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Abstract. We consider gate elimination for linear functions and show
two general forms of gate elimination that yield novel corollaries. Us-
ing these corollaries, we construct a new linear feebly secure trapdoor
function that has order of security 5

4
which exceeds the previous record

for linear constructions. We also give detailed proofs for nonconstructive
circuit complexity bounds on linear functions.
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1 Introduction

Modern cryptography has virtually no provably secure constructions. Starting
from the first Diffie–Hellman key agreement protocol [5] and the first public key
cryptosystem RSA [21], not a single public key cryptographic protocol has been
proven secure (however, there exist secure secret key protocols, e.g., the one-
time pad scheme [23, 25]). Naturally, an unconditional proof of security would
be indeed hard to find, since it would necessarily imply that P 6= NP. But the
situation is worse: there are also no conditional proofs that might establish a
connection between natural structural assumptions (like P 6=NP or BPP 6=NP)
and cryptographic security. Recent developments in lattice-based cryptosystems
relate cryptographic security with worst-case complexity, but they deal with
problems unlikely to be NP-complete [1, 6, 19,20].

There are known complete cryptographic constructions, both one-way func-
tions [14,15] and public key cryptosystems [8,9]. However, they also do not let us
relate cryptographic security to key assumptions of classical complexity theory.
Moreover, the asymptotic nature of these completeness results does not let us
say anything about how hard it is to break a given cryptographic protocol for
keys of a certain fixed length, which is, in fact, what we all want as privacy-aware
customers. Problems that have been studied extensively in relation to cryptog-
raphy (factoring and discrete logarithm) do seem to scale well, but there are no
lower bounds and little hope for such anytime soon, so the point is moot. We
can only say that complexity of the algorithms that we have devised ourselves



scales well, so ultimately we fall back on the “many smart people have thought
about it” argument. There are other dangers on the way of asymptotic complex-
ity, too [13]. Ultimately, we do not care whether a protocol can or cannot be
broken in the limit; we would be very happy if breaking this specific version of
the protocol required constant time, but the constant was larger than the size
of the known Universe.

However, modern cryptography is still very far away from provably secure
constructions. At present, we can prove security neither in this “hard” sense
nor in the sense of classical cryptographic definitions [7]. Nevertheless, while we
are unable to prove a superpolynomial gap between the complexities of honest
parties and adversaries, we are able to prove some gap. In 1992, Alain Hiltgen [10]
presented a series of linear functions that are about twice (2 − ε times for an
arbitrarily small ε) harder to invert than to compute. His example consists of
linear functions over F2 with matrices that have few non-zero entries (ones)
while inverse matrices have many ones. The complexity gap follows by a simple
argument of Lamagna and Savage [16,22]: every bit of the output depends non-
idly on many variables and all these bits correspond to different functions, hence
a lower bound on the complexity of computing them all together. The model
of computation here is the most general one, namely the number of gates in a
Boolean circuit that uses arbitrary binary Boolean gates. Little more could be
expected for this model at present. For example, the best known lower bound
for general circuit complexity of a specific Boolean function is 3n− o(n) [3, 26].
In his thesis, Hiltgen also presented a feebly secure function that is exactly twice
harder to invert than to compute, this time a nonlinear one [11].

Lately, in the works of Hirsch, Nikolenko, and Melanich new cryptographic
constructions with the same properties were constructed [12,17]. In [12], a linear
feebly secure trapdoor function with order of security 25

22 was constructed, and
in [17], a nonlinear feebly secure trapdoor function with order of security 7

5 . In
this paper, we continue that line of work. In Section 2, we give basic definitions.

Virtually all bounds in general circuit complexity have been proven with
gate elimination. This paper deals with gate elimination for linear functions; in
Section 3, we distill gate elimination to two basic ideas, formulate it in a general
form, note important corollaries, and discuss its limitations. Our discussion in
Section 3 generalizes the methods of [12], and this understanding lets us find a
better construction of a linear feebly secure trapdoor function that has order of
security 5

4 − ε for any ε > 0, as shown in Section 4. In Section 5, we compare
what we have found with nonconstructive upper and lower bounds on general
circuit complexity of linear functions. Section 6 concludes the paper.

