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Abstract

For a given collection G of directed graphs we define the join-reachability graph of G, denoted
by J (G), as the directed graph that, for any pair of vertices a and b, contains a path from a
to b if and only if such a path exists in all graphs of G. Our goal is to compute an efficient
representation of J (G). In particular, we consider two versions of this problem. In the explicit
version we wish to construct the smallest join-reachability graph for G. In the implicit version
we wish to build an efficient data structure (in terms of space and query time) such that we
can report fast the set of vertices that reach a query vertex in all graphs of G. This problem
is related to the well-studied reachability problem and is motivated by emerging applications
of graph-structured databases and graph algorithms. We consider the construction of join-
reachability structures for two graphs and develop techniques that can be applied to both the
explicit and the implicit problem. First we present optimal and near-optimal structures for
paths and trees. Then, based on these results, we provide efficient structures for planar graphs
and general directed graphs.

1 Introduction

In the reachability problem our goal is to preprocess a (directed or undirected) graph G into a
data structure that can quickly answer queries that ask if a vertex b is reachable from a vertex
a. This problem has numerous and diverse applications, including internet routing, geographical
navigation, and knowledge-representation systems [20]. Recently, the interest in graph reachability
problems has been rekindled by emerging applications of graph data structures in areas such as
the semantic web, bio-informatics and social networks. These developments together with recent
applications in graph algorithms [7, 8, 9] have motivated us to introduce the study of the join-
reachability problem that we define as follows: We are given a collection G of λ directed graphs
Gi = (Vi, Ai), 1 ≤ i ≤ λ, where each graph Gi represents a binary relation Ri over a set of elements
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V ⊆ Vi in the following sense: For any a, b ∈ V , we have aRib if and only if b is reachable from
a in Gi. Let R ≡ R(G) be the binary relation over V defined by: aRb if and only if aRib for all
i ∈ {1, . . . , λ} (i.e., b is reachable from a in all graphs in G). We can view R as a type of join
operation on graph-structured databases. Our objective is to find an efficient representation of this
relation. To the best of our knowledge, this problem has not been previously studied. We will
restrict our attention to the case of two input graphs (λ = 2).

Contribution. In this paper we explore two versions of the join-reachability problem. In the
explicit version we wish to represent R with a directed graph J ≡ J (G), which we call the join-
reachability graph of G, i.e., for any a, b ∈ V , we have aRb if and only if b is reachable from a
in J . Our goal is to minimize the size (i.e., the number of vertices plus arcs) of J . We consider
this problem in Sections 2 and 3, and present results on the computational and combinatorial
complexity of J . In the implicit version we wish to represent R with an efficient data structure
(in terms of space and query time) that can report fast all elements a ∈ V satisfying aRb for any
query element b ∈ V . We deal with the implicit problem in Section 4. First we describe efficient
join-reachability structures for simple graph classes. Then, based on these results, we consider
planar graphs and general directed graphs. Also, in Appendix B and Appendix C we consider
join-reachability structures for planar st-graphs and lattices. Although we focus on the case of two
directed graphs (λ = 2), we note that some of our results are easily extended for λ ≥ 3 with the
use of appropriate multidimensional geometric structures.

Applications. Instances of the join-reachability problem appear in various applications. For
example, in the rank aggregation problem [5] we are given a collection of rankings of some elements
and we may wish to report which (or how many) elements have the same ranking relative to a
given element. This is a special version of join-reachability since the given collection of rankings
can be represented by a collection of directed paths with the elements being the vertices of the
paths. Similarly, in a graph-structured database with an associated ranking of its vertices we may
wish to find the vertices that are related to a query vertex and have higher or lower ranking than
this vertex. Instances of join-reachability also appear in graph algorithms arising from program
optimization. Specifically, in [7] we need a data structure capable of reporting which vertices satisfy
certain ancestor-descendant relations in a collection of rooted trees. Moreover, in [9] it is shown
that any directed graph G with a distinguished source vertex s has two spanning trees rooted at
s such that a vertex a is a dominator of a vertex b (meaning that all paths in G from s to b
pass through a) if and only if a is an ancestor of b in both spanning trees. This generalizes the
graph-theoretical concept of independent spanning trees. Two spanning trees of a graph G are
independent if they are both rooted at the same vertex r and for each vertex v the paths from r to
v in the two trees are internally vertex disjoint. Similarly, λ spanning trees of G are independent if
they are pairwise independent. In this setting, we can apply a join-reachability structure to decide
if λ given spanning trees are independent. Finally we note that a variant of the join-reachability
problem we defined here appears in the context of a recent algorithm for computing two internally
vertex-disjoint paths for any pair of query vertices in a 2-vertex connected directed graph [8].
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Preliminaries and Related Work. The reachability problem is easy in the undirected case
since it suffices to compute the connected components of the input graph. Similarly, the undi-
rected version of the join-reachability problem is also easy, as given the connected components of
two undirected graphs G1 and G2 with n vertices, we can compute the connected components of
J ({G1, G2}) in O(n) time. On the other hand, no reachability data structure is currently known
to simultaneously achieve o(n2) space and o(n) query time for a general directed graph with n
vertices [20]. Nevertheless, efficient reachability structures do exist for several important cases.
First, asymptotically optimal structures exist for rooted trees [1] and planar directed graphs with
one source and one sink [12, 17]. For general planar graphs Thorup [18] gives an O(n log n)-space
structure with constant query time. Talamo and Vocca [16] achieve constant query time for lattice
partial orders with an O(n

