
The complexity of inversion of explicit Goldreich’s
function by DPLL algorithms ∗

Dmitry Itsykson
Steklov Institute of Mathematics at St. Petersburg

dmitrits@pdmi.ras.ru

Dmitry Sokolov
St. Petersburg Academic University

sokolov.dmt@gmail.com

14th September 2010

Abstract

The Goldreich’s function has n binary inputs and n binary outputs. Every output
depends on d inputs and is computed from them by the fixed predicate of arity d.
Every Goldreich’s function is defined by it’s dependency graph G and predicate P .
In 2000 O. Goldreich formulated a conjecture that if G is an expander and P is a
random predicate of arity d then the corresponding function is one way. In 2005 M.
Alekhnovich, E. Hirsch and D. Itsykson proved the exponential lower bound on the
complexity of inversion of Goldreich’s function based on linear predicate and random
graph by myopic DPLL agorithms. In 2009 J. Cook, O. Etesami, R. Miller, and L.
Trevisan extended this result to nonliniar predicates (but for a slightly weaker definition
of myopic algorithms). In 2010 D. Itsykson proved the lower bound for drunken DPLL
algorithms that invert Goldreich’s function with nonlinear P and random G. All above
lower bounds are randomized. We show how to prove the explicit lower bound based on
explicit expanders. Moreover we give a simpler proof of the exponential lower bound
for myopic algorithms. Our definition of myopic algorithms is more general than one
used by J. Cook et al.

1 Introduction

This work continues [AHI05, CEMT09, Its10] and is devoted to lower bounds of DPLL algo-
rithms on satisfiable formulas. The behaivior of DPLL algorithms on unsatisfiable formulas
is equivalent to tree-like resolution proofs. Therefore lower bounds on DPLL algorithms on
unsatisfiable formulas follow from lower bound for resolutions [Tse68]. However the most
interesting inputs are satisfiable formulas. Consider for example formulas that code the prob-
lem of inversion of one-way function. The most important case for practice is the case there

∗Supported by Federal Target Programme “Scientific and scientific-pedagogical personnel of the innovative
Russia” 2009-2013 (contracts Π265 and 02.740.11.5192) and RFBR (grants 08-01-00640 and 09-01-12066)
and the president grants NSh-5282.2010.1 and MK-4089.2010.1. The second author was supported by Yandex
Fellowship.

1

one-way function indeed has preimage. There is no hope of proving a superpolynomial lower
bound for all DPLL algorithms on satisfiable formulas since if P = NP, then the heuristic
that chooses the value of a variable that would be investigated first may always choose the
correct value.

Exponential lower bounds on running time of myopic and drunken DPLL algorithms on
satisfiable formulas were proved in the paper [AHI05]; these two classes of DPLL algorithms
cover a lot of known DPLL algorithms. In myopic algorithms heuristics that choose a
variable for splitting and that choose a value that will be investigated first have the following
restrictions: they can see the formula with erased signs of negations and they also know the
number of positive and negative occurrences of every variable and they also can request
K = n1−ε clauses of the formula to read them precisely. In drunken algorithms the heuristic
that chooses variable for splitting may be arbitrary, while the first substituted value is chosen
at random with equal probabilities. Lower bounds for myopic algorithms were proved on
the formulas that code the system of linear equations over F2 based on expander matrices;
lower bounds for drunken algorithms were proved on artificial formulas that are based on
hard examples for resolution.

The paper [CEMT09] gives a cryptographic view on [AHI05]. Namely it was noted in
[CEMT09] that the lower bound for myopic algorithms [AHI05] was proved on the formulas
that code the problem of inversion of Goldreich’s function based on linear predicate. Goldre-
ich’s function [Gol00] has n binary inputs and n binary outputs. Every output depends on
d inputs and is computed from them by a fixed predicate of arity d. Goldreich conjectured
that if the dependency graph is an expander and the predicate is random, then the resulting
function is one-way. However, linear functions are not interesting from the cryptographic
point of view since they can be easily inverted by Gaussian elimination. The main goal of
[CEMT09] was the proof of lower bound for a function that is really hard invertible. J. Cook
et al. consider Goldreich’s function based on the predicate x1 +x2 + · · ·+xd−2 +xd−1xd and a
random graph (a random graph is an expander with high probability). They have proved the
exponential lower bound for the weakened1 variant of myopic algorithms. In 2010 Itsykson
[Its10] proved the lower bound on the complexity of inversion of Goldreich’s function based
on random graph and predicate of type x1 + x2 + · · ·+ xd−k + Q(xd−k+1, . . . xd), where Q is
an arbitrary predicate of arity k and k < d/4 by drunken algorithms. We should note that
the proof from [CEMT09] works for this type of predicates as well.

The construction of Goldreich’s function in all papers listed above was randomized. In
this paper we suggest an explicit construction of Goldreich’s function based on the expanders
form [CRVW02]. It is possible to use those formulas in the proof of exponential lower bound
for drunken algorithms from [Its10]. In this paper we demonstrate the lower bound for
myopic algorithms. Our proof is technically much simpler than proofs from [AHI05] and
[CEMT09]. We prove lower bound for the general notion of myopic algorithms (according
to the definition from [AHI05]) instead of the weakened variant that was used in [CEMT09].

Our Goldreich’s function has the following structure: it is the sum of two Goldreich’s
functions: linear and nonlinear. The linear part is necessary for proving the lower bound
for DPLL algorithms while the nonlinear part makes our function hard to invert in practice.

