
ar
X

iv
:1

10
1.

55
06

v1
 [

cs
.D

S]
 2

8
Ja

n
20

11

Compressed String Dictionaries ∗

Nieves R. Brisaboa1, Rodrigo Cánovas2, Miguel A. Mart́ınez-Prieto2,3, and
Gonzalo Navarro2

1 Database Lab, Universidade da Coruña, Spain
2 Department of Computer Science, University of Chile

3 Department of Computer Science, Universidad de Valladolid, Spain

Abstract. The problem of storing a set of strings — a string dictionary

— in compact form appears naturally in many cases. While classically
it has represented a small part of the whole data to be processed (e.g.,
for Natural Language processing or for indexing text collections), more
recent applications in Web engines, Web mining, RDF graphs, Internet
routing, Bioinformatics, and many others, make use of very large string
dictionaries, whose size is a significant fraction of the whole data. Thus
novel approaches to compress them efficiently are necessary. In this paper
we experimentally compare time and space performance of some existing
alternatives, as well as new ones we propose. We show that space reduc-
tions of up to 20% of the original size of the strings is possible while
supporting fast dictionary searches.

1 Introduction

String dictionaries arise naturally in a large number of applications. We associate
them classically to Natural Language (NL) processing: finding the lexicon of a
text corpus is the first step in analyzing it [26]. They also arise, together with
inverted indexes, when indexing text collections formed by NL [3, 36].

In those NL applications, there has not been much concern about the size of
the dictionary. This is because, in classical NL collections, the dictionary grows
sublinearly with the text size: Heaps’ law [20] establishes that in a text of length
n, the dictionary size is O(nβ), for some 0 < β < 1 depending on the type of
text. This β value is usually in the range 0.4–0.6 [3], and thus the dictionary of
terabyte-size collections should occupy just a few megabytes and would easily
fit in the main memory of a commodity PC.

Heaps’ law, however, does not model well the reality of Web search engines.
Web collections are much less “clean” than text collections whose content quality
is carefully controlled. Dictionaries of Web crawls easily exceed the gigabytes, due
to typos and unique identifiers that are taken as “words”, but also for “regular

∗First author partially funded by the Ministry of Science and Innovation of Spain
(PGE and FEDER) TIN2009-14560-C03-02 and Xunta of Galicia ref. 09TIC060E, third
author by the Ministry of Science and Innovation of Spain: TIN2009-14009-C02-02,
and last three authors by Millennium Institute for Cell Dynamics and Biotechnology
(ICDB), Grant ICM P05-001-F, Mideplan, Chile.

http://arxiv.org/abs/1101.5506v1

words” from multiple languages. The ClueWeb09 dataset4 is a real example
which comprises close to 200 million different words obtained from 1 billion web
pages on 10 languages. This results in a large dictionary of far more than 1GB.

Web graphs are another application where the size of the URL names, clas-
sically neglected, is becoming very relevant with the advances of the techniques
that compress the graph topology. The nodes of a Web graph are typically the
pages of a crawl, and the edges are the hyperlinks. Typically there are 15 to 30
links per page. Compressing Web graphs has been an area of intense study, as it
permits caching larger graphs in main memory, for tasks like Web mining, Web
spam detection, finding communities of interest, etc. [22, 11]. In several cases the
URL names are used to improve the mining quality [37, 29].

In an uncompressed graph, 15 to 30 links per page would require 60 to 120
bytes if represented as a 4-byte integer. This posed a more serious memory
problem compared to the name of the URL itself once some simple compression
procedure was applied to those names (such as Front-Coding, see Section 2.4).
For example, Broder et al. [6] reports 27.2 bits per edge (bpe) and 80 bits per
node (bpn). This means that each node takes around 400–800 bits to represent
its links, compared to just 80 bits used for storing its URL. In the same way,
an Internet Archive graph of 115M nodes and 1.47 billion edges required [33]
13.92 bpe plus around 50 bpn, so 200–400 bits are used to encode the links and
only 50 for the URL. In both cases, the space required to encode the URLs
was just 10%-25% of that required to encode the links. However, the advances in
compressing the edges has been impressive in recent years, achieving compression
ratios around 1–2 bits per edge [4, 1]. At this rate, the edges leaving a node
require on average 2 to 8 bytes, compared to which the name of the URL certainly
becomes an important part of the overall space.