2 Preliminaries

We denote by Bn,m the set of all 2m2n total functions f : Bn → Bm, where
B = {0, 1} is the field with two elements. A circuit is a directed acyclic labeled
graph with vertices of two kinds: vertices of indegree 0 (vertices that no edges
enter) labeled by one of the variables x1, . . . , xn, and vertices labeled by a binary



Boolean function f ∈ B2,1; this model of computation is known as general circuit
complexity. Vertices of the first kind are called inputs or input variables; vertices
of the second kind, gates. The size of a circuit C, size(C), is the number of
gates in it. We assume that each gate in this circuit depends of both inputs, i.e.,
there are no gates marked by constants and unary functions Id and ¬. To safely
remove such gates without loss of generality, we assume that the output of each
gate can be both the value of corresponding function and its negation. For every
injective function of n variables fn ∈ Bn,m we define its measure of one-wayness

MF (fn) =
C(f−1

n )
C(fn)

. Hiltgen’s work was to find sequences of functions f = {fn}∞n=1

with a large asymptotic constant lim infn→∞MF (fn), which is called the order
of one-wayness of f .

There is a well-known definition in cryptography for a family of trapdoor
functions [7]. However, we have a more detailed definition: since we are interested
in constants here, we must pay attention to all the details.

Definition 1. Fix functions pi, ti,m, c : N→ N. A feebly trapdoor candidate is
a sequence of triples of circuits C = {(Keyn,Evaln, Invn)}∞n=1 where:

– {Keyn}∞n=1 is a family of sampling circuits Keyn : Bn → Bpi(n) × Bti(n),
– {Evaln}∞n=1 is a family of evaluation circuits Evaln : Bpi(n)×Bm(n) → Bc(n),

and
– {Invn}∞n=1 is a family of inversion circuits Invn : Bti(n) × Bc(n) → Bm(n)

such that for every security parameter n, every seed s ∈ Bn, and every input
m ∈ Bm(n)

Invn(Keyn,2(s),Evaln(Keyn,1(s),m)) = m,

where Keyn,1(s) and Keyn,2(s) are the first pi(n) bits (“public information”) and
the last ti(n) bits (“trapdoor information”) of Keyn(s), respectively.

Informally speaking, n is the security parameter (the length of the random
seed), m(n) is the length of the input to the function, c(n) is the length of the
function’s output, and pi(n) and ti(n) are lengths of the public and trapdoor
information, respectively. We call these functions “candidates” because Defini-
tion 1 does not imply any security, it merely sets up the dimensions and provides
correct inversion. In our constructions, m(n) = c(n) and pi(n) = ti(n).

To find how secure a function is, we introduce the notion of a break. Infor-
mally, an adversary should invert the function without knowing the trapdoor
information. We introduce break as inversion with probability greater than a
certain constant r (we will usually set r to equal 1

2 , 3
4 , or 7

8 ). We denote by
Cα(f) the minimal size of a circuit that correctly computes a function f ∈ Bn,m
on more than fraction α of its inputs (of length n). Obviously, Cα(f) ≤ Cβ(f)
for all α ≤ β, and C(f) = C1(f).

Definition 2. A circuit N breaks a feebly trapdoor candidate C = {Keyn,Evaln,
Invn} on seed length n with probability r if, for uniformly chosen seeds s ∈ Bn
and inputs m ∈ Bm(n),

Pr
(s,m)∈U

[
N(Keyn,1(s),Evaln(Keyn,1(s),m)) = m

]
> r.



Definition 3. A feebly trapdoor candidate C = {Keyn,Evaln, Invn} has order
of security k with level α if for every sequence of circuits {Nn}∞n=1 that break f
on every input length n with probability α,

lim inf
n→∞

min

{
C(Nn)

C(Keyn)
,
C(Nn)

C(Evaln)
,
C(Nn)

C(Invn)

}
≥ k.