1With compare to [AHI05] that algorithms are no allowed to use pure literal simplification rules and may
read only constant (opposite to n1−ε) number of clauses per step.

2

The linear part is based on the expander graph from [CRVW02], while nonlinear part may
be almost arbitrary but it should depend only on nε/2 variables. We believe that there are
hard invertible functions among our functions. We actually do not use in the proof the fact
that the nonlinear part of predicate is the same for every bit of the output.

The plan of the proof is the following: first of all we slightly modify the expander from
the linear part so that its adjacency matrix would have high rank. Since the nonlinear part
of our function depends on very few variables we conclude that our Goldreich’s function
is almost a bijection. In order to prove the lower bound we first of all prove the lower
bound for unsatisfiable formulas using lower bound techniques for resolutions from [BSW01].
Using almost linearity and almost bijectivity we prove that with high probability the myopic
algorithm makes the formula unsatisfiable during first several steps and we apply the lower
bound for unsatisfiable formulas.

2 Preliminaries

Let X = {x1, x2, . . . , xn} be the set of propositional variables.
A partial substitution is a function ρ : X → {0, 1, ∗}, that maps a variable to its value or

leaves it free. The set V ars(ρ) = ρ−1({0, 1}) is the support of the substitution; we denote
|ρ| = |V ars(ρ)|.

If ρ1 and ρ2 are two partial substitutions with disjoint support then the substitution
ρ1 ∪ ρ2 can be defined by the natural way.

We say that a string y ∈ {0, 1}n is consistent with the partial substitution ρ (we denote
it y ∼ ρ) if for all xj from the support of ρ the following is satisfied yj = ρ(xj).

2.1 DPLL algorithms

We consider a wide class of SAT algorithms: DPLL (or backtracking) algorithms. A DPLL
algorithm is defined by two heuristics (procedures): 1) Procedure A maps a CNF formula
to one of its variables. (This is the variable for splitting). 2) Procedure B maps a CNF
formula and its variable to {0, 1}. (This value will be investigated at first).

An algorithm may also use some syntactic simplification rules. Simplification rules may
modify the formula without affecting its satisfiability and may also make substitutions to its
variables if their values can be inferred from the satisfiability of the initial formula.

A DPLL algorithm is a recursive algorithm. Its input is a formula ϕ and a partial
substitution ρ.

Algorithm 2.1. Input: formula ϕ and substitution ρ

� Simplify ϕ by means of simplification rules (assume that simplification rules change ϕ
and ρ; all variables that are substituted by ρ should be deleted from ϕ).

� If current formula is empty (that is, all its clauses are satisfied by ρ), then return ρ. If
formula contains an empty clause (unsatisfiable), then return “formula is unsatisfiable”.

� xj := A(ϕ); c := B(ϕ, xj)

3

� Make a recursive call with the input (ϕ[xj := c], ρ∪{xj := c}), if the result is “formula is
unsatisfiable”, then make a recursive call with the input (ϕ[xj := 1−c], ρ∪{xj := 1−c})
and return its result, otherwise return the result of the first recursive call.

Definition 2.1. Myopic algorithms [AHI05] are DPLL algorithms, where heuristics A and
B have the following restrictions:

� They can see the whole formula with erased signs of negations.

� For every variable they know the number of its positive and the number of its negative
occurrences.

� They may request to read K = o(n) clauses to read precisely (with negation signs).

Simplification rules: 1) Unit clause elimination: if formula contains a clause with only one
literal, then make a substitution that satisfies that clause. 2) Pure literals rule: if formula
contains a variable that has only positive or only negative occurrences, then substitute it
with the corresponding value.

The running time of a DPLL algorithm for a given sequence of random bits is the number
of recursive calls.

2.2 Expanders

We consider bipartite graphs with each part containing n vertices. The first part we denote
by X = {x1, x2, . . . , xn} and the second we denote by Y = {y1, y2, . . . , yn}. Every vertex
from the set Y has an ordered list of its neighbours from the set X (repetitions are allowed).
All considered graphs are d-regular: the degree of every vertex from Y is equal to d, where
d is a constant.

Every graph has its adjacency matrix over F2. Rows of this matrix correspond to the set
Y and columns correspond to the set X, the element with coordinates (y, x) contains the
parity of the number of edges between y and x.

For set A ⊆ Y we denote Γ(A) (the set of neighbours of A) the set of vertices from X
that are connected with at least one vertex from A; we denote δ(A) (the boundary of A) the
set of vertices from X that have exactly one incoming edge from the set A.

Definition 2.2. The graph G is a (r, d, c)-expander, if 1) the degree of any vertex in Y is
equal to d; 2) for any set A ⊆ Y, |A| ≤ r we have Γ(A) ≥ c|A|. The graph G is called a (r, d, c)-
boundary expander if the second condition is replaced by: 2) for any set A ⊆ Y, |A| ≤ r we
have δ(A) ≥ c|A|.

Lemma 2.1 (cf. [AHI05], Lemma 1). Every (r, d, c)-expander is also a (r, d, 2c − d)-
boundary expander.

Proof. Let A ⊆ Y , |A| ≤ r, then |Γ(A)| ≥ c|A|. The number of edges between A and Γ(A)
may be estimated: d|A| ≥ |δ(A)|+2|Γ(A)\ δ(A)| = 2|Γ(A)|− |δ(A)| ≥ 2c|A|− δ(A). Finally
we get δ(A) ≥ (2c− d)|A|.