Another application is Bioinformatics. Popular alignment software like BLAST
[19] indexes all the different substrings of length q of a text, storing the positions
where they occur in the sequence database. For DNA sequences q = 11, 12 is
common, whereas for proteins they use q = 3, 4. Over a DNA alphabet of size 4,
or a protein alphabet of size 20, this amounts to up to 200 million characters.
Using a larger q would certainly allow them improve the quality in searching for
conserved regions, but this is infeasible for memory constraints.

The emergent Linked Data Project5 focuses on the publication of RDF6 data
and their connection between different data sources in the “Web of Data”. This
movement results in huge and heterogeneous RDF datasets from diverse fields.

The dictionary is an essential component in the logical division of an RDF
database [12]. However, its effective representation has not been studied in
depth. Our experience with the tool HDT-It!7 shows that the dictionary for
the DBpedia-en dataset8takes around 5.14GB, whereas the compact “Bitmap-

4http://boston.lti.cs.cmu.edu/Data/clueweb09
5http://linkeddata.org
6http://www.w3.org/TR/rdf-syntax-grammar
7http://code.google.com/p/hdt-it
8 http://downloads.dbpedia.org/3.5.1/en

Triples” representation of their triples structure only takes 1.08GB. That is, the
dictionary amounts to more than 80% of the total structure size.

Finally, Internet routing poses another interesting problem on dictionary
strings. Domain name servers map domain names to IP addresses, and routers
map IP addresses to physical addresses. They may handle large dictionaries of
domain names or IP addresses, and serve as many request per second as possible.

This short tour over various example applications shows that handling very
large string dictionaries is an important and pervasive problem. Curiously, we
have not seen much research on compressing them, perhaps because a few years
ago the space of these dictionaries was not a serious problem, and at most Front-
Coding was sufficient. In this paper we study Front-Coding and other solutions
we propose for compressing large string dictionaries, so that two basic operations
are supported: (1) given a string, give its position in the dictionary or tell it is
not in the dictionary; (2) given a position, retrieve its string content.

Our study over various application scenarios spots a number of known and
novel alternatives that dominate different niches of the space/time tradeoff map.
The least space-consuming variants perform efficiently while compressing the
dictionary to 12%–30% of its original size, depending on the type of dictionary.

2 Basic Concepts and Related Work

2.1 Rank and Select on Bitmaps

Let B[1, n] be a 0, 1 string (bitmap) of length n and assume there are m ones
in the sequence. We define rankb(B, i) as the number of occurrences of bit b in
B[1, i] and selectb(B, i) as the position of the i-th occurrence of b in B.

In this paper we will use two different succinct data structures9 that answer
rank and select queries. The first one, that we will refer to as RG [17], uses
(1 + x)n bits to represent B. It supports rank using two random accesses to
memory plus 4/x contiguous (i.e., cached) accesses. An additional binary search
is needed to support select.

The second data structure, that we will call RRR [31], is a compressed bitmap
that uses in practice about log

(

n

m

)

+(4
15 +x)n bits10, answering rank within two

random accesses plus 3+8/x accesses to contiguous memory, and select with an
extra binary search. In practice this compresses the bitmap when m < 0.2n.

2.2 Huffman and Hu-Tucker Codes

For compressing sequences, statistical methods assign shorter codes (i.e., bit
streams) to more frequent symbols. Huffman coding [21] is the optimal code (i.e.,
it achieves the minimum length of encoded data) that is uniquely decodable. In
this paper we use canonical Huffman codes [28], which have various advantages.

9Implementations available at http://libcds.recoded.cl
10Our logarithms are in base 2.