In other words,

lim inf
n→∞

min

{
C3/4(fpi(n)+c(n))

C(Keyn)
,
C3/4(fpi(n)+c(n))

C(Evaln)
,
C3/4(fpi(n)+c(n))

C(Invn)

}
≥ k,

where the function fpi(n)+c(n) maps
(
Keyn,1(s),Evaln(Keyn,1(s),m)

)
7→ m.

We list a few simple examples. If there is no secret key at all (ti(n) = 0),
each feebly trapdoor candidate {(Keyn,Evaln, Invn)}∞n=1 has order of security
1, since the sequence of circuits {Invn}∞n=1 successfully inverts it. If a sequence
{(Keyn,Evaln, Invn)}∞n=1 implements a trapdoor function in the usual crypto-
graphic sense, then k = ∞. Moreover, k = ∞ even if the bounds on adversary
size are just a bit more than linear, e.g., if the adversary requires O(n log n)
gates. Our definitions are not designed to distinguish between these (very differ-
ent) cases, because, unfortunately, any nonlinear lower bound on general circuit
complexity appears very far away from our current state of knowledge.

Let us also note explicitly that we are talking about one-time security. An
adversary can amortize his circuit complexity on inverting a feebly trapdoor
candidate for the second time for the same seed, for example, by computing the
trapdoor information and successfully reusing it. Thus, in this setting one has
to pick a new seed for every input.

3 Gate Elimination for Linear Functions

Gate elimination is virtually the only method we have to prove lower bounds
in general circuit complexity; so far, it has been used for every single lower
bound [3,18,24,26]. The basic idea of this method is to use the following inductive
argument. Consider a function f and a circuit of minimal size C that computes
it. Now substitute some value c for some variable x thus obtaining a circuit for
the function f |x=c. The original circuit C can now be simplified, because the
gates that had this variable as inputs become either unary (recollect that the
negation can be embedded into subsequent gates) or constant (in this case we
can even proceed to eliminating subsequent gates). After figuring out how many
gates one can eliminate on every step, one proceeds by induction as long as it is
possible to find a suitable variable that eliminates enough gates. Evidently, the
number of eliminated gates is a lower bound on the complexity of f .

Usually, the important case here is when a gate is nonlinear, such as an AND
or an OR gate. In that case, it is always possible to choose a value for an input
of such a gate so that this gate becomes a constant and, therefore, its immediate
descendants can also be eliminated. However, in this paper we deal with gate



elimination for linear functions. We do not know how to prove that one cannot,
in general, produce a smaller circuit for a linear function with nonlinear gates,
but it is evident that we cannot assume any gates to be nonlinear in this setting.
Thus, gate elimination distills to two very simple ideas. Idea 1 is trivial and has
been noted many times before, while Idea 2 will allow us to devise better feebly
secure constructions in Section 4.

Since we are dealing with linear functions, we will, for convenience, state our
results in terms of matrices over F2; the circuit complexity of a matrix Cα(A) is
the circuit complexity of the corresponding linear function. By A−i we denote
the matrix A without its ith column; note that if A corresponds to f then A−i
corresponds to f |xi=0. If a matrix A has a zero column Ai, it means that the
corresponding function does not depend on the input xi; in what follows, we will
always assume that functions depend nontrivially on all their inputs and thus
the matrices do not have zero columns; we call such matrices nontrivial. Note
that if A is a submatrix of B then Cα(A) ≤ Cα(B) for all α ∈ [0, 1].

Idea 1. Suppose that for n steps, there is at least one gate to eliminate. Then
C(f) ≥ n.

Theorem 1. Fix a real number α ∈ [0, 1]. Suppose that P = {Pn}∞n=1 is a series
of predicates defined on matrices over F2 with the following properties:

– if P1(A) holds then Cα(A) ≥ 1;
– if Pn(A) holds then Pm(A) holds for every 1 ≤ m ≤ n;
– if Pn(A) holds then, for every index i, Pn−1(A−i) holds.

Then, for every matrix A with ≥ n+1 columns, if Pn(A) holds then Cα(A) ≥ n.