√
n)-space structure.

Notation. In the description of our results we use the following notation and terminology. We
denote the vertex set and the arc set of a directed graph (digraph) G by V (G) and A(G), respec-
tively. Without loss of generality we assume that V (G) = V for all G ∈ G. The size of G, denoted
by |G|, is equal to the number of arcs plus vertices, i.e., |G| = |V | + |E|. We use the notation
a  G b to denote that b is reachable from a in G. (By definition a  G a for any a ∈ V .) The
predecessors of a vertex b are the vertices that reach b, and the successors of a vertex b are the
vertices that are reached from b. Let P be a directed path (dipath); the rank of a ∈ P , rP (a),
is equal to the number of predecessors of a in P minus one, and the height of a ∈ P , hP (a), is
equal to the number of successors of a in P minus one. For a rooted tree T , we let T (a) denote the
subtree rooted at a and let ncaT (a, b) denote the nearest common ancestor of a and b. We will deal
with two special types of directed rooted trees: In an in-tree, each vertex has exactly one outgoing
arc except for the root which has none; in an out-tree, each vertex has exactly one incoming arc
except for the root which has none. We use the term unoriented tree for a directed tree with no
restriction on the orientation of its arcs. Similarly, we use the term unoriented dipath to refer to a
path in the undirected sense, where the arcs can have any orientation. In our constructions we map
the vertices of V to objects in a d-dimensional space and use the notation xi(a) to refer to the ith
coordinate that vertex a receives. Finally, for any two vectors ξ = (ξ1, . . . , ξd) and ζ = (ζ1, . . . , ζd),
the notation ξ ≤ ζ means that ξi ≤ ζi for i = 1, . . . , d.

1.1 Preprocessing: Computing Layers and Removing Cycles

Thorup’s Layer Decomposition. In [18] Thorup shows how to reduce the reachability problem
for any digraph G to reachability in some digraphs with special properties, called 2-layered digraphs.
A t-layered spanning tree T of G is a rooted directed tree such that any path in T from the root
(ignoring arc directions) is the concatenation of at most t dipaths in G. A digraph G is t-layered
if it has such a spanning tree. Now we provide an overview of Thorup’s reduction. The vertices of
G are partitioned into layers L0, L1, . . . , Lµ−1 that define a sequence of digraphs G0, G1, . . . , Gµ−1

as follows. An arbitrary vertex v0 ∈ V (G) is chosen as a root. Then, layer L0 contains v0 and the
vertices that are reachable from v0. For odd i, layer Li contains the vertices that reach the previous
layers Lj, j < i. For even i, layer Li contains the vertices that are reachable from the previous
layers Lj , j < i. To form Gi for i > 0 we contract the vertices in layers Lj for j ≤ i− 1 to a single
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root vertex r0; for i = 0 we set r0 = v0. Then Gi is induced by Li, Li+1 and r0. It follows that
each Gi is a 2-layered digraph. Let ι(v) denote the index of the layer containing v, that is, ι(v) = i
if and only if v ∈ Li. The key properties of the decomposition are: (i) all the predecessors of v in
G are contained in Gι(v)−1 and Gι(v), and (ii)

∑
i |Gi| = O(|G|).