Hu-Tucker codes [23] are optimum among those that maintain the lexico-
graphical order of the symbols. Two sequences encoded using Hu-Tucker can
be lexicographically compared bytewise directly in encoded form. We use both
codes in this paper, in some cases padding them (with zeros) to the next byte
in order to simplify alignment and bytewise comparisons.

2.3 Hashing

Hashing [10] is a folklore method to store a dictionary of any kind. A hash
function transforms the elements into indexes in a hash table, where the corre-
sponding value is to be inserted or sought. A collision arises when two different
elements are mapped to the same array cell. In this paper we use closed hashing:
If the cell where an element is to be found is occupied, one successively probes
other cells until finding a free cell (insertions and unsuccessful searches) or until
finding the element (successful searches).

We will consider two policies to determine the next cells to probe when a
collision is detected at cell x. Double hashing computes another hash function y
that depends on the key and probes x + y, x + 2y, etc. modulo the table size.
Linear probing is a simpler policy. It tries the successive cells of the hash table,
x+ 1, x+ 2, etc. modulo the table size.

The load factor is the fraction of occupied cells, and it influences space usage
and time performance. Using good hash functions, insertions and unsuccessful
searches require on average 1

1−α
probes with double hashing, whereas successful

searches require 1
α
ln 1

1−α
probes. Linear probing requires more probes on aver-

age: 1
2

(

1 + 1
(1−α)2

)

for insertions and unsuccessful searches, and 1
2

(

1 + 1
1−α

)

for successful searches. Despite its poorer complexities, we consider also linear
probing because it has advantages on some compressed representations we try.

2.4 Front-coding

Front-coding [36] is the folklore compression technique for lexicographically sorted
dictionaries. It is based on the fact that consecutive entries are likely to share
a common prefix. Each entry in the dictionary is be differentially encoded with
respect to the preceding one. Two values are used: an integer which encodes the
length of their common prefix, and the remaining suffix of the current entry.

To allow searches, Front-Coding partitions the dictionary into buckets, where
the first element is explicitly stored and the rest are differentially encoded. This
allows the dictionary to be efficiently searched using a two-step process: first, a
binary search on the first entry of the buckets locates the candidate bucket, and
second a sequential scan of this candidate bucket rebuilds each element on the
fly and compares it with the query. The bucket size yields a time/space tradeoff.

Front-coding has been sucessfully used in many applications. We emphasize
its use in WebGraph11 to encode URL dictionaries from Web graphs.

11http://webgraph.dsi.unimi.it

2.5 Compressed Text Self-Indexes

A compressed text self-index takes advantage of the compressibility of a text
T [1, N] in order to represent it in space close to that of the compressed text, while
supporting random access and search operations. More precisely, a self-index
supports at least operations extract(i, j), which returns T [i, j], and locate(p),
which returns the positions in T where pattern p occurs.

There are several self-indexes [30, 13]. For this paper we are interested in par-
ticular in the FM-index family [14, 15], which is based on the Burrows-Wheeler
transform (BWT) [7]. FM-indexes achieve the best compression among self-
indexes and are very fast to determine whether p occurs in T . Many self-indexes
are implemented in the PizzaChili site12.

The BWT of T [1, N], T bwt[1, N], is a permutation of its symbols. If the
suffixes T [i, N] of T are sorted lexicographically, then T bwt[j] is the character
preceding the jth smallest suffix. We use the BWT properties in this paper to
represent a dictionary as the FM-index of a text T .

FM-indexes support two basic operations on T bwt. One is the LF-step, which
moves from T bwt[j] that corresponds to the suffix T [i, N] to T bwt[j′] that cor-
responds to the suffix T [i − 1, N] (or T [N,N] if i = 1), that is j′ = LF (j).
The second is the backward step, which moves from the lexicographical inter-
val T bwt[sp, ep] of all the suffixes of T that start with string x to the interval
T bwt[sp′, ep′] of all the suffixes that start with cx, for a character c, that is,
(sp′, ep′) = BWS(sp, ep, c).