4

We need boundary expanders; for this it is enough to have an expander with constant
c > d/2. For example, a random graph is an appropriate expander.

Lemma 2.2 ([HLW06], Lemma 1.9). For d ≥ 32, for all big enough n a random bipartite
d-regular graph, where parts X and Y contain n vertices is a (n

10d
, d, 5

8
d)-expander with

probability 0.9, if for every vertex in Y d edges are chosen independently at random (with
repetitions).

Corollary 2.1. In terms of Lemma 2.2 this graph is a (n
10d

, d, 1
4
d)-boundary expander.

Proof. Follows from Lemma 2.1.

There are also explicit constructions of such expanders:

Lemma 2.3 ([CRVW02]). For every constant ε > 0 there is a constant d such that it
is possible to construct a (r, d, c)-expander in polynomial of n time, where c = (1 − ε)d,
r = Ω(n/d).

Corollary 2.2. This graph is a (Ω(n/d), d, (1− 2ε)d)-boundary expander.

2.3 Goldreich’s function

O. Goldreich in the paper [Gol00] introduces a function f : {0, 1}n → {0, 1}n defined by a
graph G and a predicate P : {0, 1}d → {0, 1}. Every string from {0, 1}n assignes some value
to the variables from the set X = {x1, x2, . . . , xn}. The value of (f(x))j (j-th symbol of
the string f(x)) is computed in the following way: if yj has neighbours xj1 , xj2 , . . . , xjd

,then
(f(x))j = P (xj1 , xj2 , . . . , xjd

).

2.4 Formulas from Goldreich’s function

Now we describe the way we code the problem of inversion of Goldreich’s function as instance
of CNF satisfiability problem.

Let g : {0, 1}` → {0, 1}, the canonical CNF representation of g is the following: for every
c ∈ {0, 1}` that satisfies g(c) = 0 we write the clause xc1

1 ∨ xc2
2 ∨ · · · ∨ xc`

` , where x0
i = xi and

x1
i = ¬xi. The whole formula is the conjunction of all written clauses.

Let f be the Goldreich’s function based on the graph G and the predicate P . We
represent the equation f(x) = b in the following way: for every vertex yj ∈ Y that has
neighbours xj1, xj2, . . . , xjd we put down the canonical CNF representation of the equality
bj = P (xj1, xj2, . . . , xjd) using variables xj1, xj2, . . . , xjd. The conjunctions of all those for-
mulas we denote Φf(x)=b. The part of this formula that corresponds to the vertices from the
set A ⊆ Y we denote ΦA

f(x)=b.

Lemma 2.4. If a function g : {0, 1}` → {0, 1} is linear on at least two variables, then the
canonical CNF representation of g has exactly 2`−1 clauses and every variable has an equal
number of positive and negative occurrences.

5

Proof. Let g have the following F2 representation g(x1, x2, . . . , xn) = x1 + x2 + h(x3, . . . , x`).
Let us denote T0 = h−1(0), T1 = h−1(1). Then g−1(0) = {00y | y ∈ T0} ∪ {11y | y ∈
T0} ∪ {01x | y ∈ T1} ∪ {10y | y ∈ T1}. The latter shows that |g−1(0)| = 2l−1 and every
variable has an equal number of positive and negative occurrences.

Lemma 2.4 implies that if a myopic algorithm does not see negation signs, then it can’t
differ g(x) = 0 from g(x) = 1 when g is linear on at least 2 variables. Also we note that a
canonical CNF formula is still canonical after substitution of the value of a variable.

3 Almost bijective Goldreich’s function

3.1 Linear function

Let G1 be a d1-regular graph and G2 be a d2-regular graph. G1 + G2 is (d1 + d2)-regular
graph such that for every vertex from Y the list of neighbours is a concatenation of lists
of neighbours in graph G1 and graph G2. The adjacency matrix of G1 + G2 is the sum of
adjacency matrices of G1 and G2.

Proposition 3.1. If graph G is a (r, d, c)-expander and G′ is a d′-regular graph, then G+G′

is a (r, d + d′, c)-expander.

Theorem 3.1. Given a graph G it is possible to construct in polynomial of n time a 1-regular
graph T such that the rank of adjacency matrix of G + T is at least n− 1.

Proof. First of all we prove the auxiliary lemma:

Lemma 3.1. Let a = (α1, . . . , αn) ∈ Fn
2 . Then there are at least n − 1 linear independent

vectors among bi = (α1, . . . , αi−1, αi + 1, αi+1, . . . , αn), where 1 ≤ i ≤ n.

Proof. Let us consider the matrix A of size n × n; all columns of A are equal to vector
a. Vectors bi are columns of the matrix A + E, where E is the identity matrix. Since the
rank of the sum of matrices is less then or equal to the the sum of ranks we may conclude
that n = rk E ≤ rk(A + E) + rk A. All columns of A are the same, hence rk A ≤ 1 and
rk(A + E) ≥ n− 1.

Now we describe the construction of graph T . We start from an empty set of edges and
we will add one edge per step. On the i-th step for 1 ≤ i ≤ n− 1 we add a neighbour to the
vertex yi ∈ Y in such a way that the first i rows of G + T are linearly independent. It can
be done by the Lemma 3.1 (we apply the Lemma to the i-th row of the matrix of graph G).
We add an arbitrary neighbour to vertex yn.

