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Abstract. Bounded model checking is a verification technique based on search-
ing for counter-examples to the validity of the specification using an encoding
to propositional sastisfiability. The paper identifies a number of inefficiencies
in prior encodings for bounded model checking for a logic of knowledge and
branching time. An alternate encoding is developed, and theoretical and exper-
imental results are presented that show this leads to improved performance of
bounded model checking for a range of examples.

1 Introduction

In the context of distributed and multi-agent systems, as well as autonomous systems
that must operate in an uncertain environment, it has been argued that epistemic logics,
i.e., logics of knowledge, provide a useful expressiveness for dealing with agents’ need
to relate their actions to their state of information [5]. This has led to the study of model
checking for temporal epistemic logics [6, 10]. There exist a variety of approaches to
model checking. Binary Decision Diagram (BDD) techniques use a graph-based encod-
ing to efficiently represent boolean functions and computes the set of states satisfying
the specification in this encoding. A more recent approach is Bounded Model Check-
ing (BMC) [1], which works by representing the statement that there exists a counter-
example to the specification, of a particular structure and finite size k, as a propositional
logic formula, and then using SAT-solving to determine the satisfiability of this formula.

Bounded model checking was first proposed in the context of linear-time temporal
logic, where the structure of the counter-examples can be taken to be a run, a linear
sequence of states, with the final one equal to one of the intermediate states to rep-
resent cyclical behaviour. There have subsequently been proposals to apply BMC to
branching-time temporal logics, and to logics combining temporal and epistemic logic.
A BMC encoding for ACTL, the universal fragment of the branching time logic CTL,
has been proposed in [14], and extended to the richer logic ACTL* (which combines el-
ements of linear- and branching-time logics) in [16]. The encoding for ACTL has been
extended to a logic ACTLKn, which also contains epistemic operators, in [13].

We show in this paper that it is possible to significantly improve upon the efficiency
of BMC for temporal epistemic logic by means of an improved encoding. We develop
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an efficient encoding for fair ACTLKn logic, which extends ACTLKn with a generalized
Büchi fairness condition. Two main ideas underly the efficiency of our encoding. First,
we sharpen the relationship between the formula and the runs in the counter-example:
rather than simply evaluating the semantics of the formula over the counter-example,
so that any run could be a candidate for the witness required for an existential claim,
our encoding identifies a particular run as providing the required witness. Secondly, we
associate particular subformulas with particular points in the counter-example struc-
ture, and use atomic propositions to represent the satisfaction of these subformulas in a
way that eliminates exponential blowups in previous encodings by means of structure-
sharing. Additionally, we use a number of optimizations that enable the number of runs
required in the search for a counter-example to be reduced, and the shape of these runs
to be simplified in a number of cases.

We show by both theoretical arguments and experimental results that our encod-
ing yields an improved performance of BMC on a range of examples. Theoretically,
we present examples where the size of the encoding is reduced from exponential to
quadratic. One such example is the “nested knowledge” formula (KaKb)n p expressing
that two agents a, b have degree n mutual knowledge of the proposition p.

Such improvements in encoding size are shown to have a significant impact on the
runtimes required to find counter-examples in practice. In our experimental results, we
have implemented three BMC encodings (that of [13], an earlier improvement [17] and
our new encoding) in the epistemic model checker MCK [6]. MCK already supported a
range of BDD-based model checking algorithms. We report the results of experiments
on several protocols, including Dining Cryptographers [3], Byzantine Generals [9] and
a simple Pursuit-Evasion Game. For each example, we consider a number of specifi-
cation formulas. Both the systems description and the specification formulas involve
a numerical parameter, and we show how the run-time of model checking scales with
this parameter in each experiment, comparing the BMC techniques and a BDD-based
technique. The experimental results show that our new BMC encoding often yields a
much better performance than the previous BMC encodings. On the other hand, which
of our new BMC encoding and BDD-based model checking is more efficient depends
on the example.

The structure of the paper is as follows. Section 2 defines the logic of knowledge
and time ACTLKn that we study, and defines the model checking problem for this logic.
Previous bounded model checking approaches for this and related logics are reviewed
in Section 3. We describe our new encoding in Section 4, where we also motivate on
theoretical grounds why we expect this encoding to yield improved model checking per-
formance. This is followed in Section 5 by a discussion of experimental results which
validate and quantify the improved performance. Section 6 discusses related work, and
Section 7 concludes with a discussion of future work.

2 Preliminaries

We work with a logic ACTLKn that combines the branching time logic ACTL (i.e.,
the universal fragment of the branching time temporal logic CTL) and the logic of
knowledge and common knowledge for n agents, as well as its dual ECTLKn. Dually,



the logic ECTLKn can be defined as {¬ψ | ψ ∈ ACTLKn}; we give an expressively
equivalent syntax for this logic below. In model checking these logics, we are interested
in verifying that an ACTLKn formula is valid in a model. To find a counterexample for
a specification ψ in the logic ACTLKn is the same as to find a witness for φ = ¬ψ in the
logic ECTLKn. Since BMC works by searching for such witnesses, we concentrate on
the ECTLKn syntax in what follows.