2.6 Grammar-Based Compression

Grammar-based compresson is about finding a small grammar that generates
a given text [9]. These methods exploit repetitions in the text to derive good
grammar rules, so they are particularly suitable for texts containing many iden-
tical substrings. Finding the smallest grammar for a given text is NP-hard [9], so
grammar-based compressors look for good heuristics. We use Re-Pair [24] as a
concrete compressor, as it runs in linear time and yields good results in practice.

Re-Pair finds the most-repeated pair xy in the text and replaces all its ocur-
rences by a new symbol R. This adds a new rule R → xy to the grammar. The
process iterates until all remaining pairs are unique in the text. Then Re-Pair
outputs the set of r rules and the compressed text, C. We use a public implemen-
tation13 for the compressor, and store rules as a pair of integers taking log(σ+r)
bits each, and symbols of C using also log(σ + r) bits.

2.7 Variable-Length and Direct-Access Codes

Brisaboa et al. [5] introduce a symbol reordering technique called directly ad-
dressable variable-length codes (DACs). Given a concatenated sequence of variable-
length codes, DACs reorder the target symbols so that direct access to any code

12http://pizzachili.dcc.uchile.cl
13http://www.dcc.uchile.cl/gnavarro/software

is possible. The overhead is at most one bit per target symbol, which is not too
much if the target alphabet is large.

All the first symbols of the codes are concatenated in a first array A1. A
bitmap B1 stores one bit per code in A1, marking with a 1 the codes of length
more than 1. The second symbols of the codes of length more than one are
concatenated in a second array A2, with B2 marking which are longer than two,
and so on. To extract the ith code, one finds its first symbol in A1[i]. If B1[i] = 0,
we are done. Otherwise we continue in A2[rank1(B1, i)], and so on.

A variable-length coding we use in this paper (albeit not in combination with
DACs) is Vbyte [35]. It is used to represent numbers of distinct magnitudes,
where most are small. Vbyte partitions the bits into 7-bit chunks and reserves
the last bit of each byte to signal whether the number continues or not.

3 Compressed Dictionary Representations

We describe now various approches for representing a dictionary within com-
pressed space while solving two operations on it:

locate(p): gives a unique nonnegative identifier for the string p, if it appears
in the dictionary; otherwise it returns −1.

extract(i): returns the string with identifier i in the dictionary, if it exists;
otherwise returns NULL.

3.1 Hashing and Compression

We explore several combinations of hashing and compression. We Huffman-
encode each string and the codes are concatenated in byte-aligned form. We
insert the (byte-)offsets of the encoded strings in a hash table. The hash func-
tion operates over the encoded strings (seen as a sequence of bytes, that is, we
compare them bytewise). This lowers the time to compute the function and to
compare search keys (as the string is shorter). For searching we first Huffman-
encode the search string and pad it bits to an integral number of bytes.

Our main hash function is a modified Bernstein’s hash14. The second function
for double hashing is the “rotating hash” proposed by Knuth [23, Sec. 6.4]15.

We concatenate the strings in the same order they are finally stored in the
hash table. This improves locality of reference for linear probing, and gives other
benefits, as seen later (in particular we easily know the length in bytes of each
encoded string). We consider three variants to represent the hash table, and
combine each of them with linear probing (lp) or double hashing (dh).

The first variant, Hash, stores the hash table in classical form, as an array
H [1,m] pointing to the byte offset of the encoded strings. To answer locate(p) we

14http://www.burtleburtle.net/bob/hash/doobs.html. We initialize h as a large
prime and replace the 33 by 215 + 1, taking modulo the table size at each iteration.

15Precisely, the variant at http://burtleburtle.net/bob/hash/examhash.html.
We also initialize h as a large prime.

proceed as usual, returning the offset of H where the answer was found, or −1
if not. To answer extract(i), we simply decompress the string pointed from H [i].
Then with load factor α = n/m (n being the number of strings in the dictionary),
the structure requires m integers in addition to the Huffman-compressed strings.

