, the STA could easily upgrade
its own applications while still serving the needs of external third-
party developers.

Designing Platform Emulation

 146

However, this resource openness decision entailed challenges for the
platform's architecture. At this point, the ADR team instead decided
to substitute and promote functionality that had been residing in
Orion. This way, both the STA and third-party developers would use
the new platform to construct new end-user services (see Figure 8).
However, Orion's query language was designed for internal usage,
making it unsuitable for publishing in its current form. To this end,
the query language was redesigned for reduced redundancy, syntax
strictness and clearness, and data model congruence (see Figure 7).

Figure 7 - Query language and data model example in Orion

(left) and DataCache (right)

<ORIONML version="1.0">
 <REQUEST plugin="WOW" version=""
 locale="SE_sv"

authenticationkey="{apikey}">
 <PLUGINML
 table="LpvTrafiklagen"
 filter="TrafikplatsNamn = 'Borlänge C'
 AND ((AnnonseradTidpunktAnkomst >
 datetime('now','localtime','-15
 minute') AND (datetime('now','+24
 hour') >
 AnnonseradTidpunktAnkomst) OR
 BeraknadTidpunktAnkomst >
 datetime('now','localtime')) AND
 VisaAvgangVidStationSokning =
 true)"
 orderby="AnnonseradTidpunktAvgang"

 selectcolumns="TrafikInfoAgareNamn,TrafikInfoAgar
eUrl,TrafikInfoAgareMobilUrl,Fran,Till,StatiskInfo
rmationTrafikplatsVisning,StatiskInformationTagVis
ning,InstalldAvgang,AnnonseradTidpunktAvgang,Verkl
igTidpunktAvgang,BeraknadTidpunktAvgang,Sparangive
lseAvgang,AnmarkningarAvgang,ArAvgangTag,Annonsera
tTagId" limit="50" />

 </REQUEST>
</ORIONML>

<REQUEST>
 <LOGIN authenticationkey="{apikey}" />
 <QUERY objecttype="TrainAnnouncement"

orderby="AdvertisedTimeAtLocation"
limit=”50”>

 <FILTER>
 <AND>
 <EQ name="ActivityType" value="Avgang" />
 <EQ name="FromLocation.LocationName"

value="Borlänge C" />
 <OR>
 <AND>
 <GT name="AdvertisedTimeAtLocation"

value="$dateadd(-00:15:00)" />
 <LT name="AdvertisedTimeAtLocation"

value="$dateadd(14:00:00)" />
 </AND>
 <AND>
 <LT name="AdvertisedTimeAtLocation"

value="$dateadd(00:30:00)" />
 <GT name="EstimatedTimeAtLocation"

value="$dateadd(-00:15:00)" />
 </AND>
 </OR>
 </AND>
 </FILTER>
 <INCLUDE>Operator</INCLUDE>
 <INCLUDE>WebLink</INCLUDE>
 <INCLUDE>FromLocation.LocationName</INCLUDE>
 <INCLUDE>ToLocation.LocationName</INCLUDE>
 <INCLUDE>OtherInformation.Description</INCLUDE>
 <INCLUDE>Canceled</INCLUDE>
 <INCLUDE>AdvertisedTimeAtLocation</INCLUDE>
 <INCLUDE>TimeAtLocation</INCLUDE>
 <INCLUDE>EstimatedTimeAtLocation</INCLUDE>
 <INCLUDE>TrackAtLocation</INCLUDE>
 <INCLUDE>Deviation.Description</INCLUDE>
 <INCLUDE>ActivityType</INCLUDE>
 <INCLUDE>AdvertisedTrainIdent</INCLUDE>
 </QUERY>
</REQUEST>

 147

Figure 8 - The Release Version Architecture

The solution comprised the following constituents:

A query interface (data.xml) – where developers could construct their
own data retrieval composition (right-hand side in Figure 7 above)
based on three underlying information objects:

TrainMessage – Announcements around track works, track and train
dysfunctions, and other types of disturbances.

TrainAnnouncement – real-time train information, i.e., information
about train traffic locations (stations, stops).

TrainStation – train station information including name, its location's
geographic coordinates, and whether passengers board trains at that
station

The query interface required an authentication token, what
information objects and fields the user intended to query, and
optional selection criteria (such as a given station) (see Figure 6).
Moreover, all these information objects included the field
ModifiedTime signifying the most recent update of a given data post.
This field enabled developers to retrieve only the records that had
been changed since their last request. This way, the tedious work of
sorting out changes to real-time information was resolved. Finally,
the information objects now included the WGS84 geographic

Third-Party
Applications

api.trafikinfo.trafikverket.se

User
Registration

Example
Queries API Console

Trafikverket.se

Legend Interface

New module

Replaced module

Integration Protocols and Testing Standards

End-user service

DataCache

Authentication

Refactored Querying

TrainMessage

data.xml

TrainAnnouncement TrainStation

ModifiedTime

WGS84 coordinates

ModifiedTime

WGS84 coordinates

ModifiedTime

WGS84 coordinates

Coherent
search
tutorial

Documen-
tation

Designing Platform Emulation

 146

However, this resource openness decision entailed challenges for the
platform's architecture. At this point, the ADR team instead decided
to substitute and promote functionality that had been residing in
Orion. This way, both the STA and third-party developers would use
the new platform to construct new end-user services (see Figure 8).
However, Orion's query language was designed for internal usage,
making it unsuitable for publishing in its current form. To this end,
the query language was redesigned for reduced redundancy, syntax
strictness and clearness, and data model congruence (see Figure 7).

Figure 7 - Query language and data model example in Orion

(left) and DataCache (right)

<ORIONML version="1.0">
 <REQUEST plugin="WOW" version=""
 locale="SE_sv"

authenticationkey="{apikey}">
 <PLUGINML
 table="LpvTrafiklagen"
 filter="TrafikplatsNamn = 'Borlänge C'
 AND ((AnnonseradTidpunktAnkomst >
 datetime('now','localtime','-15
 minute') AND (datetime('now','+24
 hour') >
 AnnonseradTidpunktAnkomst) OR
 BeraknadTidpunktAnkomst >
 datetime('now','localtime')) AND
 VisaAvgangVidStationSokning =
 true)"
 orderby="AnnonseradTidpunktAvgang"

 selectcolumns="TrafikInfoAgareNamn,TrafikInfoAgar
eUrl,TrafikInfoAgareMobilUrl,Fran,Till,StatiskInfo
rmationTrafikplatsVisning,StatiskInformationTagVis
ning,InstalldAvgang,AnnonseradTidpunktAvgang,Verkl
igTidpunktAvgang,BeraknadTidpunktAvgang,Sparangive
lseAvgang,AnmarkningarAvgang,ArAvgangTag,Annonsera
tTagId" limit="50" />

 </REQUEST>
</ORIONML>

<REQUEST>
 <LOGIN authenticationkey="{apikey}" />
 <QUERY objecttype="TrainAnnouncement"

orderby="AdvertisedTimeAtLocation"
limit=”50”>

 <FILTER>
 <AND>
 <EQ name="ActivityType" value="Avgang" />
 <EQ name="FromLocation.LocationName"

value="Borlänge C" />
 <OR>
 <AND>
 <GT name="AdvertisedTimeAtLocation"

value="$dateadd(-00:15:00)" />
 <LT name="AdvertisedTimeAtLocation"

value="$dateadd(14:00:00)" />
 </AND>
 <AND>
 <LT name="AdvertisedTimeAtLocation"

value="$dateadd(00:30:00)" />
 <GT name="EstimatedTimeAtLocation"

value="$dateadd(-00:15:00)" />
 </AND>
 </OR>
 </AND>
 </FILTER>
 <INCLUDE>Operator</INCLUDE>
 <INCLUDE>WebLink</INCLUDE>
 <INCLUDE>FromLocation.LocationName</INCLUDE>
 <INCLUDE>ToLocation.LocationName</INCLUDE>
 <INCLUDE>OtherInformation.Description</INCLUDE>
 <INCLUDE>Canceled</INCLUDE>
 <INCLUDE>AdvertisedTimeAtLocation</INCLUDE>
 <INCLUDE>TimeAtLocation</INCLUDE>
 <INCLUDE>EstimatedTimeAtLocation</INCLUDE>
 <INCLUDE>TrackAtLocation</INCLUDE>
 <INCLUDE>Deviation.Description</INCLUDE>
 <INCLUDE>ActivityType</INCLUDE>
 <INCLUDE>AdvertisedTrainIdent</INCLUDE>
 </QUERY>
</REQUEST>

 147

Figure 8 - The Release Version Architecture

The solution comprised the following constituents:

A query interface (data.xml) – where developers could construct their
own data retrieval composition (right-hand side in Figure 7 above)
based on three underlying information objects:

TrainMessage – Announcements around track works, track and train
dysfunctions, and other types of disturbances.