Removing Cycles. In the standard reachability problem, a useful preprocessing step that can
reduce the size of the input digraph is to contract its strongly connected components (strong
components) and consider the resulting acyclic graph. When we apply the same idea to join-
reachability we have to deal with the complication that the strong components in the two digraphs
may differ. Still, we can construct two acyclic digraphs Ĝ1 and Ĝ2 such that, for any a, b ∈ V ,
a  J ({G1,G2}) b if and only if a  J ({Ĝ1,Ĝ2})

b, and |Ĝi| ≤ |Gi|, i = 1, 2. This is accomplished
as follows. First, we compute the strong components of G1 and G2 and order them topologically.
Let G′

i, i = 1, 2, denote the digraph produced after contracting the strong components of Gi. (We

remove loops and duplicate arcs so that each G′
i is a simple digraph.) Also, let Cj

i denote the

jth strong component of Gi. We partition each component Cj
i into subcomponents such that two

vertices are in the same subcomponent if and only if they are in the same strong component in
both G1 and G2. The subcomponents are the vertices of Ĝ1 and Ĝ2. Next we describe how to add
the appropriate arcs. The process is similar for the two digraphs so we consider only Ĝ1.

Let Cj,1
1 , Cj,2

1 , . . . , C
j,lj
1 be the subcomponents of Cj

1 , which are ordered with respect to the

topological order of G′
2. That is, if x ∈ Cj,i

1 and y ∈ Cj,i′

1 , where i < i′, then in the topological
order of G′

2 the component of x precedes the component of y. We connect the subcomponents by
adding the arcs (Cj,i

1 , Cj,i+1
1 ) for 1 ≤ i < lj. Moreover, for each arc (Ci

1, C
j
1) in A(G′

1) we add

the arc (Ci,li
1 , Cj,1

1 ) to A(Ĝ1), where Ci,li
1 is the last subcomponent of Ci

1. See Figure 1. It is
straightforward to verify that a J b if and only if a and b are in the same subcomponent or the
subcomponent of a is a predecessor of the subcomponent of b in both Ĝ1 and Ĝ2.

2 Computational Complexity of Computing the Smallest J ({G1, G2})
We explore the computational complexity of computing the smallest J ({G1, G2}): Given two
digraphs G1 = (V,A1) and G2 = (V,A2) we wish to compute a digraph J ≡ J ({G1, G2}) of
minimum size such that for any a, b ∈ V , a J b if and only if a G1 b and a G2 b. We consider
two versions of this problem, depending on whether J is allowed to have Steiner vertices (i.e.,
vertices not in V ) or not: In the unrestricted version V (J ) ⊇ V , while in the restricted version
V (J ) = V . Computing J is NP-hard in the unrestricted case. This is implied by a straightforward
reduction to the reachability substitute problem, which was shown to be NP-hard by Katriel et
al. [13]. In this problem we are given a digraph H and a subset U ⊆ V (H), and ask for the smallest
digraph H∗ such that for any a, b ∈ U , a  H∗ b and only if a  H b. For the reduction, we let
G1 = H and let G2 contain all the arcs connecting vertices in U only, that is, A(G2) = U × U .
Clearly, for any a, b ∈ U we have a J b if and only if a H b. Therefore computing the smallest
join-reachability graph is equivalent to computing H∗. In the restricted case, on the other hand,
we can compute J using transitive closure and transitive reduction computations, which can be
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Figure 1: The contracted digraphs G′
1 and G′

2 and their corresponding acyclic digraphs Ĝ1 and Ĝ2.

done in polynomial time [2]. (This is done as follows: First we compute the transitive closure
matrices M1 and M2 of G1 and G2 respectively. Then we form the transitive closure matrix M of
J by taking the and operation of corresponding entries in M1 and M2. Finally we compute the
transitive reduction of the resulting transitive closure matrix M .) This implies the next theorem.

Theorem 2.1. Let J be the smallest join-reachability graph of a collection of digraphs. The
computation of J is feasible in polynomial time if Steiner vertices are not allowed, and NP-hard
otherwise.

The existence of Steiner vertices can reduce the size of J significantly. Consider for example a
complete bipartite digraph G with V (G) = X ∪ Y and A(G) = X × Y . This digraph has the same
transitive closure as the digraph G′ with V (G′) = V (G)∪{z} and A(G′) = {(x, z), (z, y) | x ∈ X, y ∈
Y }. In Section 3 we explore the combinatorial complexity of the unrestricted join-reachability graph
and provide bounds for |J | in several cases.
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3 Combinatorial Complexity of J ({G1, G2})
In this section we provide bounds on the size of J ({G1, G2}) in several cases. These results are
summarized in the next theorem.