The second variant, HashB, storesH [1,m] in compact form, that is, removing
the empty cells, in an arrayM [1, n]. It also stores an RG-encoded bitmap B[1,m]
that marks with a 1 the nonempty cells of H . Then H [i] is empty if B[i] = 0,
and if it is nonempty then its value is H [i] = M [rank1(B, i)]. Now locate(p)
returns positions in M , so our identifiers become contiguous in the range [1, n],
which is desirable. For extract(i) we simply decompress the string pointed from
M [i]. The space of this representation is n integers plus (1 + x)m bits, where
x is the parameter of bitmap representation RG. The n integers require n logN
bits, where N is the total byte length of the encoded strings.

The price is in time, as each new probe requires an additional rank on B.
However, with linear probing, rank needs to be computed only once, as the
successive cells are also successive in M . We only need to access the bits of B to
determine where is the next empty cell.

The third variant, HashBB, also stores M and B instead of H , but M is re-
placed by a second bitmap. Note that since we have reordered the codes according
to where they appear inH (orM), the values in these arrays are increasing. Thus
instead of M we store a second bitmap Y [1, N], where a 1 marks the beginning
of the codes. Then M [i] = select1(Y, i). Bitmap Y is encoded in compressed
form (RRR). Now the n logN bits of M are reduced to log

(

N

n

)

+(4
15 +x)N bits,

which is smaller unless the encoded strings are long.

The price is, again, in time. Each access to M requires a select operation.
Note that linear probing does not save us from successive select operations,
despite the involved string being contiguous, because we have no way to know
where a code ends and the next starts.

3.2 Front-Coding and Compression

We consider two variants of Front-Coding. Plain Front-Coding implements the
original technique by using Vbyte to encode the length of the common prefix.
The remaining suffix is terminated with a zero-byte. Only bytewise operations
are needed to search. The block sizes are measured in number of strings, so
extract(i) determines the appropriate block with a simple division, and then
scans the block to find the corresponding string.

Hu-Tucker Front-Coding is similar, but all the strings and Vbyte codes are
encoded together using a single Hu-Tucker code. The bucket starts with the Hu-
Tucker code of the first string, which is padded to the next byte boundary and
preceded by the byte length of the encoded string, in Vbyte form. This prelude
enables binary searching the first strings without decompressing them. The rest
of the bucket is Hu-Tucker-compressed and bit-aligned, and is sequentially de-
compressed when scanning the bucket, both for locating and for extracting. We
use a pointer-based Hu-Tucker tree implementation.

3.3 FM-Index Based Representation

We use two variants of the FM-index. The first is the SSA [15], which compresses
T to its zero-order entropy, more precisely to N(H0(T) + 1)(1 + o(1)) bits. A
second variant, which we call SSA∗, achieves “implicit compression boosting”
[25] and reaches higher-order compression, more precisely NHk(T) + o(N log σ)
for any k ≤ α logσ N and constant 0 < α < 1, where σ is the alphabet size
of T and Hk is the k-th order empirical entropy [27]. The SSA is at PizzaChili
and SSA∗ is obtained by changing RG by RRR in its bitmaps. Both FM-index
implementations support functions LF and BWS, as well as obtaining T bwt[j]
given j, in time O(log σ). We use the indexes with no extra sampling because
we need only limited functionality.

We concatenate all the strings in lexicographic order, terminating each one
with a special character, $, that is lexicographically smaller than all the symbols
in T (in practice $ is the ASCII code zero, which is the natural string terminator).
We also add $ at the beginning of the sequence. Thus we can speak of the ith
string in lexicographical or positional order, indistinctly.

Note that, when the suffixes of T are sorted lexicographically, the first cor-
responds to the final $, and the next n correspond to the $s that precede each
dictionary string. Thus T bwt[1] is the final character of the nth dictionary string,
and T bwt[i + 2] is the final character of the ith string, for 1 ≤ i < n. Therefore
extract(i) can be carried out by starting at the corresponding position of T bwt

and using LF-steps until reaching a $. The T bwt[j] characters traversed spell out
the desired dictionary string in reverse order.

To answer locate(p) we just need to determine whether p occurs in T . Thus
we start with (sp, ep) = (1, n+1) and use |p|+1 backward steps until finding the
lexicographical interval (sp′, ep′) of the suffixes that start with p. If p exists in
the dictionary and is the ith string, then sp′ = ep′ = i+1 and we simply return
i; otherwise sp′ > ep′ holds at some point in the process.