TrainAnnouncement – real-time train information, i.e., information
about train traffic locations (stations, stops).

TrainStation – train station information including name, its location's
geographic coordinates, and whether passengers board trains at that
station

The query interface required an authentication token, what
information objects and fields the user intended to query, and
optional selection criteria (such as a given station) (see Figure 6).
Moreover, all these information objects included the field
ModifiedTime signifying the most recent update of a given data post.
This field enabled developers to retrieve only the records that had
been changed since their last request. This way, the tedious work of
sorting out changes to real-time information was resolved. Finally,
the information objects now included the WGS84 geographic

Third-Party
Applications

api.trafikinfo.trafikverket.se

User
Registration

Example
Queries API Console

Trafikverket.se

Legend Interface

New module

Replaced module

Integration Protocols and Testing Standards

End-user service

DataCache

Authentication

Refactored Querying

TrainMessage

data.xml

TrainAnnouncement TrainStation

ModifiedTime

WGS84 coordinates

ModifiedTime

WGS84 coordinates

ModifiedTime

WGS84 coordinates

Coherent
search
tutorial

Documen-
tation

Designing Platform Emulation

 148

coordinate system, effectively scrapping developers' design tasks to
perform the conversion between SWREF99 and WGS84.

The query interface at data.xml was a non-deterministic query
language and thus inherently supported only flexible searches.
Hence, we concluded, it was no longer possible to use the interface
level for coherent searches (unless introducing new interfaces, a
solution that the STA rejected, for system maintenance reasons).
Instead, we opted for a revised architectural configuration. Here, we
used integration and testing protocols, i.e., predefined example
queries, to implement the coherent searches in previous ADR
iterations (see Figure 9). This way, the exact syntax of the question,
e.g., the departures from a given train station, was provided by STA
but simultaneously served as a starting point for those who wanted to
develop the query further. Moreover, given the positive reception
from developers regarding the API console, documentation, and
tutorial/example API calls, we also implemented those as integration
protocols.

Figure 9 - Coherent search through integration protocols

While the coherent search implementation had been successful in the
beta version platform, we saw a need to validate the new

 149

implementation (using example queries). To this end, a more
controlled test with novice users was conducted. Here, university
students were given a set of tasks to complete where they needed to
reuse the coherent searches to accomplish the tasks. These students
provided generous feedback on improvement opportunities (such as
more informative names of the data model elements and example
response, not just queries). A core signal from this test was that 10 out
of the 13 students were able to perform the tasks (such as getting the
train departures from a specific station) with the queries' help. Since
these students' application development experience was lower
(according to the background information they provided) compared
to the target group, we concluded that the coherent search solution
would suffice.

The platform was pre-launched on February 10, 2014, as an open test
environment. This launching meant that any registered user at
Trafiklab could use the API if they applied for access by email. During
this test period, 20 developers registered (among them several of the
existing railway data developers), and 6 of these agreed to be
interviewed. Based on this feedback, the platform went live on March
18. In August 2014, I interviewed another 6 developers that had
registered as users of the platform.

Among these, 9 had used the beta version solution from the previous
ADR iteration, and all but one preferred the release version design.
This preference was primarily due to more flexible ways of retrieving
data (six developers), improved response times (four developers), and
the possibility of using the ModifiedTime functionality (two
developers), as expanded by one developer that tried both solutions:

Designing Platform Emulation

 148

coordinate system, effectively scrapping developers' design tasks to
perform the conversion between SWREF99 and WGS84.

The query interface at data.xml was a non-deterministic query
language and thus inherently supported only flexible searches.
Hence, we concluded, it was no longer possible to use the interface
level for coherent searches (unless introducing new interfaces, a
solution that the STA rejected, for system maintenance reasons).
Instead, we opted for a revised architectural configuration. Here, we
used integration and testing protocols, i.e., predefined example
queries, to implement the coherent searches in previous ADR
iterations (see Figure 9). This way, the exact syntax of the question,
e.g., the departures from a given train station, was provided by STA
but simultaneously served as a starting point for those who wanted to
develop the query further. Moreover, given the positive reception
from developers regarding the API console, documentation, and
tutorial/example API calls, we also implemented those as integration
protocols.

Figure 9 - Coherent search through integration protocols

While the coherent search implementation had been successful in the
beta version platform, we saw a need to validate the new

 149

implementation (using example queries). To this end, a more
controlled test with novice users was conducted. Here, university
students were given a set of tasks to complete where they needed to
reuse the coherent searches to accomplish the tasks. These students
provided generous feedback on improvement opportunities (such as
more informative names of the data model elements and example
response, not just queries). A core signal from this test was that 10 out
of the 13 students were able to perform the tasks (such as getting the
train departures from a specific station) with the queries' help. Since
these students' application development experience was lower
(according to the background information they provided) compared
to the target group, we concluded that the coherent search solution
would suffice.

The platform was pre-launched on February 10, 2014, as an open test
environment. This launching meant that any registered user at
Trafiklab could use the API if they applied for access by email. During
this test period, 20 developers registered (among them several of the
existing railway data developers), and 6 of these agreed to be
interviewed. Based on this feedback, the platform went live on March
18. In August 2014, I interviewed another 6 developers that had
registered as users of the platform.

Among these, 9 had used the beta version solution from the previous
ADR iteration, and all but one preferred the release version design.
This preference was primarily due to more flexible ways of retrieving
data (six developers), improved response times (four developers), and
the possibility of using the ModifiedTime functionality (two
developers), as expanded by one developer that tried both solutions:

Designing Platform Emulation

 150

Understanding the information in the old
TrainExport was difficult at first, but in the new
API, I must stress that it has been an incredible
improvement, and it's just fantastic to use this test
console and try out different queries and execute
them...it has eased development amazingly much.
So, I spent more time figuring out what data to use
than writing code to fetch it. […] It has been very,
very neat compared to other APIs I have been
working with.
In what way has it been standing out
compared to other APIs?
Well, first of all, that there is a console where you
can test queries quickly, and even more important
are the example queries, it is documented, yes all
these simple things, it returns simple responses,
JSON objects, I've worked so much with these
weary, clunky SOAP APIs
Developer R3

The developer that preferred the TrainInfo API motivated this
preference by preferring domain-agnostic identifiers (GUIDs) for
stations in TrainInfo but not in DataCache, and that those REST calls
were more straightforward to construct than the XML queries of
DataCache.