Let Prop be a set of atomic propositions and Ags = {1, . . . , n} be a set of n agents.
T and F are used to denote the truth values True and False, respectively. The syntax of
ACTLKn is given by the following grammar 1 :

γ :== p | ¬p | α ∨ β | α ∧ β | AXα | AFα | AGα | A(αUβ) | Kiα

where p ∈ Prop, and i ∈ Ags. Similarly, the syntax of ECTLKn is given by the grammar:

γ :== p | ¬p | α ∨ β | α ∧ β | EXα | EFα | EGα | E(αUβ) | Kiα

where p ∈ Prop, and i ∈ Ags. The connection between the two languages is given
by the following equivalences: ¬AXα = EX¬α, ¬AFα = EG¬α, ¬AGα = EF¬α,
¬A(αUβ) = EG¬β ∨ E(¬βU(¬α ∧ ¬β)), ¬Kiα = Ki¬α. These equivalences may be
used together with DeMorgans laws to transform ¬φ, for any ACTLKn formula φ, into
an equivalent ECTLKn formula.

We use a semantics for ECTLKn that is based on a variant of the interpreted systems
model for the logic of knowledge [5]. Let W be a set, which we call the set of global
states. A run over W is a function r : N → W. An interpreted system over W for n
agents is a tuple I = (R,∼1, . . . ,∼n, π), where R is a set of runs over W, each ∼i is an
equivalence relation on W, and π : W → P(Prop) is an interpretation function.

A point of I is a pair (r,m) where r ∈ R and m ∈ N. We say that a run r′ is equivalent
to a run r up to time m ∈ N if r′(k) = r(k) for 0 ≤ k ≤ m. We define the semantics of
ECTLKn by means of a relation I, (r,m) |= φ, where I is an intepreted system, (r,m) is
a point of I, and φ is a formula. This relation is defined inductively as follows:

– I, (r,m) |= p if p ∈ π(r(m)),
– I, (r,m) |= ¬p if not I, (r,m) |= p
– I, (r,m) |= α ∨ β if I, (r,m) |= α or I, (r,m) |= β
– I, (r,m) |= α ∧ β if I, (r,m) |= α and I, (r,m) |= β
– I, (r,m) |= EXα if there exists a run r′ ∈ R equivalent to r up to time m such that
I, (r′,m + 1) |= α

– I, (r,m) |= EFα if there exists a run r′ ∈ R equivalent to r up to time m and m′ ≥ m
such that I, (r′,m′) |= α.

– I, (r,m) |= EGα if there exists a run r′ ∈ R equivalent to r up to time m such that
I, (r,m′) |= α for all m′ ≥ m

– I, (r,m) |= E(αUβ) if there exists a run r′ ∈ R equivalent to r up to time m and a
time m′ such that I, (r,m′) |= β and I, (r,m′′) |= α for all m′′ with m ≤ m′′ < m′

– I, (r,m) |= Kiφ if for some point (r′,m′) of I such that r(m) ∼i r′(m′) we have
I, (r′,m′) |= φ

1 In a longer version of the paper we include common knowledge operators, which we omit here
for brevity.



For the knowledge operators, this semantics is essentially the same as the usual (obser-
vational) interpreted systems semantics. For the temporal operators, it corresponds to a
semantics for branching time known as the bundle semantics [2, 12].

While they give a clean and coherent semantics to the logic, interpreted systems are
not suitable as inputs for a model checking program, since they are infinite structures.
We therefore also work with an alternate semantic representation based on transition
systems with epistemic indistinguishability relations and fairness condition. A (finite)
system is a tuple M = (W, I,⇒,∼1, . . . ,∼n, π, χ) where W is a (finite) set of global
states, I ⊆ W is the set of initial states, ⇒⊆ W × W is a serial temporal transition
relation, each ∼i⊆ W×W is an equivalence relation representing epistemic accessibility
for agent i ∈ Ags, π : W → P(Prop) is a propositional interpretation, and χ ⊆ P(W) \ ∅
is a generalized Büchi fairness condition. The system M can also be regarded as a
generalized Büchi automaton with χ the set of acceptance sets.

Given a system M over global states W, we may construct an interpreted system
I(M) = (R,∼1, . . . ,∼n, π) over global states W, as follows. The components ∼i and π
are identical to those in M. The set of runs is defined as follows. We say that a fullpath
from a state w is an infinite sequence of states w0w1... such that w0 = w and wi ⇒ wi+1
for all i ≥ 0. We use Path(w) to denote the set of all fullpaths from state w. The fairness
condition is used to place an additional constraint on fullpaths. A fullpath w0w1 . . . is
said to be fair if for all Q ∈ χ, there exists a state w ∈ Q such that w = wi for infinitely
many i. A run of the system is a fair fullpath w0w1 . . . with w0 ∈ I. We define R to be
the set of runs of M. A formula φ of ACTLKn is said to hold in M, written M |=A φ, if
I(M), (r, 0) |= φ for all r ∈ R. Dually, a formula φ of ECTLKn is said to be satisfiable
in M, written M |=E φ, if I(M), (r, 0) |= φ for some r ∈ R.