Theorem 3.1. Given two digraphs G1 and G2 with n vertices, the following bounds on the size of
the join-reachability graph J ({G1, G2}) hold:

(a) Θ(n log n) in the worst case when G1 is an unoriented tree and G2 is an unoriented dipath.

(b) O(n log2 n) when both G1 and G2 are unoriented trees.

(c) O(n log2 n) when G1 is a planar digraph and G2 is an unoriented dipath.

(d) O(n log3 n) when both G1 and G2 are planar digraphs.

(e) O(κ1n log n) when G1 is a digraph that can be covered with κ1 vertex-disjoint dipaths and G2

is an unoriented dipath.

(f) O(κ1n log2 n) when G1 is a digraph that can be covered with κ1 vertex-disjoint dipaths and
G2 is a planar graph.

(g) O(κ1κ2n log n) when each Gi, i = 1, 2, is a digraph that can be covered with κi vertex-disjoint
dipaths.

In the following sections we prove Theorem 3.1. In each case we provide a construction of the
corresponding join-reachability graph that achieves the claimed bound. In Section 4 we provide
improved space bounds for the implicit representation of J ({G1, G2}), i.e., data structures that
answer join-reachability reporting queries fast. Still, a process that computes an explicit represen-
tation of J ({G1, G2}) can be useful, as it provides a natural way to handle collections of more than
two digraphs (i.e., it allows us to combine the digraphs one pair at a time).

3.1 Two Paths

We start with the simplest case where G1 and G2 are dipaths with n vertices. First we show that
we can construct a join-reachability graph of size O(n log n). Given this result we can provide
bounds for trees, planar digraphs, and general digraphs. Then we show this bound is tight, i.e.,
there are instances for which Ω(n log n) size is needed. We begin by mapping the vertices of V to a
two-dimensional rank space: Each vertex a receives coordinates (x1(a), x2(a)) where x1(a) = rG1(a)
and x2(a) = rG2(a). Note that these ranks are integers in the range [0, n − 1]. Now we can view
these vertices as lying on an n × n grid, such that each row and each column of the grid contains
exactly one vertex. Clearly, aRb if and only if (x1(a), x2(a)) ≤ (x1(b), x2(b)).
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Figure 2: The mapping of the vertices of two dipaths to 2d rank space and the construction of Jℓ;
Steiner vertices in Jℓ are white.

Upper bound. We use a simple divide-and-conquer method. Let ℓ be the vertical line with x1-
coordinate equal to n/2. A vertex z is to the right of ℓ if x1(z) ≥ n/2 and to the left of ℓ otherwise.
The first step is to construct a subgraph Jℓ of J that connects the vertices to the left of ℓ to the
vertices to the right of ℓ. For each vertex b to the right of ℓ we create a Steiner vertex b′ and add
the arc (b′, b). Also, we assign to b′ the coordinates (n/2, x2(b)). We connect these Steiner vertices
in a dipath starting from the vertex with the lowest x2-coordinate. Next, for each vertex a to the
left of ℓ we locate the Steiner vertex b′ with the smallest x2-coordinate such that x2(a) ≤ x2(b

′). If
b′ exists we add the arc (a, b′). See Figure 2. Finally we recurse for the vertices to the left of ℓ and
for the vertices to the right of ℓ. It is easy to see that J contains a path from a to b if and only if
(x1(a), x2(a)) ≤ (x1(b), x2(b)). To bound |J | note that we have O(log n) levels of recursion, and at
each level the number of added Steiner vertices and arcs is O(n). Hence, the O(n log n) bound for
two dipaths follows.

The case of two unoriented dipaths G1 and G2 can be reduced to that of dipaths, yielding
the same O(n log n) bound. This is accomplished by splitting G1 and G2 to maximal subpaths
that consist of arcs with the same orientation. Then J is formed from the union of separate join-
reachability graphs for each pair of subpaths of G1 and G2. The O(n log n) bound follows from the
fact that each vertex appears in at most two subpaths of each unoriented dipath, so in at most four
subgraphs. We remark that our construction can be generalized to handle more dipaths, with an
O(log n) factor blowup per additional dipath.
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Figure 3: The digraph used in the lower bound proof of Section 2 for n = 16. The arcs are
directed towards northeast. The x2-coordinate of each vertex is produced by reversing the bits of
its x1-coordinate.