8 developers had existing services consuming railway data. Among
these, none said they would continue to scrape, given the release
version, simply because there now were no real benefits of retrieving
in another way. One developer expanded on this matter:

Especially, I found it very positive that I could
choose exactly what data I wanted…which is one of
the reasons that I had a web service that sat and
collected all data from Orion and then just sent out
the data I needed to the client. Because even though
I had some middleware, it was still faster to
download all the data to my mobile phone at once.
But now, with the new APIs, the data will go directly
to the mobile phone and make it go even faster.
Developer R7

 151

The 4 developers that did not have existing services but developed
from scratch were also overall content with their experience, as
explained by one novel developer:

I think it went very smooth, I have started
developing from those parameters that exist, and I
have used quite basic parameters. I haven't done
anything advanced, so I don't think it has been very
difficult. I think it has been much easier than I
initially thought. I haven't thought much about it
because all the things I have tried to do I have been
able to do because I have always been able to go
back to the examples because everything I have
been trying to do had examples. I have always been
able to go back there and see" OK, how do I do this"
since the things I was doing weren't advanced. It
was very easy to limit my selection, search for a
county, municipality, a particular train stop or
station, so it was very neat.
Developer R9

Among the issues found across interviewed developers, the most
common objection (eleven developers) was that trains' real-time
positioning had deteriorated (or was missing, in case they hadn't tried
the beta version). In the previous beta version APIs, developers were
able to get the latest passage points, not only where the trains stopped
for passenger exchange but also closed stations and other official
passage points along the route. However, for security reasons, this
information had been removed from the release version API, making
it more difficult for developers to, e.g., create maps plotting train
movements49. In addition to this comment, some mentioned
integration possibilities with related datasets (i.e., the use of the
identifiers) (four developers), introducing technical identifiers of
trains (two developers), learning barriers of the query language (two
developers), difficulties specifying correct HTTP request header
information (one developer), and what exact unit the term “radius”
was referring to (when doing geographical searches) (one developer).

49 This information was re-introduced into the DataCache data model in
December 2015, due to multiple developer requests.

Designing Platform Emulation

 150

Understanding the information in the old
TrainExport was difficult at first, but in the new
API, I must stress that it has been an incredible
improvement, and it's just fantastic to use this test
console and try out different queries and execute
them...it has eased development amazingly much.
So, I spent more time figuring out what data to use
than writing code to fetch it. […] It has been very,
very neat compared to other APIs I have been
working with.
In what way has it been standing out
compared to other APIs?
Well, first of all, that there is a console where you
can test queries quickly, and even more important
are the example queries, it is documented, yes all
these simple things, it returns simple responses,
JSON objects, I've worked so much with these
weary, clunky SOAP APIs
Developer R3

The developer that preferred the TrainInfo API motivated this
preference by preferring domain-agnostic identifiers (GUIDs) for
stations in TrainInfo but not in DataCache, and that those REST calls
were more straightforward to construct than the XML queries of
DataCache.

8 developers had existing services consuming railway data. Among
these, none said they would continue to scrape, given the release
version, simply because there now were no real benefits of retrieving
in another way. One developer expanded on this matter:

Especially, I found it very positive that I could
choose exactly what data I wanted…which is one of
the reasons that I had a web service that sat and
collected all data from Orion and then just sent out
the data I needed to the client. Because even though
I had some middleware, it was still faster to
download all the data to my mobile phone at once.
But now, with the new APIs, the data will go directly
to the mobile phone and make it go even faster.
Developer R7

 151

The 4 developers that did not have existing services but developed
from scratch were also overall content with their experience, as
explained by one novel developer:

I think it went very smooth, I have started
developing from those parameters that exist, and I
have used quite basic parameters. I haven't done
anything advanced, so I don't think it has been very
difficult. I think it has been much easier than I
initially thought. I haven't thought much about it
because all the things I have tried to do I have been
able to do because I have always been able to go
back to the examples because everything I have
been trying to do had examples. I have always been
able to go back there and see" OK, how do I do this"
since the things I was doing weren't advanced. It
was very easy to limit my selection, search for a
county, municipality, a particular train stop or
station, so it was very neat.
Developer R9

Among the issues found across interviewed developers, the most
common objection (eleven developers) was that trains' real-time
positioning had deteriorated (or was missing, in case they hadn't tried
the beta version). In the previous beta version APIs, developers were
able to get the latest passage points, not only where the trains stopped
for passenger exchange but also closed stations and other official
passage points along the route. However, for security reasons, this
information had been removed from the release version API, making
it more difficult for developers to, e.g., create maps plotting train
movements49. In addition to this comment, some mentioned
integration possibilities with related datasets (i.e., the use of the
identifiers) (four developers), introducing technical identifiers of
trains (two developers), learning barriers of the query language (two
developers), difficulties specifying correct HTTP request header
information (one developer), and what exact unit the term “radius”
was referring to (when doing geographical searches) (one developer).

49 This information was re-introduced into the DataCache data model in
December 2015, due to multiple developer requests.

Designing Platform Emulation

 152

However, when developers were asked to summarize their experience
of the APIs, they were all positive:

Easy to get started, easy to understand the syntax,
easy to register, and get API keys, I simply give it a
high rating.
Developer R1

Well worked through, good data model, easy to get
started, very complete when it comes to the public
information. It lacks a bit when it comes to the
integration possibilities since there is very little
underlying technical information to tie the data
towards other services—something like that.
Developer R6

Definitely a nice surprise. It wasn't, how do you put
it, it wasn't my perception of what the STA was
doing. So that it actually exists made very
pleasantly surprised. The API meets my needs.
Developer R10

Very good. I wished all agencies did it this way; it
has been good working with it. I hope that more
agencies see what the STA is doing and that more
will follow their example.
Developer R3

All the respondents also stated that they would recommend this API
to other developers interested in developing railway services.

1.4. Ensemble Platform Manifestation

The API platform persevered long after its inception and is at the time
of writing (2021-03-18) still in production. In the following, we
summarize the evolutionary trajectory after the platform’s launch by
paying specific attention to developer adoption, continued emulation
activities since the ADR interventions, and finally, how the platform
has been received within the STA and the Swedish public transport
industry.

 153

1.4.1. Third-party developer adoption

In September 2016, the first author of this paper investigated the
actual data sources used for the apps. The review was performed in
the same way as the scraping follow-up on Trafiklab: by intercepting
the API calls. In case the data source was unable to determine, the
developers were contacted to inquire about the data source. The
investigation revealed that development towards unsanctioned
interfaces was virtually extinct. At the time, 28 services for
smartphones using real-time information were available in the
application marketplaces for Apple iPhone, Google Android, and
WindowsPhone. Out of the 28 real-time services, 19 used the open
API, 6 used interfaces connected to other STA third-party
development segments (a system called UT/IN), and 3 were not
functioning (where it seemed as if the application was no longer
maintained).

Designing Platform Emulation

 152

However, when developers were asked to summarize their experience
of the APIs, they were all positive:

Easy to get started, easy to understand the syntax,
easy to register, and get API keys, I simply give it a
high rating.
Developer R1

Well worked through, good data model, easy to get
started, very complete when it comes to the public
information. It lacks a bit when it comes to the
integration possibilities since there is very little
underlying technical information to tie the data
towards other services—something like that.
Developer R6

Definitely a nice surprise. It wasn't, how do you put
it, it wasn't my perception of what the STA was
doing. So that it actually exists made very
pleasantly surprised. The API meets my needs.
Developer R10

Very good. I wished all agencies did it this way; it
has been good working with it. I hope that more
agencies see what the STA is doing and that more
will follow their example.
Developer R3

All the respondents also stated that they would recommend this API
to other developers interested in developing railway services.

1.4. Ensemble Platform Manifestation

The API platform persevered long after its inception and is at the time
of writing (2021-03-18) still in production. In the following, we
summarize the evolutionary trajectory after the platform’s launch by
paying specific attention to developer adoption, continued emulation
activities since the ADR interventions, and finally, how the platform
has been received within the STA and the Swedish public transport
industry.

 153

1.4.1. Third-party developer adoption

In September 2016, the first author of this paper investigated the
actual data sources used for the apps. The review was performed in
the same way as the scraping follow-up on Trafiklab: by intercepting
the API calls. In case the data source was unable to determine, the
developers were contacted to inquire about the data source. The
investigation revealed that development towards unsanctioned
interfaces was virtually extinct. At the time, 28 services for
smartphones using real-time information were available in the
application marketplaces for Apple iPhone, Google Android, and
WindowsPhone. Out of the 28 real-time services, 19 used the open
API, 6 used interfaces connected to other STA third-party
development segments (a system called UT/IN), and 3 were not
functioning (where it seemed as if the application was no longer
maintained).