We say that a state w is fair if it is the initial state of some fair fullpath, otherwise the
state is unfair. A state w is reachable if there exists a sequence w0 ⇒ w1 ⇒ . . .wk = w
where w0 ∈ I. (Some care with this is required because of the epistemic operators.) A
state is fair and reachable iff it occurs in some run. Note that some reachable states may
be unfair — we cannot always assume that a transition takes us to a fair state.

2.1 Model Checking Input Format

From now on, we fix a system M, a specification ψ in ACTLKn. We are interested
in determining whether M |=A ψ, or equivalently, whether M |=E φ for the ECTLKn

formula φ corresponding to ¬ψ.
We will assume that the system M is presented in a particular format, in which the

states of the system are viewed as assignments to a set of boolean variables, and the
other components of M are represented by means of propositional logic formulas. In
particular, we assume that there are N boolean variables making up a state. A state can
therefore be represented as a boolean vector of length N. To refer to an arbitrary state,
we may use a vector s = (s1, . . . , sN) of N boolean variables si. Given such a vector, let
s′ = (s′1, . . . , s

′
N) be the “primed” vector of symbols obtained by adding a prime symbol

to each variable name to create N distinct variable names. We assume that the system
M is presented as a tuple 〈s, I(s),T (s, s′),H1(s, s′), . . . ,Hn(s, s′), χ〉, where

– s identifies the variables that make up the state, or are used to compute state transi-
tions,



– I(s) is a propositional logic formula; a state is initial if it satisfies this formula,
– T (s, s′) is a propositional logic formula representing the transition relation⇒; there

is a transition for a state represented by an assignment to s to the state represented
by an assignment s′ if this formula holds with respect to the union of these assign-
ments.

– Hi(s, s′) is a propositional logic formula representing the indistinguishability rela-
tion ∼i for agent i,

– χ = {F1(s), . . . , Fm(s)} is a set (possibly empty) of propositional logic formulas
Fi(s), each representing one of the sets of states in a generalized Büchi fairness
condition χ.

In addition to these formulas, we will make use of the formula H(s, s′) =
∧N

i=1 si ⇔ s′i
which asserts the the states represented by s and s′ are identical.

Given this representation of a system, we may represent length k fragments of
runs of the system using a sequence r = r(0), r(1), . . . , r(k − 1), where each r(i) =
(r(i)1, . . . , r(i)N) is a vector of N variables. We use the following formulas to express
properties of such sequences:

1. Runfk(r) =
k−2∧
i=0

T (r(i), r(i + 1)) expresses that r is a run fragment, in the sense that

there is a transition from each state to the next,
2. CRunfk(r, l) = Runfk(r)∧

∨k−1
h=0(h = l∧T (r(k− 1), r(h))) expresses that r is a cyclic

run fragment. Here l is an additional variable of type {0 . . . k − 1}, representing the
point at which the cycle starts.

3. FCRunfk(r, l) = CRunfk(r, l) ∧
∧m

t=1
∨k−1

h=0(h ≥ l ∧ Ft(r(h))) expresses that r is a
fair cyclic run fragment. Fairness is obtained from the fact that each condition Ft

in the generalized Büchi fairness condition holds at some point in the cycle. This
implies that when we unfold the cyclic run to an infinite run, each condition Fi will
be satisfied infinitely often, as required. (We remark that the use of the variable l
helps to reduce the size of this formula by a factor of k.)

3 Previous Bounded Model Checking Algorithms for ACTLKn

Bounded model checking approaches the problem of model checking a formula ψ in
a system M via a search for counter-examples to the validity of the formula. These
counter-examples are parameterized by their size k, and the existence of a counter-
example of size k satisfying the formula φ = ¬ψ is encoded as a propositional logic
formula [M, φ]k. Propositional logic SAT-solvers are then used to search for a satisfying
assignment of this formula.

The details of the encoding depend upon the specification logic in question, and
for a number of logics there have been several distinct proposals for encodings, with
different complexity properties. In this section, we describe two encodings that have
been proposed in the past for branching-time temporal and epistemic logics. This sets
the context for our proposed optimizations.



3.1 Encoding of Penczeck et al

Penczeck et al [14] first proposed a BMC encoding for the logic ECTL, i.e., the logic
ECTLKn described above, but without the knowledge operators. This encoding was
later extended for ECTLKn [13]. In both cases, the encodings were for systems without
fairness conditions, i.e., systems in which χ = ∅ in the presentation above.