Corollary 3.1. If G is a (r, d, c)-expander, then the graph G + T from the theorem is a
(r, d + 1, c)-expander and the Goldreich’s function f based on G + T and a linear predicate
of arity d + 1 has the following property: for every b ∈ {0, 1}n the size of the set f−1(b) is at
most 2.

6

3.2 Slightly nonlinear Goldreich’s function

Let R ⊆ X be some subset of X. R-graph is a regular graph such that all vertices from
X \R have degree 0.

Lemma 3.2. Let G be a (d − k)-regular graph with an adjacency matrix of rank at least
n − 1 and H be a k-regular R-graph. Let f be Goldreich’s function based on G + H and
predicate x1 +x2 + · · ·+xd−k +Q(xd−k+1, . . . , xd), where Q is an arbitrary predicate of arity
k. Then for every b ∈ {0, 1}n the size of the set f−1(b) is at most 2|R|+1.

Proof. We consider the system of equalities f(x) = b and fix values of all variables from the
set R. We get the linear system whose matrix equals to the matrix of graph G after removing
the columns from the set R. The matrix of G has rank n− 1, therefore the resulting system
has at most two solutions. Hence the initial system f(x) = b has at most 2|R|+1 solutions.

4 Lower bound on unsatisfiable formulas

We say that a variable is sensible if by changing its value we change the value of the formula
(for every assignment of values of other variables). (The boolean function that corresponds
to the formula is linear on all its sensible variables).

Theorem 4.1 ([Its10]). Let f be a Goldreich’s function based on G and P , where graph
G is a (r, d, c)-boundary expander and predicate P contains at most k insensible variables;
ρ is a partial assignment to variables of X such that the formula Φf(x)=b|ρ is unsatisfiable
and for any set of vertices A ⊆ Y , |A| < r

2
, the formula ΦA

f(x)=b|ρ is satisfiable. Then the

running time of any DPLL algorithm (that does not use simplification rules) on the formula

Φf(x)=b|ρ is at least 2
(c−k)r

4
−|ρ|−d.

Proof. See Appendix A.

5 Lower bound on satisfiable formulas

5.1 Closure

Let graph G be a (r, d, c)-boundary expander. Let 0 < k < c − 2 and P (x1, . . . , xd) =
x1 + · · ·+ xd−k + Q(xd−k+1, . . . , xd); Goldreich’s function f is based on G and P .

Definition 5.1. Let J ⊆ X. The set of vertices I ⊆ Y is called k-closure of the set J if
there is a finite sequence of sets I1, I2, . . . , Im (we denote C` =

⋃
1≤i≤` Ii, C0 = ∅), such that

the following properties are satisfied:

� I` ⊆ Y and 0 < |I`| ≤ r
2

for all 1 ≤ ` ≤ m;

� Ii ∩ Ij = ∅ for all 1 ≤ i, j ≤ m;

� |δ(I`) \ (Γ(C`−1) ∪ J)| ≤ (1 + k)|Il|; for all 1 ≤ ` ≤ m;

7

� for all I ′ ⊆ Y \ Cm if 0 < |I ′| ≤ r
2
, then |δ(I ′) \ (Γ(Cm) ∪ J)| > (1 + k)|I ′|;

� I = Cm.

The set of all k-closures of the set J we denote as Clk(J).

Lemma 5.1. 1. For every set J ⊆ X there exists a k-closure. 2. Let J1 ⊆ J2, then for every
I1 ∈ Clk(J1) there exists I2 ∈ Clk(J2) such that I1 ⊆ I2

Proof. See Appendix B.

Lemma 5.2 ([AHI05]). Let |J | < (c−k−1)r
2

, then for every set I ∈ Clk(J) the inequality
|I| ≤ (c− k − 1)−1|J | is satisfied

Proof. See Appendix B.

Definition 5.2. Let f : {0, 1}n → {0, 1}n be the Goldreich’s function based on graph G and
predicate P , b ∈ {0, 1}. Partial substitution ρ is called locally consistent for the equation
f(x) = b if there exists a string z ∈ {0, 1}n that is consistent to ρ and a set I ∈ Clk(V ars(ρ))
such that the equality f(z)|I = b|I holds.

Lemma 5.3 (cf. [AHI05]). If the partial substitution ρ is locally consistent for f(x) = b,
then for all Z ⊆ X, |Z| ≤ r

2
there exists a string z ∈ {0, 1}n such that z is consistent with ρ

and the equality f(z)|Z = b|Z holds.

Proof. Proof by contradiction. Consider the minimal Z ⊆ Y such that |Z| ≤ r
2

and for all z
that are consistent to ρ the nonequality f(z)|Z 6= b|Z holds. Let I ∈ Clk(V ars(ρ)) be from
Definition 5.2. Partial substitution ρ is locally consistent therefore Z \ I 6= ∅.

By the definition of closure |δ(Z \ I) \ (Γ(I)∪ V ars(ρ))| > (k + 1)|Z \ I|, therefore there
exists y ∈ Z \ I such that at least k + 1 boundary vertices of set Z (not from the support
of ρ and not connected with I) are connected with y. From the minimality of Z follows the
existence of z ∈ {0, 1}n that is consistent with ρ, such that f(z)|Z\{y} = b|Z\{y}. It is possible
also to satisfy the equation corresponding to vertex y by inverting the z-value of one of the
boundary neighbours of vertex y. Therefore there exists z′ ∈ {0, 1}n that is consistent with
ρ and f(z′)|Z = b|Z . Contradiction.