Designing Platform Emulation

 154

Name Retrieved Platform Data source

Info Tracker 2016-08-16 iOS Open API*

Pend.la 2016-08-16 iOS Open API*

Railor 2016-08-16 iOS Open API

Tåg 2016-08-16 iOS Open API

Nästa Avgång 2016-08-16 iOS Open API

Pendelprognos 2016-08-16 iOS UT/IN*

pendla - reshjälp för pendlare 2016-08-16 iOS Open API

SJ 2016-08-16 iOS UT/IN*

Stationen Plus 2016-08-16 iOS Did not work

SJ Labs 2016-08-16 iOS UT/IN*

Tågkoll 2016-08-16 iOS Open API

Tågtavlan 2016-08-16 iOS Open API*

Tågtavlan 2016-08-16 Android Open API

Tågtavlan v2 2016-08-16 Android Open API*

Tågtider 2016-08-16 Android Open API*

Tåginfo Sverige 2016-08-16 Android Open API

Railor 2016-08-16 Android Open API

SJ 2016-08-16 Android UT/IN*

Tågkompaniet 2016-08-16 Android UT/IN*

Tåghjälpen 2016-08-16 Android Did not work

Pendelkollen 2016-08-16 Android Open API

PendelPal Sverige 2016-08-16 Android Open API

SJ Labs 2016-08-16 Android UT/IN*

STHLM Traveling 2016-08-17 Android Open API*

Travelplan Sweden 2016-08-16 WindowsPhone Open API

Tågtrafik 2016-08-16 WindowsPhone Open API

Tågtid 2016-08-16 WindowsPhone Did not work

Tågläget 2016-09-13 WindowsPhone Open API

* Interview response since the data source was unable to determine from API
request interception

Table 18 - Smartphone apps and their data sources

 155

Moreover, usage statistics from the platform showed that not only
existing developers seemed to have adopted the API. These statistics
conveyed that new developer registrations had persevered since the
launch (Table 19) and the platform had in August 2020 5727
registered developers. Moreover, more detailed usage statics
conveyed that external API calls had increased over time, from some
20 million in early 2016 to some 100 million per month in 2020 (Table

20). As such, external clients are now generating more calls than
internal clients.

Period Number of new developer
registrations

2014-02 – 2014-12 338

2015-01 – 2015-12 422
2016-01 – 2016-12 639
2017-01 – 2017-12 702
2018-01 – 2018-12 1466
2019-01 – 2019-12 1377
2020-01 – 2020-08 783

Table 19 - Number of new developer registrations per year

Period External calls
(avg millions/month)

Internal calls
(avg millions/month)

201601 – 201612 22,2 78,7
201701 – 201712 41,1 95,6
201801 – 201812 69,7 83,5
201901 – 201912 90,7 63,2
202001 – 202008 100,5 63,2

Table 20 - Eternal and Internal DataCache API calls

1.4.2. Continued Emulation Activities

Although the platform initially was designated for railway data, it was
not long after the DataCache launch until the STA decided that the
platform also should host road data:

Designing Platform Emulation

 154

Name Retrieved Platform Data source

Info Tracker 2016-08-16 iOS Open API*

Pend.la 2016-08-16 iOS Open API*

Railor 2016-08-16 iOS Open API

Tåg 2016-08-16 iOS Open API

Nästa Avgång 2016-08-16 iOS Open API

Pendelprognos 2016-08-16 iOS UT/IN*

pendla - reshjälp för pendlare 2016-08-16 iOS Open API

SJ 2016-08-16 iOS UT/IN*

Stationen Plus 2016-08-16 iOS Did not work

SJ Labs 2016-08-16 iOS UT/IN*

Tågkoll 2016-08-16 iOS Open API

Tågtavlan 2016-08-16 iOS Open API*

Tågtavlan 2016-08-16 Android Open API

Tågtavlan v2 2016-08-16 Android Open API*

Tågtider 2016-08-16 Android Open API*

Tåginfo Sverige 2016-08-16 Android Open API

Railor 2016-08-16 Android Open API

SJ 2016-08-16 Android UT/IN*

Tågkompaniet 2016-08-16 Android UT/IN*

Tåghjälpen 2016-08-16 Android Did not work

Pendelkollen 2016-08-16 Android Open API

PendelPal Sverige 2016-08-16 Android Open API

SJ Labs 2016-08-16 Android UT/IN*

STHLM Traveling 2016-08-17 Android Open API*

Travelplan Sweden 2016-08-16 WindowsPhone Open API

Tågtrafik 2016-08-16 WindowsPhone Open API

Tågtid 2016-08-16 WindowsPhone Did not work

Tågläget 2016-09-13 WindowsPhone Open API

* Interview response since the data source was unable to determine from API
request interception

Table 18 - Smartphone apps and their data sources

 155

Moreover, usage statistics from the platform showed that not only
existing developers seemed to have adopted the API. These statistics
conveyed that new developer registrations had persevered since the
launch (Table 19) and the platform had in August 2020 5727
registered developers. Moreover, more detailed usage statics
conveyed that external API calls had increased over time, from some
20 million in early 2016 to some 100 million per month in 2020 (Table

20). As such, external clients are now generating more calls than
internal clients.

Period Number of new developer
registrations

2014-02 – 2014-12 338

2015-01 – 2015-12 422
2016-01 – 2016-12 639
2017-01 – 2017-12 702
2018-01 – 2018-12 1466
2019-01 – 2019-12 1377
2020-01 – 2020-08 783

Table 19 - Number of new developer registrations per year

Period External calls
(avg millions/month)

Internal calls
(avg millions/month)

201601 – 201612 22,2 78,7
201701 – 201712 41,1 95,6
201801 – 201812 69,7 83,5
201901 – 201912 90,7 63,2
202001 – 202008 100,5 63,2

Table 20 - Eternal and Internal DataCache API calls

1.4.2. Continued Emulation Activities

Although the platform initially was designated for railway data, it was
not long after the DataCache launch until the STA decided that the
platform also should host road data:

Designing Platform Emulation

 156

At the time when DataCache was launched, a
project on how to publish road data to third parties
was undertaken in parallel. The report from this
work described that there was currently little
developer activity on road data and suggested to
also include road data in the DataCache platform.
This was to lower the barriers since there was no
easily available API for road data. DATEX II
existed, but it required signed agreements, and the
data model was too complex for any external
hacker.
Systems Owner, DataCache Platform

In mid-2014, the DATEX II feed was serving a total of 91 clients. While
some of these (9) were private individuals, the vast majority were
corporations or universities/research institutes. The STA
hypothesized that the current DATEX II feed suffered from several of
the deficits that the undertaken emulation approach had discovered
for railway data. These shortcomings included

4. the need for greater autonomy – as the onboarding
routine for DATEX II required a written agreement

5. A way to minimize the work of discovering relevant
data – by making the DATEX II data model less
complex

6. Find ways to decrease the work necessary to integrate
with the data – currently, the developer needed to set
up his/her polling server, and figure out how to
extract relevant data, e.g., roadworks in a certain
geographical area – a non-trivial task.

These hypothesized deficits would be addressed by streamlining the
data models for road data (as has been done for railway data) and
plugging the road data systems into DataCache. In January 2015, the
STA consequently launched road data into DataCache.