The basis for the encoding is a representation of forest-like counter-examples as
set of run fragments. Intuitively, each time that the encoding needs to deal with an
existential formula (such as EFα, which requires the existence of a branch from the
present point on which α is eventually satisfied), it uses a new run fragment (in the
case of EFα, this fragment is required to contain a point at which α holds). The BMC
parameter k is taken to be the length of the run fragments. The total number of run
fragments required to express the expected shape of the counter-example for a given
value k for the formula is 1 + fk(φ), where the function fk is defined recursively as
follows: fk(p) = fk(¬p) = 0 for p ∈ Prop, fk(α ∨ β) = max{ fk(α), fk(β)}, fk(α ∧ β) =
fk(α) + fk(β), fk(Yα) = fk(α) + 1 with Y ∈ {EX, EF,Ki}, fk(EGα) = k · fk(α) + 1,
fk(E(αUβ)) = (k − 1) · fk(α) + fk(β) + 1. A uniform notation is used for these run
fragments. We write ri for the ith run fragment. (For i , j, no variable is shared between
the run fragments ri and r j.)

The whole encoding is made up of two parts as follows.

[M, φ]k ≡ I(r0(0)) ∧
fk(φ)∧
j=0

Runfk(r j) ∧ [φ]0,0
k (1)

The first part simply says that each r j is a run fragment, and that the first state of r0 is an
initial state of the system. The second part states that this structure supports the formula
φ. The notation [α]m,n

k is defined in Table 1. Intuitively, this states that formula α holds
at state m on run fragment rn. We take pi to be the i-th state variable, so that (rn(m))i is
the instance of this variable at the m-th state of the run fragment rn.

[pi]m,n
k ≡ (rn(m))i

[¬pi]m,n
k ≡ ¬(rn(m))i

[α ∧ β]m,n
k ≡ [α]m,n

k ∧ [β]m,n
k

[α ∨ β]m,n
k ≡ [α]m,n

k ∨ [β]m,n
k

[EXα]m,n
k ≡

∨ fk(φ)
j=1 (H(rn(m), r j(0)) ∧ [α]1, j

k )
[EGα]m,n

k ≡
∨ fk(φ)

j=1 (H(rn(m), r j(0)) ∧
∧k−1

l=0 [α]l, j
k )

[EFα]m,n
k ≡

∨ fk(φ)
j=1 (H(rn(m), r j(0)) ∧

∨k−1
l=0 [α]l, j

k )
[E(αUβ)]m,n

k ≡
∨ fk(φ)

j=1 (H(rn(m), r j(0)) ∧
∨k−1

l=0 ([β]l, j
k ∧
∧l−1

t=0[α]t, j
k ))

[Kiα]m,n
k ≡

∨ fk(φ)
j=1 (I(r j(0)) ∧

∨k−1
l=0 ([α]l, j

k ∧ H(rn(m), r j(l))))

Table 1. Encoding Function [γ]m,n
k for ECTLKn of Penczeck et al

For purposes of comparison with our encoding below, which takes fairness con-
ditions into account, we note that fairness may be incorporated into this encoding by
means of a simple change, using FCRunfk(r j) where the encoding above uses Runfk(r j).
We note that this use of cyclic runs is similar to their use in the BMC encodings for
ACTL* [16] or ACTL*Kn [11].



3.2 Improved Encoding for ECTL by Zbrzezny

Zbrzezny [17] noted that the ECTL encoding of Penczeck et al [14] assumes that there
exist sufficient run fragments in the counter-example to satisfy the existential subfor-
mulas encountered, but it needs to evaluate all of these fragments to check whether it
provides the required witness. For example, in the clause for EGα in Table 1 the pur-
pose of the top level disjunction over j = 1 . . . fk(φ) is to assert that one of the run
fragments in the counter-example satisfies α at all points. This is inefficient: since the
number fk(φ) of run fragments is deliberately chosen to be large enough to supply all
the witnesses required, we can allocate a specific run fragment to each witness ahead of
time, and replace the check against all run fragments by a check against the specific run
fragment that is supposed to provide the witness.

Zbrzezny gives a BMC encoding for ECTL that is based on this observation, and
shows that his encoding leads to improved performance for model checking ECTL. We
skip the full details of his encoding here: it requires some careful bookkeeping of run
numbers during the encoding. Our own encoding below incorporates this idea with a
slightly different formulation, but goes on to deal with the full logic ECTLKn in a way
that incorporates further optimizations. For purposes of comparison we give just the
clause for EFα (a simplication of the clause for E(αUβ) actually presented), which
defines the encoding [EFα][m,n,A]

k as

H(rn(m), rmin(A)(0)) ∧
k−1∨
j=0

[α][ j,min(A),A\{min(A)}]
k .

Intuitively, A is a set of indices of free run fragments, min(A) is index of the next avail-
able run fragment, and A \ {min(A)} is the set of run fragments remaining for the encod-
ing of witnesses required by α.

4 Improved encoding for ACTLKn

In this section we define an encoding for ACTLKn that improves upon the encodings
discussed in the previous section. We begin by noting some inefficiencies in these en-
codings, and noting some opportunities for optimization.