5.2 Clever myopic algorithm

We assume that the myopic algorithm runs on the formula Φf(x)=b, where f−1(b) 6= ∅. We
describe the clever myopic algorithm. A clever myopic algorithm is allowed to read more
clauses precisely (equivalently it may open more bits of b). Besides, the clever algorithm
doesn’t make substitutions that obviously lead to unsatisfiable formulas. It is not hard to
see that it is enough to prove the lower bound for clever myopic algorithms; the lower bound
for all myopic algorithms will follow.

Now we describe the behavior of clever myopic algorithms more formally. A clever al-
gorithm has a current partial substitution ρ and a set I ∈ Clk(V ars(ρ)). At the beginning
ρ = ∅, I = ∅. On each step the clever algorithm simplifies the formula (probably increases
ρ and extends the set I to the element of Clk(V ars(ρ)).

8

If the clever algorithm requests a clause that corresponds to the vertex yj ∈ Y we say
that the algorithm opens j-th bit of output. We assume that all clauses corresponding to
yj ∈ Y may be read by a clever algorithm for free.

Consider the heuristic A that choose variable x for splitting. Let Z be the set of all open
bits of output (in particular Z includes K bits that were open before x was choosen). The
clever algorithm extends the set I to the element of Clk(V ars(ρ) ∪ {x}). The set of open
bits is increased: Z := Z ∪ I. The clever algorithm chooses the value of variable x in order
to make the part of formula that corresponds to Z satisfiable.

Lemma 5.4. For every clever myopic algorithm A there exists another clever myopic al-
gorithm B such that B does not use pure literal and unit clause elimination rules and the
running time of algorithm B on the formula Φf(x)=b is bounded by polynomial on the running
time of algorithm A.

Proof. If the current predicate in the vertex y ∈ Y (taking into account ρ) is linear on at
least two variables then Lemma 2.4 implies that there are no pure literals in the formula
that corresponds to y. So predicates in vertices that contain pure literals have at most one
linear variable. All such vertices are contained in I ∈ Clk(V ars(ρ)), hence all corresponding
bits of output are open and the algorithm may make a substitution to this pure literal by
itself. Similarly, if formula contains a unit clause, then the corresponding vertex is in I and
a clever algorithm may choose the correct substitution by itself.

In the following we assume that clever myopic algorithms do not use simplification rules.
Let us denote N = b (c−k−1)r

4dK
c.

Lemma 5.5 (cf. [AHI05]). After N steps of any clever myopic algorithm the number of
open bits is at most r

2
.

Proof. The number of open bits is at most K (c−k−1)r
4dK

+|Clk(V ars(ρ))|, where ρ is the current

substitution. By Lemma 5.2 |Clk(V ars(ρ)| ≤ |V ars(ρ)|
c−k−1

. Since |V ars(ρ))| ≤ (c−k−1)r
4

we may

conclude K (c−k−1)r
4dK

+ |Clk(Z)| ≤ (c−k−1)r
4d

+ r
4
≤ r

2

Corollary 5.1. During the first N steps a clever myopic algorithm does not backtrack
(backtracking corresponds to a leaf of the splitting tree) and ρ is locally consistent.

Proof. During N steps the number of open bits is at most r
2
. We prove by induction that

the current substitution is locally consistent. It is trivial for the beginning. Induction step
follows from the fact that the value of the variable is chosen in such a way that Φf(x)=b|I is
satisfiable. This is possible by Lemma 5.3 and by induction hypothesis.

Our goal is to show that after N steps of a clever myopic algorithm with high probability
the current formula will be unsatisfiable.

From this point we assume that graph G has the type GL + H, where GL is a (d − k)-
regular and H is a k-regular R-graph; the rank of adjacency matrix of GL is at least n− 1.
The Goldreich’s function f based on G and P is linear on variables X \R.

9

Lemma 5.6. Let b ∈ {0, 1}n and J ⊆ X. Let y ∈ {0, 1}n and Z ⊆ Y , we define set
Xy = {x ∈ {0, 1}n | ∀j ∈ (X \ J) xj = yj} and set Sy = {x ∈ Xy | f(x)|Z = b|Z}. Then
either |Sy| ≥ 2|J |−|Z|−|J∩R| or |Sy| = 0.

Proof. We have to estimate the number of x ∈ Xy that satisfies the system of equalities
f(x)|Z = b|Z . If we fix the values for variables xj for j ∈ J ∩ R then the system becomes
linear over variables xj for j ∈ (J \ R). The rank of the system does not exceed |Z| and
the number of variables is at least |J | − |J ∩R| (it is not necessary for all those variables to
have explicit occurrences in the system). Thus if a solution exists then the dimension of the
solution space is at least |J | − |J ∩R| − |Z|. Since our system is over field F2 the number of
solutions is at least 2|J |−|Z|−|J∩R| even for fixed values of xj, j ∈ J ∩R.

Let Z be the set of open bits b in the equation f(x) = b, ρ be some partial substitution;
we denote Cρ,Z,b the set of x ∈ {0, 1}n that are consistent with ρ and satisfy f(x)|Z = b|Z .
Formally Cρ,Z,b = {x | f(x)|Z = b|Z , x ∼ ρ}.

Lemma 5.7. Let Z ⊆ Y , |Z| < r
2
, J ⊆ X. Then for every two locally consistent sub-

stitutions ρ1, ρ2 with V ars(ρ1) = V ars(ρ2) = J and for every b ∈ {0, 1}n the following is

satisfied:
|Cρ1,Z,b|
|Cρ2,Z,b|

≤ 2|R|.