Besides road activity, the STA continuously incorporated new data
fields in the railway data, based on developer requests and feedback.
One such illustrative example concerned “ViaToLocation.” Typically,
a train is announced by several stations the train is passing during a
trip (the significant stations along the line). However, the order in

 157

which these stations are passed was not explicit in the API response.
While it was possible to derive the order by examining the
estimated/actual passing time along line, the STA decided to
incorporate a clear indicator of the order of the location a particular
train passes. Such cognizant changes to the data models had become
more institutionalized after the ADR projects. The systems architect
of DataCache commented on this:

We are always refining the data model to make it
more useable, and the input can be something from
a forum or bulletin board: “How do we know how to
sort ViaToLocationName?” Well, that is not trivial
to figure out, so we’ll add it!
Systems Architect, DataCache

Figure 10 - Explicit Ordering of ViaToLocation

Besides the platform’s continued evolution, an important issue
unresolved in the ADR project concerned the developers’ assurances
that the platform would be up and running. The platform has since
its inception remained open, meaning that the STA had access to the
same resources to develop public end-user services in DataCache as
third-party developers. This strategy turned out to be very useful
regarding the service-level agreement (SLA). SLAs typically regulate
the platform owner’s responsibility to maintain a certain level of
service availability and quality of the service. The client pays a

Designing Platform Emulation

 156

At the time when DataCache was launched, a
project on how to publish road data to third parties
was undertaken in parallel. The report from this
work described that there was currently little
developer activity on road data and suggested to
also include road data in the DataCache platform.
This was to lower the barriers since there was no
easily available API for road data. DATEX II
existed, but it required signed agreements, and the
data model was too complex for any external
hacker.
Systems Owner, DataCache Platform

In mid-2014, the DATEX II feed was serving a total of 91 clients. While
some of these (9) were private individuals, the vast majority were
corporations or universities/research institutes. The STA
hypothesized that the current DATEX II feed suffered from several of
the deficits that the undertaken emulation approach had discovered
for railway data. These shortcomings included

4. the need for greater autonomy – as the onboarding
routine for DATEX II required a written agreement

5. A way to minimize the work of discovering relevant
data – by making the DATEX II data model less
complex

6. Find ways to decrease the work necessary to integrate
with the data – currently, the developer needed to set
up his/her polling server, and figure out how to
extract relevant data, e.g., roadworks in a certain
geographical area – a non-trivial task.

These hypothesized deficits would be addressed by streamlining the
data models for road data (as has been done for railway data) and
plugging the road data systems into DataCache. In January 2015, the
STA consequently launched road data into DataCache.

Besides road activity, the STA continuously incorporated new data
fields in the railway data, based on developer requests and feedback.
One such illustrative example concerned “ViaToLocation.” Typically,
a train is announced by several stations the train is passing during a
trip (the significant stations along the line). However, the order in

 157

which these stations are passed was not explicit in the API response.
While it was possible to derive the order by examining the
estimated/actual passing time along line, the STA decided to
incorporate a clear indicator of the order of the location a particular
train passes. Such cognizant changes to the data models had become
more institutionalized after the ADR projects. The systems architect
of DataCache commented on this:

We are always refining the data model to make it
more useable, and the input can be something from
a forum or bulletin board: “How do we know how to
sort ViaToLocationName?” Well, that is not trivial
to figure out, so we’ll add it!
Systems Architect, DataCache

Figure 10 - Explicit Ordering of ViaToLocation

Besides the platform’s continued evolution, an important issue
unresolved in the ADR project concerned the developers’ assurances
that the platform would be up and running. The platform has since
its inception remained open, meaning that the STA had access to the
same resources to develop public end-user services in DataCache as
third-party developers. This strategy turned out to be very useful
regarding the service-level agreement (SLA). SLAs typically regulate
the platform owner’s responsibility to maintain a certain level of
service availability and quality of the service. The client pays a

Designing Platform Emulation

 158

predetermined price for such a service level, and in the case, the
platform provider fails to meet the service levels, the platform owner
compensates the client through indemnities. However, when the
platform is open, the client (third-party developers) pays no access
fees, and thus compensations become irrational. Therefore, there
were internal discussions on how to assure third-party developers
that the service would have a sufficient service level for external
innovators to invest in production-ready services. One possibility was
setting up separate and optional SLAs for a fee:

We were not sure about what level of quality that
was necessary, what requirements third parties
have. If they are dependent on 100% levels, then it’s
going to start to cost a lot, and we may have to
start charging for the information if it’s stricter
requirements than what we need for ourselves.
Traffic Information Strategist, the STA

However, according to the STA, these risks never effectuated. The
reason why the open DataCache platform was able to satisfy
developers’ demands for availability and quality was that third-party
developers were able to enjoy a “shadow SLA” of STAs services. Since
the services provided by the STA were mission-critical, they were
secured under an SLA between the STA and their systems suppliers.

This thing with SLA was such a hot topic when we
started that you needed an SLA for “What do you
promise?”, “What is your availability?” and those
types of questions. We said this is based on our best
effort. But we use the exact same platform for our
own services, and we used this fact as a reputation
capital, of sorts. As it turns out, this model works
very well. The APIs are practically uninterrupted.
We measure uptime and quality through an
external service, and it’s incredibly high. And then,
of course, this issue fades away…
System Manager, DataCache

1.4.3. Organizational reception

The final last aspect that surfaced in the follow-up study concerned
how the emulated platform was embraced within the STA. Until 2015,

 159

DataCache had only been deployed once within the STA. This
instance was the open platform for both external third-party
developers and end-user services catered for by the STA. However, in
2015, the systems development team responsible for DataCache
suggested using DataCache codebase for an internal project.

And from that project onwards, we have been using
this platform that was shaped during the ADR
project as a general component internally for the
integration of all kinds of stuff. For instance, we
integrate between the traffic information systems at
the STA, sharing data to enable internal systems to
consume train timetables and whatnot. So, the
platform has grown into something else, and there
are several instances deployed nowadays, using the
exact same code base as the original platform.
System Manager, DataCache

After this first usage, the platform had continuously grown in
popularity, as elaborated by the systems architect of DataCache:

People in the corridors are saying, “We heard
rumors about this API platform,” and then “we
would also like to use it.” So, it’s all based on
mouth-to-mouth, something like” This is something
good, this is something we’d like to use.” And then,
if anyone has the need to publish data in any way,
we can say to them, “we’ll solve all your problems.”
They get so incredibly much free. They come to us
and say, “Here’s our data,” then we do our magic,
and all of a sudden, they have a service up and
running in a couple of days that they previously
estimated would take half a year to build.
System Manager, DataCache

When asked what differs in the DataCache team compared to other
groups within the STA, the systems architect argued that they had a
sharper user focus than what is prevalent within technology products
such as integration platforms:

Designing Platform Emulation

 158

predetermined price for such a service level, and in the case, the
platform provider fails to meet the service levels, the platform owner
compensates the client through indemnities. However, when the
platform is open, the client (third-party developers) pays no access
fees, and thus compensations become irrational. Therefore, there
were internal discussions on how to assure third-party developers
that the service would have a sufficient service level for external
innovators to invest in production-ready services. One possibility was
setting up separate and optional SLAs for a fee:

We were not sure about what level of quality that
was necessary, what requirements third parties
have. If they are dependent on 100% levels, then it’s
going to start to cost a lot, and we may have to
start charging for the information if it’s stricter
requirements than what we need for ourselves.
Traffic Information Strategist, the STA

However, according to the STA, these risks never effectuated. The
reason why the open DataCache platform was able to satisfy
developers’ demands for availability and quality was that third-party
developers were able to enjoy a “shadow SLA” of STAs services. Since
the services provided by the STA were mission-critical, they were
secured under an SLA between the STA and their systems suppliers.

This thing with SLA was such a hot topic when we
started that you needed an SLA for “What do you
promise?”, “What is your availability?” and those
types of questions. We said this is based on our best
effort. But we use the exact same platform for our
own services, and we used this fact as a reputation
capital, of sorts. As it turns out, this model works
very well. The APIs are practically uninterrupted.
We measure uptime and quality through an
external service, and it’s incredibly high. And then,
of course, this issue fades away…
System Manager, DataCache

1.4.3. Organizational reception

The final last aspect that surfaced in the follow-up study concerned
how the emulated platform was embraced within the STA. Until 2015,

 159

DataCache had only been deployed once within the STA. This
instance was the open platform for both external third-party
developers and end-user services catered for by the STA. However, in
2015, the systems development team responsible for DataCache
suggested using DataCache codebase for an internal project.