4.1 Motivation

Note that both the encodings of Penczeck et al and Zbrzezny construct the encoding
[α]k recursively, but in the process introduce some large disjunctions or conjunctions
when dealing with modal operators. For example, for [EFα]k, both encodings use a
subformula of the form

∨k−1
j=0[α] j

k. In the case of formulas with deeply nested operators,
this leads to an exponential blowup. For example for the formula φh defined by φ0 = p0
and φi+1 = pi+1 ∧ EF(φi), even using the more efficient Zbrzezny approach we would
obtain an encoding [φh]k of the structure

...

k−1∨
j1=0

(...
k−1∨
j2=0

. . . (...
k−1∨
jh=0

(...)))))



which has size of the order kh. On the other hand, the set of run fragments {r0 . . . rh}

necessary for this encoding is of size merely h + 1, and each run fragment has k states.
(Although Zbrzezny does not discuss knowledge, application of his ideas would involve
dropping only the outer disjunction in the case for Ki in Table 1, so a similar blowup
would be obtained for formulas such as (KaKb)h p that have been of interest when deal-
ing with knowledge.)

We note that it is possible to encode this example more efficiently by introducing
propositions er,n

φ representing that φ holds at the point (r, n). By Zbrzezny’s ideas, we
can witness each subformula φi by a particular run rh−i, so we would like to have that

er0,0
φh
∧

h∧
j=1

k∨
i=1

er j,i
φh− j

which states that φh holds at (r0, 0) and φh− j holds at some point i of r j, plus

h−1∧
j=0

k−1∧
i=0

er j,i
φh− j
⇒ (r j(i)h− j ∧ H(r j(i), r j+1(0)))

i.e., ph− j holds at (r j, i) and r j+1 is a branch extending from (r j, i). This gives an encoding
that is of size O(h · k) rather than exponential. (We remark that since we only seek to
construct one counter-example, rather than detect all, the converse implications are not
needed.)

0 j 0 1k k

r

r

0

1

Fig. 1. Shapes of Counterexamples

We also note that a further optimization opportunity arises from considerations con-
cerning loops and fairness conditions. Consider the specification ψ3 = AGAF¬p in a
system with fairness condition. Following the BMC approaches describe above, the ex-
pected shape of the counterexample is shown in the left graph of Figure 1. (Lines with
arrows indicate transitions, double lines indicate identity of states.) However, we can
in fact drop the cycle on the run fragment r0, since we need it only to justify fairness
of states up to the point j where we switch to the run fragment r1, which contains a
cycle that justifies fairness of all states that can reach this cycle. A similar consideration
applies to the specification AXAX¬p, whose counter-example form, consisting of 3 run
fragments, is depicted on the right in Figure 1. However, not only can we drop loops
here, we in fact need only the first step of the first two fragments.



4.2 Encoding

We now develop a new encoding for bounded model checking ACTLKn. The encoding
is based on the optimization ideas discussed above.

The encoding uses three types of resources: singleton run fragments, acyclic run
fragments and cyclic run fragments, for which we use the symbols s, a, c respectively.
We use the symbol r to represent an instance of any type of resource. Each resource r is
associated with a length, denoted |r|, which depends on the BMC parameter. For BMC
parameter k, singleton run fragment has length 1, and acyclic and cyclic run fragments
have length k. We use the term point to represent a pair (r, n) where r is a resource
and n < |r| is an index, up to the length of that resource. Intuitively, these points will
correspond to points of the system being model checked.

A context is a triple R = (ns, na, nc) of numbers, representing the index number of
the state, acyclic run fragment and cyclic run fragment that is the next free resource
available for consumption by the encoding. For a resource type T ∈ {s, a, c}, we write
newT (R) for the resource of type T with index nT . We treat contexts as elements of the
lattice N3, with basis s = (1, 0, 0), a = (0, 1, 0), c = (0, 0, 1). Thus, we can represent a
situation in which we consume one singleton run fragment in context R as consuming
news(R) and changing the context to R + s.

The encoding of each formula α consumes some number of each type of resource.
We denote these numbers by uk

s(α), uk
a(α) and uk

c(α), respectively. The definitions of
these functions can be read from the encoding rules: we describe how this can be done
after we have given these rules. Using the lattice representation, we also write uk(α) =
(uk
s(α), uk

a(α), uk
c(α)).

We work with “obligations”, which are tuples 〈r, n, ψ,R〉 representing that the en-
coding is required to contain components sufficient to express that formula ψ holds at
the point (r, n) in the counter-example, with the encoding operating with respect to con-
text R. The latter is used to determine precisely which resource instances will be used
in the encoding.