Proof.

|Cρ1,Z,b|
|Cρ2,Z,b|

=

∑
σ

|Cρ1∪σ,Z,b|∑
σ

|Cρ2∪σ,Z,b|
,

where the sum in both cases is over partial substitutions σ with support V ars(σ) = R\J .
We show that the size of the set Cρi∪σ,Z,b is either 0 or some fixed value and not dependant

on σ and i ∈ {1, 2}.
The size of the set Cρi∪σ,Z,b equals the number of solutions of the system of equations

f(x)|Z = b|Z if some bits of x are fixed by substitution ρi∪σ. This fixation makes the system
linear. Note that the rank of this system does not depend on substitutions ρi and σ (since
ρi and σ influence only the column of constants in the system). Therefore, if such system
has a solution then the number of solutions does not depend on i and σ.

Since the substitution ρi is locally consistent and |Z| < r
2
, Lemma 5.3 implies that there

exists such substitution σi with support V ars(σi) = R \ J that Cρi∪σi,Z,b 6= ∅.

|Cρ1,Z,b|
|Cρ2,Z,b|

≤ 2|R||Cρ1∪σ1,Z,b|
|Cρ2∪σ2,Z,b|

= 2|R|.

Theorem 5.1. Assume |R| = o(n
K

) and ρ is the current substitution after N steps of a
clever myopic algorithm running on the fomula Φf(x)=b for some b ∈ f({0, 1}n) and Z is the
set of open bits. Then Pry←U({0,1}n)[∃x : x ∼ ρ, f(x) = f(y) | f(y)|Z = b|Z] ≤ 2−Ω(n

K
).

Proof. Corollary 5.1 implies that during N steps the algorithm does not backtrack and
|ρ| = N .

10

We apply Lemma 5.6 for J = V ars(ρ) and Z = I, where I ∈ Clk(V ars(ρ)) is from
definition of a clever myopic algorithm after step N . Since b ∈ f({0, 1}n) there exists
y ∈ {0, 1}n such that Sy 6= ∅ (Sy is defined in the Lemma 5.6) and the inequality |Sy| ≥
2|V ars(ρ)|−|I|−|R| holds. Therefore at least 2|V ars(ρ)|−|I|−|R| substitutions with support V ars(ρ)
are locally consistent.

Pr
y←U({0,1}n)

[∃x : x ∼ ρ, f(x) = f(y) | f(y)|Z = b|Z]

= Pr
y←U({0,1}n)

[f−1(f(y)) ∩ Cρ,Z,b 6= ∅ | f(y)|Z = b|Z]

≤ max
y

|f−1(f(y))| · Pr
y←U({0,1}n)

[y ∈ Cρ,Z,b | f(y)|Z = b|Z]

By Lemma 3.2 the first term may be estimated as maxy |f−1(f(y))| ≤ 2|R|+1. Let us

estimate the second term: Pry←U({0,1}n)[y ∈ Cρ,Z,b | f(y)|Z = b|Z] ≤ maxσ |Cσ,Z,b|∑
σ |Cσ,Z,b|

, where σ

goes through all locally correct substitutions with the support V ars(ρ). By Lemma 5.7
maxσ |Cσ,Z,b|∑

σ |Cσ,Z,b|
≤ 2|R|

minσ |Cσ,Z,b|
2|V ars(ρ)|−|I|−|R| minσ |Cσ,Z,b|

= 22|R|+|I|−|V ars(ρ)|.

Altogether:

Pr
y←U({0,1}n)

[∃x : x ∼ ρ, f(x) = f(y) | f(y)|Z = b|Z] ≤ 23|R|+|I|−|V ars(ρ)|+1.

Since I ∈ Clk(V ars(ρ)) the Lemma 5.2 implies |I| ≤ (c − k − 1)−1|V ars(ρ)|. The
statement of the theorem follows from V ars(ρ) = Ω(n

K
) and c > k + 2.

Theorem 5.2. Let |R| = o(n
K

), then for every myopic algorithm A the following inequality

holds: Pry,s[tA(Φf(x)=f(y)) ≥ 2Ω(n)] ≥ 1− 2−Ω(n
K

), where tA(x) denotes the running time of A
on input x and s is a string of random bits used by A.

Proof. Lemma 5.4 implies that it is enough to prove the Theorem for clever myopic algo-
rithms that do not use simplification rules.

We fix the string of random bits s and prove that for algorithms that use s instead of
random bits the following holds: Pry[tA(Φf(x)=f(y)) ≥ 2Ω(n)] ≥ 1− 2−Ω(n

K
), and the theorem

follows.
We consider a clever myopic algorithm after N steps on the formula Φf(x)=f(y). Let Zy be

the set of open bits of output by this moment. Note that for a fixed string s the behavior of
algorithm during the first N steps is the same for all y′ ∈ {0, 1}n such that f(y′)|Zy = f(y)|Zy

(in this case Zy′ = Zy). Thus the set of all y ∈ {0, 1}n may be split on the finite number of
classes of equivalence S1, S2, . . . , Sm such that for all y and for all y′ ∈ Sy the values of Z ′y
are the same and the values of f(y)|Zy are the same, and this is not true for different classes.

Pr
y

[tA(Φf(x)=f(y)) ≥ 2Ω(n)] =
m∑

i=1

Pr
y

[tA(Φf(x)=f(y)) ≥ 2Ω(n) | y ∈ Si] Pr
y

[y ∈ Si].