Lower bound. Let G1 be any dipath, and let x1(a) = rG1(a). Also let xi1(a) denote the ith bit in
the binary representation of x1(a) and let β = ⌈log2 n⌉ be the number of bits in this representation.
We use similar notation for x2(a). We define G2 such that the rank of a in G2 is x2(a) = x1(a)

R,
where x1(a)

R is the integer formed by the bit-reversal in the binary representation of x1(a), i.e.,

xi2(a) = xβ−1−i
1 (a) for 0 ≤ i ≤ β − 1. Let P be the set that contains all pairs of vertices (a, b) that

satisfy xi1(a) = 0, xi1(b) = 1 and xj1(a) = xj1(b), j 6= i, for 0 ≤ i ≤ β − 1. Notice that for a pair
(a, b) ∈ P, x1(a) < x1(b) and x1(a)

R < x1(b)
R. Hence (x1(a), x2(a)) < (x1(b), x2(b)), which implies

a  J b. Now let G be the digraph that is formed by the arcs (a, b) ∈ P. See Figure 3. Then
a  G b only if a  J b. Moreover, the transitive reduction of G is itself and has size Ω(n log n).
We also observe that any two vertices in G share at most one immediate successor. Therefore the
size of G cannot be reduced by introducing Steiner vertices. This implies that size of J is also
Ω(n log n).

3.2 Tree and Path

Let G1 be a rooted (in- or out-)tree and G2 a dipath. First we note that the ancestor-descendant
relations in a rooted tree can be described by two linear orders (corresponding to a preorder and
a postorder traversal of the tree) and therefore we can get an O(n log2 n) bound on the size of J
using the result of Section 3.1. Here we provide an O(n log n) bound, which also holds when G1

is unoriented. This upper bound together with the Ω(n log n) lower bound of Section 3.1 implies
Theorem 3.1(a).
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Let T be the rooted tree that results from G1 after removing arc directions. We associate each
vertex x ∈ T with a label h(x) = hG2(x), the height of x in G2. If G1 is an out-tree then any
vertex b must be reachable from all its ancestors a in T with h(a) > h(b). Similarly, if G1 is an
in-tree then any vertex b must be reachable from all its descendants a in T with h(a) > h(b). We
begin by assigning a depth-first search interval to each vertex in T . Let I(a) = [s(a), t(a)] be the
interval of a vertex a ∈ T ; s(a) is the time of the first visit to a (during the depth-first search)
and t(a) is the time of the last visit to a. These times are computed by incrementing a counter
after visiting or leaving a vertex during the search. This way all the s() and t() values that are
assigned are distinct and for any vertex a we have 1 ≤ s(a) < t(a) ≤ 2n. Moreover, by well-known
properties of depth-first search, we have that a is an ancestor of b in T if and only if I(b) ⊆ I(a); if
a and b are unrelated in T then I(a) and I(b) do not intersect. Now we map each vertex a to the
x1-axis-parallel segment S(a) = I(a)× h(a).

As in Section 3.1 we use a divide-and-conquer method to build J . We will consider G1 to be
an out-tree; the in-tree case is handled similarly and yields the same asymptotic bound. Let ℓ be
the horizontal line with x2-coordinate equal to n/2. A vertex x is above ℓ if h(x) ≥ n/2; otherwise
(h(x) < n/2), x is below ℓ. We create a subgraph Jℓ of J that connects the vertices above ℓ to
the vertices below ℓ. To that end, for each vertex u above ℓ we create a Steiner vertex u′ together
with the arc (u, u′). Let z be the nearest ancestor of u in T that is above ℓ. If z exists then we add
the arc (z′, u′). Then, for each vertex y below ℓ we locate the nearest ancestor u of y in T that is
above ℓ. If u exists then we add the arc (u′, y). See Figure 4. Finally, we recurse for the vertices
above ℓ and for the vertices below ℓ.

It is not hard to verify the correctness of the above construction. The size of the resulting graph
can be bounded by O(n log n) as in Section 3.1. Furthermore, we can generalize this construction for
an unoriented tree and an unoriented path, and accomplish the same O(n log n) bound as required
by Theorem 3.1(a). (We omit the details which are similar to the more complicated construction
of Section 3.4.)

3.3 Two Trees

The construction of Section 3.2 can be extended to handle more than one dipath. We show how
to apply this extension in order to get an O(n log2 n) bound for the join-reachability graph of two
rooted trees. We consider the case where G1 is an out-tree and G2 is an in-tree; the other two cases
(two out-trees and two in-trees) are handled similarly.