Associated to these obligations are atomic propositions of the form er,n
ψ . We call

these atomic propositions skeleton variables. (We note that because the encoding shares
resources for disjunctive cases, a run fragment may be a potential witness for several
different subformulas, so we do not take the extra step of indexing run fragments by sub-
formulas.) In general, satisfying the obligation 〈r, n, ψ,R〉 recursively requires the intro-
duction of new obligations, and a formula that relates the atomic proposition er,n

ψ to other
atomic propositions in the encoding. This formula uses several other atomic proposi-
tions as abbreviations of various formulas that need to be represented: br,n,r′,n′

H expresses
H(r(n), r′(n′)), br,n,r′,n′

Hi
expresses Hi(r(n), r′(n′)), br,n,r′,n′

X expresses T (r(n), r′(n′)), br,n
I

expresses I(r(n)).
We present a set of obligation rewrite rules, parameterized by the BMC parameter

k, which represents the maximal run length in the counterexamples to be encoded. Each
rule is of the form o →k f ,O, where o is an obligation, f is a propositional logic for-
mula, and O is a set of obligations. Intuitively, this rule means the obligation o can be
satisfied by including in the encoding the formula f , but that the additional obligations
in O need to be satisfied. The obligation rewrite rules are represented in Table 2. Some
of the rules consume resources, at most one item in each case, the type T of which is



given in the 3rd column. However, recursive satisfaction of the new obligations intro-
duced by a rule leads to further resource consumption. The total resource consumption
when rewriting each type of formula, including this recursive consumption, is given in
the second column, which gives the recursive definition of the resource consumption
function uk with range N3.

The encoding uses several boolean functions of formulas to handle fairness issues.
Define tf (γ) = T if γ is in the form EYα with Y ∈ {X, F,G} or E(αUβ). Then let
tpf (γ) = T if tf (γ), or γ = α∧β and either tpf (α) or tpf (β), or γ = α∨β and both tpf (α)
and tpf (β). Intuitively, this expresses that all ways of satisfying the formula involve
satisfying a temporal formula at some point. We also use the boolean variable ε to
represent that the fairness condition χ in the system is non-trivial, i.e., χ , ∅. The
condition ε ∧¬tpf (α) is used to capture situations where fairness constraints need to be
applied to states in the present run fragment, but we cannot rely upon the fact that some
other run fragment will ensure that all relevant states on the present run are fair.

These rules, which operate on individual obligations, are lifted to set rewriting rules,
that operate on pairs F,O consisting of a set of propositional formulas F and a set of
obligations O, as follows: F,O →k F′,O′ if there exists an obligation o ∈ O, a rule
o→k f ,O′′ and F′ = F ∪ { f } and O′ = (O \ {o}) ∪ O′′.

For a formula φ, we start with an initial set of formulas F0 and set of obligations
O0 that depend on the type of φ and the existence of fairness constraints. If ε ∧¬tpf (α),
then we take r0 to be the individual state with index 0, and O0 = 〈r0, 0, φ, s〉. Otherwise
we take r0 to be the cyclic run fragment with index 0, and O0 = 〈r0, 0, φ, c〉. In either
case, we take F0 = {e

r0,0
φ }. If there is a sequence of set rewrites F0,O0 →

∗
k Fk(φ), ∅

to a pair in which the set of obligations is empty, then we take Fk(φ) to be the set of
propositional logic formulas that represents the semantics of φ on the counterexample.
Let Bk(φ) be the set of skeleton variables occurring in Fk(φ).

The complete encoding of the model checking problem is then

[M, φ]k = br0,0
I ∧

∧
f∈Fk(φ)

f ∧ Resourcesk(φ) ∧ Encode(Bk(φ)).

Here Resourcesk(φ) expresses that the resources used in the encoding of φ have the
proper structure, and Encode(B) expresses that the boolean variables in B have the in-
tended meaning. More specifically, for each acyclic run fragment r with index j ≤ uk

a(φ)
(cyclic run fragment r with index j ≤ uk

c(φ)), Resources(φ) contains a conjunct Runfk(r)
(respectively, FCRunfk(r)). Similarly, for each b ∈ Bk(φ), the formula Encode(Bk(φ))
contains a conjunct b ⇒ f , where f is its intended meaning. For example, for b =
br,m,r′,m′

H we include the conjunct br,m,r′,m′
H ⇒ H(r(m), r′(m′)). See above for the mean-

ings of the remaining cases.
The correctness of the encoding is stated in the following theorem. Note that the

bound on the parameter k also establishes termination (in principle) of BMC.

Theorem 1 Let M be a (finite) system, ψ an ACTLKn formula. Then M 6|= ψ iff [M, φ]k

is satisfiable for some k ≤ |M|, where φ = ¬ψ.

We can also state a general result on the size of the encoding, compared with the
complexity of the previous encodings.
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Theorem 2 For our new encoding, the size of [M, φ]k is O(lrk2), where r is the number
of consumed run fragments and l is the size of formula φ.

This is to be compared with a size of O(lrd+2kd+2) for the encoding of Penczek and
O(lrkd+2) for the encoding of Zbrzezny, where d is the depth of nesting of modalities in
φ.

5 Experimental Results

We argued above that it is possible to obtain an exponential improvement in the size
of the encoding, so there are good theoretical grounds to believe that our approach will
improve the performance of bounded model checking, particularly as the encoding is
an input to a SAT-solver, which deals with an NP-complete problem. In this section
we experimentally validate the expectation that our encoding yields a performance im-
provement over the earlier BMC encodings.