11

By Theorem 5.1 after N steps of a clever myopic algorithm

Pr
y

[Φf(x)=f(y)|ρ unsatisfiable | y ∈ Si] ≥ 1− 2−Ω(n
K

),

where ρ is the current substitution that is locally consistent. Finally Theorem 4.1 implies
that Pry[tA(Φf(x)=f(y)) ≥ 2Ω(n) | y ∈ Si] ≥ 1 − 2−Ω(n

K
). The theorem follows from the last

inequality.

In conclusion we describe the construction of Goldreich’s function that suits the previous
theorem.

We choose ε = 1
4k

and for given ε we construct an (r, d, (1−ε)c)-expander H by Lemma 2.3.
The constant d satisfies the inequality d ≥ 4k. By Theorem 3.1 we add to the constructed
graph such 1-regular graph T that the resulting graph H +T has the adjacency matrix with
rank at least n − 1. The resulting graph is a (r, d + 1, (1 − 1

4k
)d)-expander. We choose the

subset R ⊆ X of size o(n/K) and k-regular R-graph F . We define G = H +T +F ; graph G
is a (r, d + 1 + k, (1− 1

4k
)d)-expander and hence a (r, d + 1 + k, d(1− 1

4k
)− k − 1)-boundary

expander. For k > 1 the inequality d(1 − 1
4k

) − k − 1 > k + 2 holds. For such graph any
predicate of the type x1 + · · · + xd−k + Q(xdk+1

, . . . , xd) is suitable, where Q is arbitrary
predicate of arity k. It may be easily verified that we do not use the fact that the predicate
Q is the same for all vertices of the set Y .

References

[AHI05] Michael Alekhnovich, Edward A. Hirsch, and Dmitry Itsykson. Exponential
lower bounds for the running time of DPLL algorithms on satisfiable formulas.
J. Autom. Reason., 35(1-3):51–72, 2005.

[BSW01] E. Ben-Sasson and A. Wigderson. Short proofs are narrow — resolution made
simple. Journal of ACM, 48(2):149–169, 2001.

[CEMT09] James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. Goldreich’s one-
way function candidate and myopic backtracking algorithms. In proceedings of
TCC, pages 521–538. Springer-Verlag, 2009.

[CRVW02] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness conduc-
tors and constant-degree expansion beyond the degree/2 barrier. In Proceedings
of the 34th Annual ACM Symposium on Theory of Computing, pages 659–668,
2002.

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. Tech-
nical Report 00-090, Electronic Colloquium on Computational Complexity, 2000.

[HLW06] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43:439–561, 2006.

12

[Its10] D. Itsykson. Lower bound on average-case complexity of inversion of Goldreich
function by ”drunken” backtracking algorithms. In Proceedings of International
Computer Science Symposium in Russia, volume 6072 of Lecture Notes in Com-
puter Science, pages 204–215. Springer, 2010.

[Tse68] G. S. Tseitin. On the complexity of derivation in the propositional calculus.
Zapiski nauchnykh seminarov LOMI, 8:234–259, 1968. English translation of
this volume: Consultants Bureau, N.Y., 1970, pp. 115–125.

A Behavior of DPLL algorithms on unsatisfiable for-

mulas

Behavior of DPLL algorithms on unsatisfiable formulas is closely connected with the res-
olution proof system. The resolution proof system is used for proving the unsatisfiability
of CNF formulas. The proof of unsatisfiability of formula ϕ in the resolution proof system
is a sequence of clauses, every clause in this sequence is either a clause of ϕ or a result of
application of the resolution rule to two previous clauses; and the last clause in the sequence
is an empty clause (a contradiction). The resolution of two clauses (l1 ∨ l2 ∨ · · · ∨ ln) and
(l′1 ∨ l′2 ∨ · · · ∨ l′m) where l′m = ¬ln is the clause (l1 ∨ · · · ∨ ln−1 ∨ l′1 ∨ · · · ∨ l′m−1). The proof
is called treelike if every inferred clause is used as the premise of the resolution rule at most
once.

The running of every DPLL algorithm (that does not use symplification rules) on the
unsatisfiable formula corresponds to the splitting tree. Vertices of the tree are marked with
variables that are chosen for splitting. There are two outgoing edges from every vertex except
leaves; one of the edges is marked with 0, the other edge is marked with 1. In every leaf at
least one of clauses of initial formula is refuted. The running time of a DPLL algorithm is
the size of the splitting tree (note that if formula is unsatisfiable then the algorithm should
investigate the whole tree and it’s number of steps is the same for all random choices).

The following statement is well known.

Proposition A.1. The running time of DPLL algorithm (that does not use symplification
rules) on unsatisfiable formula is at least the size (number of clauses) of the shortest treelike
resolution proof.

Proof. By induction of the size of the tree it is easy to show that if unsatisfiable formula ϕ
has splitting tree of size k then ϕ has resolution refutation of size k. The base of induction is
the spitting tree with only one vertex, such formula should contain an empty clause therefore
the size of resolution refutation is 1. Induction step. Note that the tree necessarily contains
two leaves u and v with the same parent w. Let xi be the splitting variable in the vertex w,
the leaf u corresponds to the assignment xi = 1 and the leaf v corresponds to the assignment
xi = 0. Two clauses that are refuted in the vertices v and u contain the variable xi with
different signs. The resolvent (the result of an application of the resolution rule) of this two
clauses C must be refuted in the vertex w. We construct new splitting tree: cut leaves u
and w and add clause C to vertex w. Now we get a correct splitting tree for a formula that

13

is obtained from the initial formula by adding a resolvent of two clauses. And we apply
induction hypothesis to the resulting tree (the number of vertices is decreased by 1).