And from that project onwards, we have been using
this platform that was shaped during the ADR
project as a general component internally for the
integration of all kinds of stuff. For instance, we
integrate between the traffic information systems at
the STA, sharing data to enable internal systems to
consume train timetables and whatnot. So, the
platform has grown into something else, and there
are several instances deployed nowadays, using the
exact same code base as the original platform.
System Manager, DataCache

After this first usage, the platform had continuously grown in
popularity, as elaborated by the systems architect of DataCache:

People in the corridors are saying, “We heard
rumors about this API platform,” and then “we
would also like to use it.” So, it’s all based on
mouth-to-mouth, something like” This is something
good, this is something we’d like to use.” And then,
if anyone has the need to publish data in any way,
we can say to them, “we’ll solve all your problems.”
They get so incredibly much free. They come to us
and say, “Here’s our data,” then we do our magic,
and all of a sudden, they have a service up and
running in a couple of days that they previously
estimated would take half a year to build.
System Manager, DataCache

When asked what differs in the DataCache team compared to other
groups within the STA, the systems architect argued that they had a
sharper user focus than what is prevalent within technology products
such as integration platforms:

Designing Platform Emulation

 160

I believe what sets us apart from many other teams
internally at the STA, but also in many other
organizations, is that we really put the user into
focus. Typically, everything is so technically
oriented, especially in internal projects. But once
you step into our door and say,” I have a need to
publish data,” we answer, “well, is it really you that
have this need? Isn’t someone out there who have
this need, those who wanted the data, they have the
need!” And then they come dragging with an
extremely complicated data model with obscure
coordinates, strange field names, and whatnot, and
then we say, “We cannot publish this; no one will
ever be able to use it.” We must start by knocking
together an understandable data model, and once
that is done, we say, “And now it’s time to
document it,” and they will say, “What – must we
also document this?” and we say “Yes.” So, we are a
little tough on our internal clients, but that is all to
provide a great experience for those developers who
will be using it.
Systems Architect, DataCache

These new, internal instances contained the same functionality, with
a test console, API documentation, some examples, and required even
internal developers to register to get access tokens. The only thing
that differed was that the data objects were different from those
present in the open platform. When asked what helped the
DataCache team to embrace this approach, they pointed to the
increased understanding of third-party developer needs through the
ADR project:

 161

I would say the ADR project is 100% of the
explanation. The reason the platform turned out so
great is that we learned how always to have the user
in focus. Usually, you do something for your
colleague; in the next room, you typically just meet
that need. You get it to work, and when another
need shows up, you’ll just mend something different
for that. When we designed the open API platform,
we collaborated closely within the ADR team. “How
do we get in touch with the third-party developers?
How can we make things easier for them?” This
collaboration gave us a general solution that works
really well. And that is the reason why we are using
it more and more internally, is because the
interfaces are so good and easy to use.
Systems Architect, DataCache

In 2020, the STA performed an internal investigation to appoint an
official integration platform, to be used throughout the agency. After
going through existing solutions at the STA and other external
products, the inquiry recommended management at the STA to
choose and appoint the DataCache platform. This recommendation
was primarily based on the teams’ experiences using the platform and
their reported development velocity. In August 2020 STA IT
Management decided in favor of this investigation thus making
DataCache the official integration platform of the STA.

1.4.4. DataCache influence on the Swedish Public

Transport Industry

Learnings from the STAs SLAs became increasingly important within
the Swedish public transport industry from 2016 and onwards. In
2016, through the “Forum for Transport Innovation,” the Government
Offices of Sweden ignited a redesign of open public transport data in
Sweden called “mobilization of open traffic data.” This initiative’s
primary reason was to create a more comprehensive and harmonized
open data delivery from the public transport industry. For instance,
real-time data were only available in a few regions, and the datasets
from different jurisdictions were challenging to combine. From a
policy perspective, more comprehensive data from the public
transport industry was a necessity to enable new mobility services.

Designing Platform Emulation

 160

I believe what sets us apart from many other teams
internally at the STA, but also in many other
organizations, is that we really put the user into
focus. Typically, everything is so technically
oriented, especially in internal projects. But once
you step into our door and say,” I have a need to
publish data,” we answer, “well, is it really you that
have this need? Isn’t someone out there who have
this need, those who wanted the data, they have the
need!” And then they come dragging with an
extremely complicated data model with obscure
coordinates, strange field names, and whatnot, and
then we say, “We cannot publish this; no one will
ever be able to use it.” We must start by knocking
together an understandable data model, and once
that is done, we say, “And now it’s time to
document it,” and they will say, “What – must we
also document this?” and we say “Yes.” So, we are a
little tough on our internal clients, but that is all to
provide a great experience for those developers who
will be using it.
Systems Architect, DataCache

These new, internal instances contained the same functionality, with
a test console, API documentation, some examples, and required even
internal developers to register to get access tokens. The only thing
that differed was that the data objects were different from those
present in the open platform. When asked what helped the
DataCache team to embrace this approach, they pointed to the
increased understanding of third-party developer needs through the
ADR project:

 161

I would say the ADR project is 100% of the
explanation. The reason the platform turned out so
great is that we learned how always to have the user
in focus. Usually, you do something for your
colleague; in the next room, you typically just meet
that need. You get it to work, and when another
need shows up, you’ll just mend something different
for that. When we designed the open API platform,
we collaborated closely within the ADR team. “How
do we get in touch with the third-party developers?
How can we make things easier for them?” This
collaboration gave us a general solution that works
really well. And that is the reason why we are using
it more and more internally, is because the
interfaces are so good and easy to use.
Systems Architect, DataCache

In 2020, the STA performed an internal investigation to appoint an
official integration platform, to be used throughout the agency. After
going through existing solutions at the STA and other external
products, the inquiry recommended management at the STA to
choose and appoint the DataCache platform. This recommendation
was primarily based on the teams’ experiences using the platform and
their reported development velocity. In August 2020 STA IT
Management decided in favor of this investigation thus making
DataCache the official integration platform of the STA.

1.4.4. DataCache influence on the Swedish Public

Transport Industry

Learnings from the STAs SLAs became increasingly important within
the Swedish public transport industry from 2016 and onwards. In
2016, through the “Forum for Transport Innovation,” the Government
Offices of Sweden ignited a redesign of open public transport data in
Sweden called “mobilization of open traffic data.” This initiative’s
primary reason was to create a more comprehensive and harmonized
open data delivery from the public transport industry. For instance,
real-time data were only available in a few regions, and the datasets
from different jurisdictions were challenging to combine. From a
policy perspective, more comprehensive data from the public
transport industry was a necessity to enable new mobility services.

Designing Platform Emulation

 162

Therefore, the project’s goal was to develop five strategic objectives
anchored in the industry, summarizing the principles of essential
facets of industry-wide publication of open data. One of these
objectives was directly connected to the principles of the DataCache
platform at the STA.

Here, the new industry platform should be used by third-party
developers and the industry itself. The new open platform should be
used to scrap existing integrations between public transport
authorities and, the Swedish public transport industry should use the
new platform in their end-user services. This principle was referred to
as “eat your own dog food.” During the project, one out of six
workshops were dedicated to “customer value propositions,” where
aspects such as service levels and third-party developer assurance
were handled. Here, the model chosen by the STA was brought
forward as an alternative way of circumventing the public transport
industry to sign legally binding SLAs. If the public transport
themselves would use the new national public transport open data
platform as their primary resource, third-party developers could rely
on a sufficient “shadow SLA.” In the final document that was ratified
by the Swedish public transport industry, the principle of “eat your
own dogfood” was highlighted50.

50 See https://samtrafiken.se/wp-content/uploads/2017/04/Slutrapport-_-
Kraftsamling-%C3%96ppna-Trafikdata-en-m%C3%A5lbild-f%C3%B6r-
Sverige-v-1.0-_-Diarienummer-Vinnova-2016-03467.pdf#page=51

 Designing Open Platform Emulation

 Forty-Second International Conference on Information Systems, Austin 2021
 16

Karhu, K., Gustafsson, R., and Lyytinen, K. 2018. "Exploiting and Defending Open Digital Platforms with
Boundary Resources: Android’s Five Platform Forks," Information Systems Research (29:2), pp.
479-497.