We conducted experiments using several classical multi-agent protocols, varying
several aspects of the model checking problem. Each experiment measured runtime
as a function of some parameter n of the problem: in some cases n was the number
of agents, in others it concerned the depth of nesting, in others it was the size of the
state space. Information about protocols, specifications and fairness conditions is listed
in Table 3. Here n is the problem scale, NoS is the size of state space, and NoV is
the number of state variables. For each of these protocols, we collect data on three
specifications. The specifications all have the form AG(κ) or AF(κ) where κ is a formula
that uses epistemic operators, but no temporal operators. For these specifications, we
state the depth of modality nesting d. All the specifications are invalid, and we state
the number of run fragments NoR in the BMC encoding as a function of the problem
scale n and BMC parameter k. The minimal value of the BMC parameter yielding a
counterexample is also stated (bound[k]).

Each specification is model checked using a BDD-based model checker (MCK
based on CUDD [15] with sifting optimization), and three different BMC encodings:
that of Penczek et al (BMC P), Zbrzezny (BMC Z), and our new BMC encoding (BMC H),
all implemented as extensions to MCK, so that the inputs to all four algorithms are the
same. We included our fairness optimization in the BMC Z implementation.

We report performance results on a 2× 3GHz Quad-core Intel Xeon MacPro with
16GB 667 MHz RAM. (Parallelism in the architecture is not used by the implementa-
tion.) BMC performance results are the cumulative timing for all values of the parameter
k until a counter-example is found. Since the examples show exponential growth pat-
terns as a function of the problem scale n, we plot results using a log-scale for run-times
s. Thus, fitting a line s = an + b to the data corresponds to a model of O(ean), and an
increase in the slope a corresponds to a polynomial order increase in running time.

The first protocol (DC) is Chaum’s Dining Cryptographers [3], a protocol for anony-
mous broadcast. In this protocol, n agents first share the outcomes of coins they flip in
a pairwise fashion around a ring, and then each agent i makes a public announcement
determined from the two coinflips for which they know the outcome and a proposition
paidi (representing whether or not they paid for the meal – at most one is assumed



Sys scale[n] NoS NoV fair. spec. depth[d] valid NoR[r] bound[k]
DC agents O(22n) O(n log n) ψdc1 2 F 2 2

≥ 3 ψdc2 2 F n 2
ψdc3 2 F k + 1 3

BG msgs O(2n) O(n log n) χbg1 ψbg1 3 F 3 6
≥ 2 χbg2 ψbg2 n F n n + 3

ψbg3 2 F 2k + 1 3
PE length O(6n2) O(log n) ψpe1 2 F 3 bn/2c + 2

≥ 3 ψpe2 2 F n + 2 bn/2c + 2
ψpe3 2 F k + 1 2n + 1

Table 3. Parameter values in the experiments

to have paid.) The proposition stop is used to indicate completion of the protocol. This
protocol is scaled according to the number of agents, i.e., the problem parameter n is the
number of agents. The characteristics of this protocol are that the size of its state space
is O(22n) and the number of state variables is O(n log n). The formulas we consider are
given in Table 4.

ψdc1 AG((stop ∧ ¬paid0)⇒ K0(
n−1∨
i=1

paidi))

ψdc2 AG((stop ∧ ¬paid0 ∧ odd)⇒
n−1∨
i=1

K0 paidi)

ψdc3 AF(¬paid0 ⇒ K0(
n−1∨
i=1

paidi)))

Table 4. Specifications for Dinning Cryptographers

Performance results for these formulas are given in Figure 2. (In all these figures,
f , g and gi are propositional logic formulas used as abbreviations.) Counterexamples
for these formulas require only small bounds of k but may need a large number of runs.

The second protocol (BG) is the two agent Byzantine Generals Problem, first pro-
posed in [9], in which two agents repeatedly send each other acknowledgements through
a lossy channel to increase their mutual knowledge of receipt of a message. This pro-
tocol is scaled according to the total number of messages sent by the agents. The char-
acteristics of this protocol are that the size of its state space is O(2n) and the number
of state variables is O(n log n). The formulas for this protocol are given in Table 5, and
performance results for these formulas are given in Figure 3.

The third protocol (PE) is a two agent Pursuit-Evasion Game on a very simple dis-
crete linear terrain consisting of positions 0 to n — the pursuer needs to determine if
the evader is in the terrain or not, and has perfect visibility on its present location. The
game starts with the evader at the rightmost position n and the pursuer at leftmost posi-
tion 0. The evader moves randomly between position 0 and n, while the pursuer patrols
between position 0 and n − 1. The game ends with a successful capture when they are
either at the same position or cross over, exchanging their positions in two successive
rounds. This example is scaled according to the length of terrain. The characteristics
of this protocol are that the size of its state space is O(6n2) and the number of state
variables is only O(log n). Formulas for this protocol are given in Table 6. Here ep is



ψbg1 AG(sndmsg0 ⇒ KAliceKBob sndmsg0)
χbg1 {¬sndmsg0 ∨ rcvmsg0,¬sndack0 ∨ rcvack0}