Proof. The proof is a straightforward induction on the index of Pi; the first
property of P provides the base, and other properties take care of the induction
step. For the induction step, consider the first gate of an optimal circuit C
implementing A. By the monotonicity property of P and the induction base,
the circuit is nontrivial, so there is a first gate. Consider a variable xi entering
that gate. Note that if C computes f on fraction α of its inputs then for some c,
C |xi=c computes f |xi=c on fraction α of its inputs. If we substitute this value
into this variable, we get a circuit C |xi=c that has at most size(C)−1 gates and
implements A−i on at least α fraction of inputs. ut

The theorem is absolutely trivial; however, it has so far been the only in-
strument available for gate elimination in linear functions. In fact, the only
instrument has been an even simpler proposition that dates back to mid-1970s.

Proposition 1 ( [16,22]; [10, Theorems 3 and 4]; [12, Proposition 1] ).

1. Suppose that f : Bn → B depends non-idly on each of its n variables,
that is, for every i there exist values a1, . . . , ai−1, ai+1, . . . , an ∈ B such
that f(a1, . . . , ai−1, 0, ai+1, . . . , an) 6= f(a1, . . . , ai−1, 1, ai+1, . . . , an). Then
C(f) ≥ n− 1.



2. Let f = (f (1), . . . , f (m)) : Bn → Bm, where f (k) is the kth component of f .
If the m component functions f (i) are pairwise different and each of them
satisfies C(f (i)) ≥ c ≥ 1 then C(f) ≥ c+m− 1.

The proof is given in [12]. Note that for linear functions, statement 1 of Propo-
sition 1 follows from Theorem 1 for Pn(A) = “A has a row with n+ 1 ones”.

Idea 2. Suppose that for n steps, there exists an input in the circuit with two
outgoing edges, and, moreover, in m of these cases both of these edges go to a
gate (rather than a gate and an output). Then C(f) ≥ n+m.

Theorem 2. We call a nonzero entry unique if it is the only nonzero entry in
its row. Suppose that P = {Pn}∞n=1 is a series of predicates defined on matrices
over F2 with the following properties:

– if P1(A) holds then C(A) ≥ 1;
– if Pn(A) holds then Pm(A) holds for every 1 ≤ m ≤ n;
– if Pn(A) holds then, for every index i, if the ith column has no unique entries

then Pn−2(A−i) holds, otherwise Pn−1(A−i) holds.

Then, for every matrix A with ≥ n + 1 different columns, if Pn(A) holds for
some n then C(A) ≥ n and, moreover, C 3

4
(A) ≥ n.

Proof. We argue by induction on n; for n = 1 the statement is obvious.
Consider the first gate g in the optimal circuit implementing A. Since g is

first, its incoming edges come from the inputs of the circuit, denote them by xi
and xj . There are three cases.

1. One of the input variables of g, say xi, goes directly to an output yk. Then
by setting xi to a constant we can eliminate one gate. however, in this case yk
corresponds to a row with only one nonzero element, so ith colum has a unique
element, so Pn−1(A−i) hold. Therefore, we invoke the induction hypothesis as
C(A−i) ≥ n− 1 and get the necessary bound.

2. One of the input gate of g, say xi, goes to another gate. Then by setting xi
to a constant we can eliminate two gates, by properties of Pn Pn−2(A−i) holds,
so we invoke the induction hypothesis as C(A−i) ≥ n− 2.

3. Neither xi nor xj enters any other gate or output. In this case, A is a
function of neither xi nor xj but only g(xi, xj); we show that this cannot be the
case for a function computing A on more than 3

4 of the inputs. A itself depends
on xi and xj separately because all of its columns are different; in particular,
for one of these variables, say xi, there exists an output yk that depends only
on xi: yk = xi ⊕

⊕
x∈X x, where xj /∈ X. On the other hand, since every gate

in an optimal circuit nontrivially depends on both inputs, there exist values a
and b such that g(0, a) = g(1, b). Thus, for every assignment of the remaining
variables, either on input strings with (xi = 0, xj = a) or on input strings with
(xi = 1, xj = b) the circuit makes a mistake, which makes it wrong on at least
1
4 of all inputs. ut

Note that Theorem 2 directly generalizes and strengthens Theorem 1.