Ben-Sasson and Wigderson in [BSW01] introduced the notion of width of the proof. The
width of a clause is the number of literals in it. The width of a CNF formula is the width of
its widest clause. The width of a resolution proof is the width of its widest clause.

Theorem A.1 ([BSW01], corollary 3.4). The size of a treelike resolution refutation of
the formula ϕ is at least 2w−wϕ , where w is the minimum width of the resolution refutation
of ϕ and wϕ is the width of ϕ.

Let G be a boundary (r, d, c)-expander. We associate a proposition variable with every
vertex in set X. Let every vertex yj in set Y have a CNF formula that depends on variables
adjacent to yj. We denote the formula in the vertex yj as ϕj. Obviously the width of ϕj is
at most d. The conjunction of all formulas that correspond to the vertices Y we denote Φ.
For any subset A ⊆ Y the conjunction of all formulas that correspond to the vertices in A
we denote as ΦA.

Theorem A.2. Let every formula ϕj contain at most k insensible variables; ρ is a partial
assignment to variables of X such that formula Φ|ρ is unsatisfiable and for any set of vertices
A ⊆ Y , |A| < r

2
, the formula Φ|Aρ is satisfiable. Then any resolution proof of Φ|ρ has width

at least (c−k)r
4

− |ρ|.

Proof. We consider Ben-Sason-Wigderson measure µ that is defined on the clauses of res-
olution proof of Φ|ρ. µ(D) is the size of the minimal set of vertices A such that clause D
is a semantic implication of ΦA|ρ (it means that every satisfying assignment of ΦA|ρ also
satisfies D). The measure µ is semiadditive: if clause D is a resolvent of clauses C1 and C2,
then µ(D) ≤ µ(C1) + µ(C2). Since for every set A ⊆ Y such that |A| < r

2
, formula Φ|Aρ is

satisfiable, then the measure of an empty clause is at least r
2
. Semiadditivity implies that

there exists a clause C such that r
2

> µ(C) ≥ r
4

for r large enough. Let A be the minimal
set of vertices such that Φ|Aρ semantically implies C, i.e. |A| = µ(C) ≥ r

4
. Since G is a

(r, d, c)-boundary expander we have δ(A) ≥ c|A|. δ(A) is a set of variables that have exactly
one occurrence in the formulas corresponding to the set A. There are at least (c − k)|A|
variables among them that are sensible for at least one vertex of A. There are at least
(c − k)|A| − |ρ| sensible variables in the formula Φ|Aρ . Now we will show that the clause C
contains all sensible variables. Suppose for contradiction that there is a variable xj that is
sensible for a vertex v ∈ A and the clause C doesn’t contain xj. Consider the set A \ {v}.
It doesn’t semantically imply C, therefore there exists such an assignment that satisfies all
formulas for A\{v} and doesn’t satisfy C. We may change the value of xj in this assignment
in such way that the resulting assignment satisfies all formulas in A and doesn’t satisfy C.
The later contradicts the fact that C is a semantic implication of A.

Corollary A.1. The size of the splitting tree of Φ|ρ is at least 2
(c−k)r

4
−|ρ|−d.

Proof. Follows from the Theorem A.2, Theorem A.1 and Proposition A.1.

14

B Closure

Lemma B.1. 1. For every set J ⊆ X there exists a k-closure. 2. Let J1 ⊆ J2, then for
every I1 ∈ Clk(J1) there exists I2 ∈ Clk(J2) such that I1 ⊆ I2

Proof. 1. A k-closure may be obtained as a result of the following algorithm C on the input
(J, ∅).

Algorithm B.1. Algorithm C(J, I0)

1. I := I0 (the variable I means some subset of Y)

2. While there exists I ′ ⊆ Y \ I such that 0 < |I ′| ≤ r
2
, |δ(I ′) \ (Γ(I) ∪ J)| ≤ (1 + k)|I ′|

� I := I ∪ I ′

3. Return I.

2. Let I1 ∈ Clk(J1), then we can get I2 ∈ Clk(J2) as a result of the algorithm C on the
input (J2, I1). The condition I1 ⊆ I2 is satisfied.

Lemma B.2 ([AHI05]). Let |J | < (c−k−1)r
2

, then for every set I ∈ Clk(J) the inequality
|I| ≤ (c− k − 1)−1|J | is satisfied

Proof. Proof by contradiction. Let I1, I2, . . . , Im be the sequence corresponding to the k-
closure I, C` =

⋃
1≤i≤` I`. Let t be the minimal number such that the inequality |Ct| > (c−k−

1)−1|J | is satisfied, then |Ct| ≤ (c−k−1)−1|J |+ r
2
≤ r. Then |δ(Ct)| ≥ c|Ct| > |J |+(k+1)|Ct|.

By induction on ` we will show that |δ(C`) \ J | ≤ (k + 1)(|C`|), and it contradicts the
above inequality for l = t. If l = 1 the inequality follows from |δI1 \ J | ≤ (k + 1)|I1|.
|δ(C`)\J | ≤ |δ(I1∪· · ·∪I`−1)\J |+ |δ(I`)\(J ∪Γ(C`−1))| ≤ (k+1)((|C`−1|))+(k+1)|I`|.

15