ψbg2

AG(rcvmsg n
2 −1 ∧ ¬rcvack n

2 −1 ⇒ (KAliceKBob)
n−2

2 KAlicercvmsg0) if n is even
AG(rcvack n−3

2
∧ ¬rcvmsg n−1

2
⇒ (KBobKAlice)

n−1
2 rcvmsg0) if n is odd

χbg2



n
2 −1⋃
i=0

{¬sndmsgi ∨ rcvmsgi,¬sndacki ∨ rcvacki} if n is even

{¬sndmsgb n
2 c
∨ rcvmsgb n

2 c
} ∪

b n
2 c−1⋃
i=0

{¬sndmsgi ∨ rcvmsgi,¬sndacki ∨ rcvacki} if n is odd

ψbg3 AF(KBob sndmsg0 ∨ KAlicercvmsg0)

Table 5. Specifications for Byzantine Generals

the Evader’s position, pp is the Pursuer’s position and n is the length of terrain. Per-
formance results for these formulas are given in Figure 4. The specifications need large
but linear bounds to find their counterexamples.

ψpe1 AG( f ound ∧ direction = 0⇒ (Kpursuerep = pp) ∨ (Kpursuerep = pp − 1))

ψpe2 AG( f ound ⇒
n∨

i=0

Kpursuerep = i)

ψpe3 AF(Kpursuerep = pp)

Table 6. Specifications for Pursuit Evation Game

In all cases, our new BMC encoding (BMC H) gives a significant improvement in
running time over the Penczek et al encoding (BMC P). In some cases, we find a con-
stant factor improvement, indicated by parallel curves in the logscale plot with differing
initial points. E.g., for ψbg1 and ψbg3 we have roughly a 100-fold speedup, and for ψdc1
and ψdc3 we have roughly a 10-fold speedup. In other cases, we see in the logscale plot
roughly linear curves in both cases but with a lower slope for our encoding, implying
that for some c > 1, the new encoding performs as f (n)1/c where the Penczek et al
encoding performs as f (n), e.g., for ψdc2, ψbg2 and ψpe1- ψpe3. In the latter cases, we
obtain a very substantial improvement in the scale of example that the method is able
to handle in reasonable running times.

Performance of the Zbrzezny BMC encoding (BMC Z) is generally intermediate
between the Penczek et al BMC encoding and ours. On deeply nested examples (e.g.,
ψbg2) our encoding performs significantly better, as expected. However, the depth of
nesting does not need to be deep for an order of magnitude improvement to be visible
(e.g., ψdc1, ψdc2, ψpe1 and ψpe2). Finally, in some shallowly nested cases (ψdc3, ψbg3 and
ψpe3) the performance is very similar to ours, and slightly faster by a small factor. (This
may be due to the overhead of constructing our slightly more intricate encoding.)

The performance comparison between the bounded model checking approaches and
the BDD approach depends on the example. BDD model checking outperforms all
the BMC approaches in all the pursuit-evasion game examples. On the Dining Cryp-
tographers example, the BDD model checker initially has comparable performance to
BMC H, but eventually BMC H wins out, and by more than a constant factor: we did not
get termination for the BDD on problems of scale >18, whereas BMC continued to per-
form steadily in logscale. For the Byzantine Generals, the BDD approach sometimes
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(the deeply nested example ψbg2) performs significantly better, or (ψbg1 and ψbg3) per-
forms better on small examples but eventually performs chaotically around our BMC
approach, but still better than the older BMC encodings.

6 Related work

Kacprzak et al [7] have previously compared performance of the Penczek et al BMC
encoding, as implemented in the model checker Verics [8], with BDD based model
checking, implemented in MCMAS [10]. They study the Dining cryptographers proto-
col. We note that whereas we work from a single common model representation, they
need to work with different input representations. For BMC they report only 5 data
points, for BDD, up to 11. They conclude that the BDD approach is generally faster,
but that BMC may handle larger models. By contrast, we find that with our new en-
coding, BMC eventually has better performance. (This also seems to hold for BMC Z,
though for ψdc2 this is not clear.)

Another comparison of epistemic model checkers is by van Ditmarsch et al [4], who
compare MCK, MCMAS and DEMO, principally from the point of view of ease of en-
coding of specifications of the Russian cards problem. In fact, the encodings developed
are somewhat different and are not directly comparable for performance purposes.

7 Conclusion and Future Work

In this paper, we have proposed a new BMC encoding function for fair ACTLKn. Com-
pared with previous encodings [14, 13] whose complexity increases exponentially with
respect to the bound k and the number r of runs, the complexity of our encoding is only
quadratic on k and linear on r. We conduct experiments on it for several protocols, in-
cluding Dining Cryptographer, Byzantine Generals, and a Pursuit-Evasion Game. These
experiments show that the new encoding often performs much better than the old en-
codings. The performance comparison with BDD model checking gives mixed results,
but we note that unlike BDD model checking, BMC is able to return a counterexample.

For future work, we are investigating generalizing this counterexample-based en-
coding to some more expressive logics, e.g., an universal fragment of modal µ-calculus
with epistemic operators. We have already developed an encoding function for syn-
chronous systems with perfect recall semantics, and will report on its performance
elsewhere.
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