3.4 Re-Pair Based Representation

We concatenate all the dictionary strings in lexicographic order and apply Re-
Pair compression to the concatenation. However, we avoid forming rules that
contain the string terminator. This ensures that each string is encoded with an
integral number of symbols in C and thus decompression is fast.

Locating is done via binary search, where each dictionary string to compare
must be decompressed first. We decompress the string only up to the point
where the lexicographical comparison can be decided. For extraction we simply
decompress the desired string.

For both operations we need direct access to the first symbol of the ith string
in C. Each compressed string can be seen as a variable-length sequence of symbols
in C, where they are concatenated. Thus we use the DAC representation on those
sequences. This gives fast direct access to the ith string, at the price of 1.25 bits
per symbol: we use RG representation with 25% overhead.

4 Experimental Results

We consider four dictionaries that are representative of relevant applications:

Words comprises all the different words with at least 3 ocurrences in the
ClueWeb09 dataset16. It contains 25,609,784 words and occupies 256.36 MB.

DNA stores all subsequences of 12 nucleotides found in the sequences of S.
Paradoxus published in the para dataset17. It contains 9,202,863 subse-
quences and occupies 114.09 MB.

URLs corresponds to a 2002 crawl of the .uk domain from the WebGraph

framework18. It contains 18,520,486 URLs and occupies 1.34 GB.
URIs contains all different URIs used in the DBpedia-en RDF dataset8 (blank

nodes and literals excluded). It contains 30,176,012 URIs and takes 1.52 GB.

We use an Intel Core2 Duo processor at 3.16 GHz, with 8 GB of main memory
and 6 MB of cache, running Linux kernel 2:6:24-28.We ran locate experiments for
successful and unsuccessful searches. For the former we chose 10,000 dictionary
strings at random. For the latter we chose other 1,000 strings at random and
excluded them from the indexing. For extract we queried 10,000 random numbers
between 1 and n. Each data point is the average user time over 10 repetitions.

Figure 4 shows our results. Most methods are drawn as a line that corresponds
to their main space/time tuning parameter. On the left we show locate time
for successful searches; the plots for unsuccessful searches are very similar and
omitted for lack of space. On the right we show extraction times. Time is shown
in microseconds and space as a percentage of the space required by concatenating
the plain strings. Since, despite the advantages of linear probing in this scenario,
double hashing was always better, we only plot the latter.

Front-Coding with Hu-Tucker compression shows to be an excellent choice
in all cases, achieving good time performance and the least space usage (only
beaten by Re-Pair on URLs). The folklore Front-Coding, without compression,
is almost everywhere dominated by the compressed variant. Re-Pair achieves the
least space on URLs, yet it is significantly slower than compressed Front-Coding.
On the shorter-string dictionaries (Words and DNA), Re-Pair does not compress
well. HashBB performs better in space than HashB when the strings are short,
otherwise the bitmap becomes too long. It is never, however, clearly the best
alternative. HashB and Hash excell in time with short strings when much space
is used (nearly 100%), yet HashB is never much better than Hash.

For extracting, the map is dominated by Front-Coding, in plain or com-
pressed form (the plain folklore variant is more relevant in this case). Still Re-
Pair achieves minimum space on URLs.

Another loser in this comparison is the FM-index. It supports, however, more
complex searches than the basic ones we have considered. We discuss this next.