Corollary 1. Suppose that R = {Rn}∞n=1 and Q = {Qm}∞m=1 are two series of
predicates defined on matrices over F2 with the following properties:

– if R1(A) holds then C(A) ≥ 1;
– if Rn(A) holds then Rk(A) holds for every 1 ≤ k ≤ n;
– if Rn(A) holds then, for every i, Rn−1(A−i) holds;
– if Q1(A) holds then C(A) ≥ 1;
– if Qm(A) holds then Qk(A) holds for every 1 ≤ k ≤ n;
– if Qm(A) holds then, for every i, Qm−1(A−i) holds;
– if Qm(A) holds and A−i has more zero rows than A (i.e., removing the ith

column has removed the last nonzero element from at least one row) then
Qm(A−i) holds.

Then, for every matrix A with ≥ n + 1 columns, all of whose columns are dif-
ferent, if Rn(A) and Qm(A) hold for some n ≥ m then C(A) ≥ n + m and,
moreover, C 3

4
(A) ≥ n+m.

Proof. Immediately follows from Theorem 2 for Pn(A) = ∃kRk(A) ∧Qn−k(A).
ut

Corollary 2 ( [12, Lemma 5] ). Let t, u ≥ 1. Assume that χ is a linear
function with matrix A over F2. Assume also that all columns of A are different,
every row of A has at least u nonzero entries, and after removing any t columns
of A, the matrix still has at least one row containing at least two nonzero entries.
Then C(χ) ≥ u+ t and, moreover, C3/4(χ) ≥ u+ t.

Proof. Take Pn(A) =“After removing any n columns of A, it still has at least
one nonzero row”, Q0(A) =“true”, and Qm(A) =“Every row of A has at least
m+ 1 ones” for m > 0. Then Pt+1(A) and Qu−1(A) hold, and P and Q satisfy
the conditions of Corollary 1, which gives the desired bound. Note that in this
case, Qm for m > 0 cannot hold for a matrix where a row has only a single
one, so in the gate elimination proof, for the first u − 1 steps two gates will be
eliminated, and then for t− u+ 2 steps, one gate will be eliminated. ut

We also derive another, even stronger corollary that will be important for
new feebly secure constructions.

Corollary 3. Let t ≥ u ≥ 2. Assume that A is a u × t matrix with different
columns, and each column of A has at least two nonzero elements (ones). Then
C(A) ≥ 2t− u and, moreover, C 3

4
(A) ≥ 2t− u.

Proof. Take Pn(A) =“twice the number of nonzero columns in A less the number
of nonzero rows in A is at least n”. Then P2t−u(A) holds, and P satisfy the
conditions of Theorem 2. ut

Naturally, we could prove Corollary 3 directly. We have chosen the path of
generalization for two reasons: one, to make Theorem 3 more precise and more
general, and two, to show the limits of gate elimination for linear functions. As
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Fig. 1. Rewiring linear circuits.

we have already mentioned, for linear functions we cannot count on nonlinear
gates that could eliminate their descendants. In Theorems 1 and 2, we have
considered two basic cases: when there is only one edge outgoing from a variable
and when there are two edges (going either to two gates or to a gate and an
output).

Figure 1 shows why we cannot expect anything more, e.g., a variable with
three outgoing edges. On the left, Figure 1 shows a part of a circuit where a
variable x has three outgoing edges. On the right, a rewiring of the same circuit
that has all the same outputs but x only enters two gates. Naturally, this does
not prove anything: we have introduced a new gate (so the circuit is no longer
optimal) and have only relocated the extra input from x to an extra input from
f . However, this simple example does show that to get better bounds, simple
local gate elimination does not suffice, and one has to consider global properties
of the function and the corresponding optimal circuit.

We finish this section with an extension of these results to block diagonal
matrices. In general, we cannot prove that the direct sum of several functions
has circuit complexity equal to the sum of the circuit complexities of these
functions; counterexamples are known as “mass production” [26]. However, for
linear functions and gate elimination in the flavours of Theorems 1 and 2, we
can. The following theorem generalizes Lemma 6 of [12].