Kazan, E., Tan, C.-W., Lim, E., Sørensen, C., and Damsgaard, J. 2018. "Disentangling Digital Platform
Competition: The Case of Uk Mobile Payment Platforms," Journal of Management Information
Systems (35:1), pp. 180-219.

Labianca, G., Fairbank, J., Thomas, J., Gioia, D., and Umphress, E. 2001. "Emulation in Academia:
Balancing Structure and Identity," Organization Science (12:3), pp. 312-330.

Markus, L., Majchrzak, A., and Gasser, L. 2002. "A Design Theory for Systems That Support Emergent
Knowledge Processes," MIS Quarterly (26), pp. 179-212.

O'Mahony, S., and Karp, R. 2020. "From Proprietary to Collective Governance: How Do Platform
Participation Strategies Evolve?," Strategic Management Journal (n/a:n/a).

Oxford English Dictionary. 2019. ""Emulation, N."." Retrieved 2019-02-01, from
http://www.oed.com/view/Entry/61461

Parnas, D. 1972. "On the Criteria to Be Used in Decomposing Systems into Modules," Communications of
the ACM (15), pp. 1053-1058.

Parnas, D., Clements, P., and Weiss, D. 1985. "The Modular Structure of Complex Systems," IEEE
Transactions on Software Engineering (SE-11:3), pp. 259-266.

Saadatmand, F., Lindgren, R., and Schultze, U. 2019. "Configurations of Platform Organizations:
Implications for Complementor Engagement," Research Policy (48:8), p. 103770.

Schäfer, M. 2011. Bastard Culture! How User Participation Transforms Cultural Production. Amsterdam:
Amsterdam University Press.

Sein, M., Henfridsson, O., Purao, S., Rossi, M., and Lindgren, R. 2011. "Action Design Research," MIS
Quarterly (35:1), pp. 37-56.

Teece, D., Pisano, G., and Shuen, A. 1997. "Dynamic Capabilities and Strategic Management," Strategic
Management Journal (18:7), pp. 509-533.

Tennie, C., Call, J., and Tomasello, M. 2010. "Evidence for Emulation in Chimpanzees in Social Settings
Using the Floating Peanut Task," PLOS ONE (5:5), p. e10544.

Tilson, D., Lyytinen, K., and Sørensen, C. 2010. "Research Commentary —Digital Infrastructures: The
Missing Is Research Agenda," Information Systems Research (21:4), pp. 748-759.

Tiwana, A. 2014. Platform Ecosystems: Aligning Architecture, Governance, and Strategy, (1st ed.).
Morgan Kaufman.

Tiwana, A. 2015. "Platform Desertion by App Developers," Journal of Management Information Systems
(32:4), pp. 40-77.

Tiwana, A., Konsynski, B., and Bush, A. A. 2010. "Research Commentary--Platform Evolution: Coevolution
of Platform Architecture, Governance, and Environmental Dynamics," Information Systems
Research (21), pp. 675-687.

Tucker, S. 1965. "Emulation of Large Systems," Communications of the ACM (8:12), pp. 753-761.
Walls, J., Widmeyer, G., and El Sawy, O. 1992. "Building an Information System Design Theory for Vigilant

Eis," Information Systems Research (3:1), pp. 36-59.
Wareham, J., Fox, P., and Cano Giner, J. 2014. "Technology Ecosystem Governance," Organization Science

(25:4), pp. 1195-1215.
West, J. 2003. "How Open Is Open Enough? Melding Proprietary and Open Source Platform Strategies,"

Research Policy (32:7), pp. 1259-1285.
Westin, S., and Sein, M. 2015. "The Design and Emergence of a Data/Information Quality System,"

Scandinavian Journal of Information Systems (27:1), pp. 3-26.

Gothenburg Studies in Informatics

ISSN 1400-741X (print), ISSN 1651-8225 (online)

1. Ulf Sundin. A Logic Programming Approach to Information Modelling and Database
Design, May 1990. (Licentiate Thesis).

2. Thanos Magolas and Kalevi Pessi. En studie om informationssystems- arkitekturer (in
Swedish), February 1991. (Licentiate Thesis).

3. Peter Nordenstam. Individbaserade relativt öppna informationssystem (in Swedish),
February, 1990. (Licentiate Thesis).

4. Bo Dahlbom and Lars Mathiassen. Struggling with quality; The Philosophy of
Developing Computer Systems, August 1991. (Revised edition: Computers in Context.
The Philosophy and Practice of Systems Design, Oxford: Blackwell, 1993.)

5. Börje Langefors. Essays on infology. Summing up and Planning for the Future, Edited
by Bo Dahlbom, August 1993.

6. Bo Dahlbom (ed.). The Infological Equation. Essays in honor of Börje Langefors,
March 1995.

7. Bo Dahlbom, Frederik Kämmerer, Fredrik Ljungberg, Jan Stage and Carsten Sørensen
(eds.). Designing in Context. Proceedings of the 18th Information Systems Research
Seminar in Scandinavia, June 1995.

8. Bo Dahlbom, Fredrik Ljungberg, Urban Nuldén, Kai Simon, Jan Stage and Carsten
Sørensen (eds.). The Future. Proceedings of the 19th Information Systems Research
Seminar in Scandinavia, June 1996.

9. Agneta Ranerup. Användarmedverkan med representanter (in Swedish), August 1996.
(Doctoral Thesis).

10. Ole Hanseth. Information Technology as Infrastructure, November 1996. (Doctoral
Thesis).

11. Fredrik Ljungberg. Networking, September 1997. (Doctoral Thesis).

12. Jan Ljungberg. From Workflow to Conversation, October 1997. (Doctoral Thesis).

13. Thanos Magoulas and Kalevi Pessi. Strategisk IT-management (in Swedish), March
1998. (Doctoral Thesis).

14. Fredrik Ljungberg (ed.). Informatics in the Next Millennium. Essays in honor of Bo
Dahlbom, June 1999.

15. Urban Nuldén. e-ducation, May 1999. (Doctoral Thesis).

35. Agneta Nilsson. Contextual Implementation of Organizational Networking Systems,
August 2006. (Doctoral Thesis).

36. Mathias Klang. Disruptive Technology – Effects of Technology Regulation on
Democracy, October 2006. (Doctoral Thesis).

37. Ulrika Josefsson. Coping Online – Patients’ Use of the Internet, February 2007.
(Doctoral Thesis).

38. Magnus Holmqvist. Developing And Implementing IS/IT in Aftermarket Logistics,
June 2007. (Doctoral Thesis).

39. Jonas Landgren. Designing information Technology For Emergency Response,
September 2007. (Doctoral Thesis).

40. Magnus Andersson. Heterogeneous IT Innovation. Developing industrial architectural
knowledge, October 2007. (Doctoral Thesis).

41. Nicklas Lundblad. Law in a Noise Society, February 2008. (Doctoral Thesis).

42. Maria Åkesson. Digital Innovation in the value networks of newspapers, September
2009. (Doctoral Thesis).

43. Marie Eneman. Developing Effective Child Protection Strategies: Critical Study of
Offenders’ Use of Information Technology for Sexual Exploitation of Children,
December 2010. (Doctoral Thesis).

44. Elisabeth Frisk. Evaluating as Designing, March 2011. (Doctoral Thesis).

45. Ann Svensson. Kunskapsintegrering med informationssystem i professions
orienterade praktiker (cover paper in Swedish), May 2012. (Doctoral Thesis).

46. Maria Bolin. Narrativer i förändringsarbete – från projekt till Athenas plan.
September 2014. (Doctoral Thesis).

47. Tomas Lindroth. Being Multisituated – Characterizing Laptoping in Networked
Situations, April 2015. (Doctoral Thesis).

48. Wanda Presthus. Business Intelligence Utilisation through Bootstrapping and
Adaptation, September 2015. (Doctoral Thesis).