16http://boston.lti.cs.cmu.edu/Data/clueweb09; thanks to Leonid Boystov.
17http://www.sanger.ac.uk/Teams/Team71/durbin/sgrp
18http://law.dsi.unimi.it/webdata/uk-2002

 1

 10

 100

 0 50 100 150 200

lo
ca

te
 ti

m
e

(m
ic

ro
se

cs
)

total space (% of original)

Words

FrontCoding
Hu-Tucker

RePair

FMIndex RRR

FMIndex RG

Hash (dh)HashB (dh)

HashBB (dh)

 0.1

 1

 10

 100

 0 50 100 150 200

ex
tr

ac
t t

im
e

(m
ic

ro
se

cs
)

total space (% of original)

Words

FrontCoding

Hu-Tucker

RePair

FMIndex RRR

FMIndex RG

Hash (dh)

HashB (dh)

HashBB (dh)

 1

 10

 100

 0 20 40 60 80 100 120 140 160

lo
ca

te
 ti

m
e

(m
ic

ro
se

cs
)

total space (% of original)

DNA

FrontCoding

Hu-Tucker

RePair

FMIndex RRR

FMIndex RG

Hash (dh)
HashB (dh)

HashBB (dh)

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140 160

ex
tr

ac
t t

im
e

(m
ic

ro
se

cs
)

total space (% of original)

DNA

FrontCoding

Hu-Tucker

RePair

FMIndex RRR

FMIndex RG

Hash (dh)

HashB (dh)

HashBB (dh)

 10

 100

 0 20 40 60 80 100

lo
ca

te
 ti

m
e

(m
ic

ro
se

cs
)

total space (% of original)

URLs

FrontCoding

Hu-Tucker

RePair

FMIndex RRR

FMIndex RG

Hash (dh)
HashB (dh)

HashBB (dh)

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100

ex
tr

ac
t t

im
e

(m
ic

ro
se

cs
)

total space (% of original)

URLs

FrontCoding

Hu-Tucker

RePair

FMIndex RRR

FMIndex RG

Hash (dh)

HashB (dh)
HashBB (dh)

 10

 100

 0 20 40 60 80 100

lo
ca

te
 ti

m
e

(m
ic

ro
se

cs
)

total space (% of original)

URIs

FrontCoding

Hu-Tucker

RePair

FMIndex RRR

FMIndex RG

Hash (dh)HashB (dh)

HashBB (dh)

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100

ex
tr

ac
t t

im
e

(m
ic

ro
se

cs
)

total space (% of original)

URIs

FrontCoding

Hu-Tucker

RePair

FMIndex RRR

FMIndex RG

Hash (dh)
HashB (dh)

HashBB (dh)

Fig. 1. Locate times (left) and extract times (right) for the different methods as a
function of their space consumption.

5 Final Remarks

Prefix search, that is, finding the dictionary strings that start with a given pat-
tern, is easily supported by the methods we have explored, except hashing. Other
variants that can likewise be supported are of interest for Internet routing tables:
find the dictionary string that is the longest prefix of the pattern.

Other searches of interest are only supported by the FM-index: Find the
dictionary strings that contain a substring, or that have a given prefix and a
given suffix [16]. The FM-index also supports approximate searches [32]. Most
other approximate matching indexes require much extra space [34].

Several optimizations to our methods are possible, for example using a com-
pressed rule representation for Re-Pair [18]. We have also not explored adding
compressed tries [2] to speed up the binary searches of Front Coding or Re-Pair.
Also, compressed suffix trees [8] on top of the FM-index could speed it up.

References

1. A. Apostolico and G. Drovandi. Graph compression by BFS. Algorithms, 2:1031–
1044, 2009.

2. D. Arroyuelo, R. Cánovas, G. Navarro, and K. Sadakane. Succinct trees in practice.
In Proc. ALENEX, pages 84–97, 2010.

3. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1999.

4. P. Boldi and S. Vigna. The Webgraph framework i: Compression techniques. In
Proc. WWW, pages 595–2562, 2004.

5. N. Brisaboa, S. Ladra, and G. Navarro. Directly addressable variable-length codes.
In Proc. SPIRE, LNCS 5721, pages 122–130, 2009.

6. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A.Tomkins, and J. Wiener. Graph structure in the Web. Comput. Netw., 33:309–
320, 2000.

7. M. Burrows and D. Wheeler. A block-sorting lossless data compression algorithm.
Technical report, Digital Equipment Corporation, 1994.