Theorem 3. Suppose that a linear function χ is given by a block diagonal matrixA1 0 ··· 0
0 A2 ··· 0

...
...

...
0 0 ··· Ak

 ,

and every Aj satisfies the conditions of Theorem 2 with predicates Pj = {P jn}∞n=1,

and P jnj
(Aj) hold for every j. Then C(χ) ≥

k∑
j=1

nj.

Proof. We invoke Theorem 2 with the predicate composed of original predicates:

Pn =
∨

i1+...+ik=n

P 1
i1 ∧ P

2
i2 ∧ . . . ∧ P

k
ik
.



It is now straightforward to check that P = {Pn}∞n=1 satisfies the conditions of
Theorem 2 (since every deleted column affects only one block), and the block
diagonal matrix satisfies Pn1+...+nk

. ut

4 A New Linear Feebly Secure Trapdoor Function

In our constructions, we follow the general idea of [12]: first, we find a feebly
trapdoor candidate that has the adversary work harder than function inversion
but function evaluation is even harder. Then, we add a feebly secure one-way
function as a separate block and thus reduce the work needed for function eval-
uation; this construction has been discussed in detail in [12].

We begin with some preliminaries. By Un, we denote the upper triangular
square n× n matrix with a bidiagonal inverse:

Un =

( 1 1 ··· 1
0 1 ··· 1
...

...
...

0 0 ··· 1

)
, U−1n =

( 1 1 0 ··· 0
0 1 1 ··· 0
...

...
...

...
0 0 0 ··· 1

)
;

note that U2
n is an upper triangular matrix with zeros and ones chequered. In

what follows, we often write matrices that consist of other matrices as blocks;
e.g., ( Un Un ) is an n× 2n matrix consisting of two upper triangular blocks.

Lemma 1. 1. C 3
4
(Un) = n− 1.

2. C 3
4
(U2

n) = n− 2.

3. C 3
4
(U−1n ) = n− 1.

4. C 3
4
(( Un Un )) = 2n− 1.

5. 3n− 6 ≤ C 3
4
(( U2

n Un )) ≤ C(( U2
n Un )) ≤ 3n− 3.

6. 3n− 4 ≤ C 3
4
(( Un U−1

n )) ≤ C(( Un U−1
n )) ≤ 3n− 2.

Proof. Lower bounds in items 1–3 are trivial: every row is different and no inputs
except one (two for 2) are connected to outputs directly. Thus, we need at least
one gate per row. The lower bound for item 4 follows from simple counting:
the first row of this matrix has 2n nonzero entries, so at least 2n − 1 gates
are needed to compute it. The lower bound for item 5 (respectively, 6) follows
by Corollary 3: the matrix ( U2

n Un ) (resp., ( Un U−1
n )) satisfies its assumptions

except for three (resp., two) columns, so the corollary is invoked for t = 2n− 3
(resp., t = 2n− 2) and u = n.

We prove upper bounds by providing explicit circuit constructions. To com-
pute 1, note that every row differs from the previous one only in a single position,
so we can compute each output outi as outi+1 ⊕ ini. Moreover, outn = inn so
we need no gates for it. The same idea applies in 2, but in this case outn and
outn−1 are computed directly, and outi = outi−2⊕ ini. To compute 3, we simply
compute each row independently. To compute 4, we apply an idea from [12].
Note that ( Un Un ) ·( ab ) = Un ·a⊕Un ·b = Un ·(a⊕b). We use n gates to compute
a⊕ b and then compute the result using n− 1 gates. To compute 5 and 6, note
that (A B ) · ( ab ) = A · a⊕B · b. Thus, we can divide each of these computations



in two parts which can be computed independently using previous algorithms,
and then use n gates to compute the final XOR. ut

For the first construction, we assume that lengths of public information pi,
trapdoor information ti, message m, and the cipher c are the same and equal n.
We let ti = Un · pi, c = ( U−1

n Un ) · (mpi ). In this case, an adversary would have
to compute the matrix ( Un Un ) · ( cti ) = ( Un U2

n ) · ( cpi ). Now, inversion without
the trapdoor is harder than inversion with trapdoor, but encryption is about
the same complexity as inversion without trapdoor, so we cannot call it a feebly
trapdoor function yet.