49. Jesper Lund. Digital Innovation: Orchestrating Network Activities. September 2015.
(Doctoral Thesis).

50. Soumitra Chowdhury. Service Logic in Digitalized Product Platforms – A Study of
digital service innovation in the Vehicle Industry. September 2015. (Doctoral Thesis).

16. Lars Erik Holmquist. Breaking the Screen Barrier, May 2000. (Doctoral Thesis).

17. Nina Lundberg. IT in Healthcare - Artifacts, Infrastructures and Medical Practices,
May 2000. (Doctoral Thesis).

18. Henrik Fagrell. Mobile Knowledge, October 2000. (Doctoral Thesis).

19. Staffan Björk. Flip Zooming - The Development of an Information Visualization
Technique, October 2000. (Doctoral Thesis).

20. Johan Redström. Designing Everyday Computational Things, May 2001. (Doctoral
Thesis).

21. Dick Stenmark. Designing the new Intranet, March 2002. (Doctoral Thesis).

22. Pouya Pourkomeylian. Software Practice Improvement, March 2002. (Doctoral
Thesis).

23. Rikard Lindgren. Competence Systems, June 2002. (Doctoral Thesis).

24. Ulrika Lundh Snis. Codifying Knowledge, October 2002. (Doctoral Thesis).

25. Lars Svensson. Communities of Distance Education, December 2002. (Doctoral
Thesis).

26. Kai Simon. BPR in the Pharmaceutical Industry, April 2003. (Doctoral Thesis).

27. Per Dahlberg. Local Mobility, May 2003. (Doctoral Thesis).

28. Alexandra Weilenmann. Doing Mobility, June 2003. (Doctoral Thesis).

29. Carina Ihlström. The Evolution of a New(s) Genre, September 2004. (Doctoral
Thesis).

30. Antonio Cordella. Information Infrastructures in Action, November 2004. (Doctoral
Thesis).

31. Helena Holmström. Community-Based Customer Involvement for Improving
Packaged Software Development, November 2004. (Doctoral Thesis).

32. Christian Hardless. Designing Competence Development Systems, March 2005.
(Doctoral Thesis).

33. Andreas Nilsson. Sport Informatics – Exploring IT Support for Spectators at Sporting
Events, November 2005. (Doctoral Thesis).

34. Johan Lundin. Talking about Work – Designing Information Technology for
Learning in Interaction, November 2005. (Doctoral Thesis).

35. Agneta Nilsson. Contextual Implementation of Organizational Networking Systems,
August 2006. (Doctoral Thesis).

36. Mathias Klang. Disruptive Technology – Effects of Technology Regulation on
Democracy, October 2006. (Doctoral Thesis).

37. Ulrika Josefsson. Coping Online – Patients’ Use of the Internet, February 2007.
(Doctoral Thesis).

38. Magnus Holmqvist. Developing And Implementing IS/IT in Aftermarket Logistics,
June 2007. (Doctoral Thesis).

39. Jonas Landgren. Designing information Technology For Emergency Response,
September 2007. (Doctoral Thesis).

40. Magnus Andersson. Heterogeneous IT Innovation. Developing industrial architectural
knowledge, October 2007. (Doctoral Thesis).

41. Nicklas Lundblad. Law in a Noise Society, February 2008. (Doctoral Thesis).

42. Maria Åkesson. Digital Innovation in the value networks of newspapers, September
2009. (Doctoral Thesis).

43. Marie Eneman. Developing Effective Child Protection Strategies: Critical Study of
Offenders’ Use of Information Technology for Sexual Exploitation of Children,
December 2010. (Doctoral Thesis).

44. Elisabeth Frisk. Evaluating as Designing, March 2011. (Doctoral Thesis).

45. Ann Svensson. Kunskapsintegrering med informationssystem i professions
orienterade praktiker (cover paper in Swedish), May 2012. (Doctoral Thesis).

46. Maria Bolin. Narrativer i förändringsarbete – från projekt till Athenas plan.
September 2014. (Doctoral Thesis).

47. Tomas Lindroth. Being Multisituated – Characterizing Laptoping in Networked
Situations, April 2015. (Doctoral Thesis).

48. Wanda Presthus. Business Intelligence Utilisation through Bootstrapping and
Adaptation, September 2015. (Doctoral Thesis).

49. Jesper Lund. Digital Innovation: Orchestrating Network Activities. September 2015.
(Doctoral Thesis).

50. Soumitra Chowdhury. Service Logic in Digitalized Product Platforms – A Study of
digital service innovation in the Vehicle Industry. September 2015. (Doctoral Thesis).

16. Lars Erik Holmquist. Breaking the Screen Barrier, May 2000. (Doctoral Thesis).

17. Nina Lundberg. IT in Healthcare - Artifacts, Infrastructures and Medical Practices,
May 2000. (Doctoral Thesis).

18. Henrik Fagrell. Mobile Knowledge, October 2000. (Doctoral Thesis).

19. Staffan Björk. Flip Zooming - The Development of an Information Visualization
Technique, October 2000. (Doctoral Thesis).

20. Johan Redström. Designing Everyday Computational Things, May 2001. (Doctoral
Thesis).

21. Dick Stenmark. Designing the new Intranet, March 2002. (Doctoral Thesis).

22. Pouya Pourkomeylian. Software Practice Improvement, March 2002. (Doctoral
Thesis).

23. Rikard Lindgren. Competence Systems, June 2002. (Doctoral Thesis).

24. Ulrika Lundh Snis. Codifying Knowledge, October 2002. (Doctoral Thesis).

25. Lars Svensson. Communities of Distance Education, December 2002. (Doctoral
Thesis).

26. Kai Simon. BPR in the Pharmaceutical Industry, April 2003. (Doctoral Thesis).

27. Per Dahlberg. Local Mobility, May 2003. (Doctoral Thesis).

28. Alexandra Weilenmann. Doing Mobility, June 2003. (Doctoral Thesis).

29. Carina Ihlström. The Evolution of a New(s) Genre, September 2004. (Doctoral
Thesis).

30. Antonio Cordella. Information Infrastructures in Action, November 2004. (Doctoral
Thesis).

31. Helena Holmström. Community-Based Customer Involvement for Improving
Packaged Software Development, November 2004. (Doctoral Thesis).

32. Christian Hardless. Designing Competence Development Systems, March 2005.
(Doctoral Thesis).

33. Andreas Nilsson. Sport Informatics – Exploring IT Support for Spectators at Sporting
Events, November 2005. (Doctoral Thesis).

34. Johan Lundin. Talking about Work – Designing Information Technology for
Learning in Interaction, November 2005. (Doctoral Thesis).

51. Asif Akram. Value Network Transformation – Digital Service Innovation in the
Vehicle Industry. January 2016. (Doctoral thesis).

52. Fatemeh Saadatmand. Shared Platform Coopetition: The Paradoxical Tension
between Stabilized Cooperation and Intensified Competition. November 2016.
(Licentiate thesis).

53. Fatemeh Saadatmand. Shared Platform Evolution: An Imbrication Analysis of
Coopetition and Architecture. March 2018. (Doctoral Thesis).

54. Fahd Omair Zaffar. The Value of Social Media – What Social Networking Sites
afford organizations. June 2018. (Doctoral Thesis).

55. Stefan Nilsson. Designing for technology-mediated collaboration. December 2018.
(Doctoral Thesis).

56. Taline Jadaan. The Emergence of Digital Institutions. Oktober 2019. (Doctoral
Thesis).

57. Hannes Göbel. Designing	Digital	Resourcing. Januari 2020. (Doctoral Thesis).

58. Hawa Nyende. Maternal Healthcare in Low-Resource Settings: Investigations of IT
as a resource. June 2020. (Doctoral Thesis).

59. Michael Kizito. Enacting ambidextrous IT governance in healthcare. June 2020.
(Doctoral Thesis).

60. Daniel Rudmark. Designing Platform Emulation. June 2021. (Doctoral Thesis).