8. R. Cánovas and G. Navarro. Practical compressed suffix trees. In Proc. SEA,
LNCS 6049, pages 94–105, 2010.

9. M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat. The smallest grammar rroblem. IEEE Trans. Inf. Theory, 51(7):2554–
2576, 2005.

10. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms. MIT Press and McGraw-Hill, 2nd edition, 2001.
11. D. Donato, L. Laura, S. Leonardi, U. Meyer, S. Millozzi, and J. Sibeyn. Algorithms

and experiments for the Webgraph. J. Graph Algor. App., 10(2):219–236, 2006.
12. J.D. Fernández, M.A. Mart́ınez-Prieto, and C. Gutierrez. Compact representation

of large RDF data sets for publishing and exchange. In Proc. ISWC, LNCS 6496,
pages 193–208 (part I), 2010.

13. P. Ferragina, R. González, G. Navarro, and R. Venturini. Compressed text indexes:
From theory to practice. ACM JEA, 13:article 12, 2009.

14. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
Proc. FOCS, pages 390–398, 2000.

15. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representa-
tions of sequences and full-text indexes. ACM Trans. Alg., 3(2):article 20, 2007.

16. P. Ferragina and R. Venturini. The compressed permuterm index. ACM Trans.

Alg., 7(1):article 10, 2010.
17. R. González, Sz. Grabowski, V. Mäkinen, and G. Navarro. Practical implementa-

tion of rank and select queries. In Posters 4th WEA, pages 27–38, 2005.
18. R. González and G. Navarro. Compressed text indexes with fast locate. In Proc.

CPM, LNCS 4580, pages 216–227, 2007.
19. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and

Computational Biology. Cambridge Univ. Press, 2007.
20. H. S. Heaps. Information Retrieval: Computational and Theoretical Aspects. Aca-

demic Press, 1978.
21. D. A. Huffman. A method for the construction of minimum-redundancy codes.

Proc. of the Institute of Radio Engineers, 40(9):1098–1101, 1952.
22. J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. The Web

as a graph: Measurements, models, and methods. In Proc. COCOON, LNCS 1627,
pages 1–17, 1999.

23. D.E. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching.
Addison Wesley, 2007.

24. N.J. Larsson and J. A. Moffat. Offline dictionary-based compression. Proc. of the
IEEE, 88:1722–1732, 2000.

25. V. Mäkinen and G. Navarro. Implicit compression boosting with applications to
self-indexing. In Proc. SPIRE, LNCS 4726, pages 214–226, 2007.

26. C.D. Manning and H. Schütze. Foundations of Statistical Natural Language Pro-

cessing. MIT Press, 1999.
27. G. Manzini. An analysis of the Burrows-Wheeler transform. J. ACM, 48(3):407–

430, 2001.
28. A. Moffat and J. Katajainen. In-place calculation of minimum-redundancy codes.

In Proc. WADS, LNCS 955, pages 393–402, 1995.
29. N. Nagwani. Clustering based URL normalization technique for Web mining. In

Proc. ACE, pages 349–351, 2010.
30. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Comp. Surv.,

39(1):article 2, 2007.
31. R. Raman, V. Raman, and S. Rao. Succinct indexable dictionaries with appli-

cations to encoding k-ary trees and multisets. In Proc. SODA, pages 233–242,
2002.

32. L. Russo, G. Navarro, A. Oliveira, and P. Morales. Approximate string matching
with compressed indexes. Algorithms, 2(3):1105–1136, 2009.

33. T. Suel and J. Yuan. Compressing the graph structure of the Web. In Proc. DCC,
pages 213–222, 2001.

34. W.-K. Sung. Indexed approximate string matching. In Encyclopedia of Algorithms.
Springer, 2008.

35. H. Williams and J. Zobel. Compressing integers for fast file access. The Computer

Journal, 42:193–201, 1999.
36. I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes : Compressing and

Indexing Documents and Images. Morgan Kaufmann, 1999.
37. M. Yin, D. Goh, E.-P. Lim, and A. Sun. Discovery of concept entities from Web

sites using web unit mining. Intl. J. of Web Inf. Sys., 1(3):123–135, 2005.