To solve this problem, we consider a feebly one-way linear function A and
construct the protocol in the following way (In is the identity matrix here):

Keyn =
(
Un 0
0 In

)
· ( s s ) =

(
ti
pi

)
,

Evaln =
(
U−1

n Un 0
0 0 A

)
·
(m1
pi
m2

)
= ( c1c2 ) ,

Invn =
(
Un Un 0

0 0 A−1

)
·
( c1
ti
c2

)
= (m1

m2
) .

The adversary’s problem now becomes to compute

Advn =
(
Un U2

n 0

0 0 A−1

)
·
( c1
pi
c2

)
= (m1

m2
) .

For the feebly one-way function A, we fix a small ε > 0 and take the Hiltgen’s
linear function with order of security 2− ε [10]; we take its size to be λn with λ
chosen below. In Hiltgen’s constructions, it means that C 3

4
(A) = λn+ o(n), and

C 3
4
(A−1) = (2− ε)λn+ o(n). Now Lemma 1 and Theorem 3 imply the following

complexity bounds:

C 3
4
(Keyn) = n− 1,

C 3
4
(Evaln) = 3n+ λn+ o(n) = (3 + λ)n+ o(n),

C 3
4
(Invn) = 2n+ (2− ε)λn+ o(n) = (2 + (2− ε)λ)n+ o(n),

C 3
4
(Advn) = 3n+ (2− ε)λn+ o(n) = (3 + (2− ε)λ)n+ o(n).

The order of security of this construction is now

lim
n→∞

(
min

(
C3/4(Advn)

C(Evaln)
,
C3/4(Advn)

C(Invn)
,
C3/4(Advn)

C(Keyn)

))
=

= min

(
3 + (2− ε)λ

3 + λ
,

3 + (2− ε)λ
2 + (2− ε)λ

)
.

This expression reaches maximum for λ = 1
1−ε , and this maximum is 5−4ε

4−ε , which

tends to 5
4 as ε→ 0. Thus, we have proven the following theorem.

Theorem 4. For every ε > 0, there exists a linear feebly trapdoor function with
seed length pi(n) = ti(n) = n, length of inputs and outputs c(n) = m(n) = 2n,
and order of security 5

4 − ε.



In Theorem 3, we have generalized a hardness amplification procedure similar
to [12, Theorem 2]; with it, we can obtain superpolynomial security guarantees
against weaker adversaries.

Theorem 5. For every ε > 0, there exists a linear feebly trapdoor function with
seed length pi(n) = ti(n) = n, length of inputs and outputs c(n) = m(n) = 2n,
complexities C 3

4
(Keyn) = n−1, C 3

4
(Evaln) = 4n+o(n), and C 3

4
(Invn) = 4−ε

1−εn+

o(n), and order of security 5−4ε
4−ε . Moreover, no adversary with less than 5−4ε

1−ε n−
5
2δ
√
n gates can invert this feebly trapdoor function on more than 2−δ

√
n+o(

√
n)

of its inputs for any constant δ > 0.

Proof. We consider the block diagonal matrix

H =

X 0 ... 0
0 X ... 0
...

...
...

0 0 ... X

 ,

with m diagonal blocks, where X is the matrix of the trapdoor function con-
structed in Theorem 4, and apply Theorem 3. Stacking the matrices up in a
large block diagonal matrix does not change the parameters of a feebly trapdoor
function. ut

5 Nonconstructive bounds for linear functions

In Section 3, we have seen that we cannot currently hope to prove more than
linear lower bounds on general circuit complexity; the same is true, of course, for
linear functions. A classical result shows by counting that among general Boolean
functions of n variables, almost all of them have circuit complexity ≥ 1

n2n. But
maybe for the linear case, nonlinear bounds are impossible from the beginning?

It turns out that linear functions with nonlinear bounds do exist. References
to this result can be found [2, 4], but we have not been able to find a detailed
proof in literature, so we include it here and refine it to get exact constants.

Theorem 6. 1. For every n there exists a constant δn such that the circuit
complexity of all linear functions φ : {0, 1}n → {0, 1}n does not exceed

δn
n2

logn , and limn→∞ δn = 1.

2. For every n ≥ 3, there exists a linear Boolean function φ : {0, 1}n → {0, 1}n

with circuit complexity greater than n2

2 logn .

Proof. 1. Upper bound. Let A be the matrix of φ. For clarity, we assume n is
a power of 2 (the same proof goes through with very minor modifications if n
is not). We implement A as follows. First, we generate ci as all possible rows
of zeros and ones of length l = q log n, where q is a constant to be selected
later. Denoting the inputs of φ by x = ( x1 ··· xn ), we preprocess the values of all



possible combinations of ci ·
( xj+1

...
xj+l

)
, where j is a multiple of l. The total number

of gates needed for this operation is bounded from above by

2q·logn · n

q · log n
· (q log n− 1) ≤ nq · n = nq+1.

Let A1, A2, · · · , An be the columns of A. To find A · x, we compute

A·x = (A1 ... Al )

(
x1

...
xl

)
⊕(Al+1 ··· A2l )

( xl+1

...
x2l

)
⊕. . .⊕(An−l+1 ··· An )

( xn−l+1

...
xn

)
.

After preprocessing, every product in this formula will already be computed,
and all we need to do is to choose a correct wire, so no gates are needed here.
After that, n · (nl − 1) gates are needed to XOR for the total result. Thus, the
total number of gates needed is

nq+1 + n · ( n

q · log n
− 1) = nq+1 +

n2

q · log n
− n.

Setting q = 1
1+ε , we get the upper bound (1 + ε) n2

logn for an arbitrarily small ε.

2. Lower bound. The lower bound is proven by counting. Let q = (1−ε) n2

2 logn .
We estimate T , the number of circuits of size≤ q. There are 16 types of gates, and
every circuit’s description consists of type and inputs for every gate. Therefore,

T ≤ q · (16 · (n+ q)2))q

q!
≤ q · (16e)q · (n+ q)2q

qq
≤ q · (64e)q · q

2q

qq
= (64 ·e ·q)q ≤

≤ (64 · e · q)q+1 ≤ (n2)(1−ε)·
n2

2 log n+1 = (22 logn)(1−ε)·
n2

2 log n+1 = 2(1−ε)n
2+2 logn.

But the total number of linear Boolean functions of n arguments is 2n
2

, which is
greater than 2(1−ε)n

2+2 logn. Therefore, there are Boolean functions with circuit

complexity exceeding n2

2 logn . ut

6 Conclusion

In this paper, we have discussed in detail the circuit complexity of linear Boolean
functions. We have proven two general statements on gate elimination in linear
functions, derived several corollaries, and applied them to find a new linear feebly
secure trapdoor function, with better order of security than the known one [12].
While feebly secure cryptographic primitives can hardly be put to any practical
use, they are still important from the theoretical point of view. As sad as it
sounds, this is actually the frontier of provable, mathematically sound results on
security; we do not know how to prove anything stronger. However, in Section 5
we have seen that with these bounds, we are only scratching the surface even
for linear Boolean functions, let alone nonlinear ones.



Further work in this direction is twofold. One can further develop the notions
of feebly secure primitives. Orders of security can certainly be improved; perhaps,
new primitives (key agreement protocols, zero knowledge proofs etc.) can find
their feebly secure counterparts. This work can widen the scope of feebly secure
methods, but the real breakthrough can only come from one place.

It becomes clear that cryptographic needs call for further advances in general
circuit complexity. General circuit complexity has not had a breakthrough since
the 1980s; nonconstructive lower bounds are easy to prove by counting, but con-
structive lower bounds remain elusive. The best bound we know is 3n − o(n),
proven in 1984 [3]. At present, we do not know how to rise to this challenge;
none of the known methods seem to work, so a general breakthrough is required
for nonlinear lower bounds on circuit complexity. The importance of such a
breakthrough can hardly be overstated; feebly secure cryptographic construc-
tions provide yet another application for new circuit lower bounds.
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