Let T1 and T2 be the corresponding undirected trees. We assign to each vertex a two depth-
first search intervals I1(a) = [s1(a), t1(a)] and I2(a) = [s2(a), t2(a)], where Ij(a) corresponds to Tj ,
j = 1, 2. We create two linear orders (i.e., dipaths), P1 and P2, from the I2-intervals as follows: In
P1 the vertices are ordered by decreasing s2-value and in P2 by increasing t2-value. Each vertex
a is mapped to an x1-axis-parallel segment I1(a) × x2(a) × x3(a) (in three dimensions), where
x2(a) = hP1(a) and x3(a) = hP2(a). Then a J b if and only if I1(b) ⊆ I1(a) and (x2(b), x3(b)) ≤
(x2(a), x3(a)). See Figure 5.

Again we employ a divide-and-conquer approach and use the method of Section 3.2 as a subrou-
tine. The details are as follows. Let p be the plane with x3-coordinate equal to n/2. We construct
a subgraph Jp of J that connects the vertices above p (i.e., vertices z with x3(z) ≥ n/2) to the
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Figure 5: The mapping of the vertices of two rooted trees to horizontal segments in a 3d rank
space. The value in brackets above the segments correspond to the x3-coordinates.
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vertices below p (i.e., vertices z with x3(z) < n/2). Then we use recursion for the vertices above p
and the vertices below p.

We construct Jp using the method of Section 3.2 with some modifications. Let ℓ be the hor-
izontal line with x2-coordinate equal to n/2. We create a subgraph Jp,ℓ of Jp that connects
the vertices above p and ℓ to the vertices below p and ℓ. To that end, for each vertex z with
(x2(z), x3(z)) ≥ (n/2, n/2) we create a Steiner vertex z′ together with the arc (z, z′). Let u be the
nearest ancestor of z in T1 such that (x2(u), x3(u)) ≥ (n/2, n/2). If u exists then we add the arc
(u′, z′). Finally, for each vertex y with (x2(y), x3(y)) < (n/2, n/2) we locate the nearest ancestor z
of y in T1 such that (x2(z), x3(z)) ≥ (n/2, n/2). If z exists then we add the arc (z′, y). See Figure
6. Finally, we recurse for the vertices above ℓ and for the vertices below ℓ.

Now we bound the size of our construction. From Section 3.2 we have that the size of each
substructure Jp is O(n log n). Since each vertex participates in O(log n) such substructures, the
total size is bounded by O(n log2 n).

3.4 Unoriented Trees

We can reduce the case of unoriented trees to that of rooted trees by applying Thorup’s layer decom-
position (see Section 1.1). We apply this decomposition to both G1 and G2. Let G

0
i , G

2
i , . . . , G

µi−1
i
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Figure 7: An unoriented tree and its sequence of 2-layered tree. Fringe trees are encircled.

be the sequence of rooted trees produced from Gi, i = 1, 2, where each Gj
i is a 2-layered tree. See

Figure 7. For even j, Gj
i consists of a core out-tree, formed by the arcs directed away from the

root, and a collection of fringe in-trees. The situation is reversed for odd j, where the core tree is
an in-tree and the fringe trees are out-trees. We call a vertex of the core tree a core vertex ; we call
a vertex of a fringe tree (excluding its root) a fringe vertex.

We build J as the union of join-reachability graphs Ji,j for each pair (Gi
1, G

j
2). Each graph Ji,j

is constructed similarly to Section 3.3, with the exception that we have to take special care for the
fringe vertices. (We also remark that in general Ji,j 6= J ({Gi

1, G
j
2}).) A vertex z ∈ V (Gi

1)∩V (Gj
2)

is included in Ji,j if one of the following cases hold: (i) z is a core vertex in at least one of Gi
1 and

Gj
2, or (ii) z is a fringe vertex in both Gi

1 and Gj
2 and the corresponding fringe trees containing z

are either both in-trees or both out-trees. Let Vi,j be the vertices in V (Gi
1) ∩ V (Gj

2) that satisfy
the above condition.

If Vi,j = ∅ then Ji,j is empty. Now suppose Vi,j 6= ∅. First consider the case where the core
of Gi

1 is an out-tree. We contract each fringe in-tree to its root and let the new core supervertex
correspond to the vertices of the contracted fringe tree. Let Ĝi

1 be the out-tree produced from this
process. Equivalently, if the core of Gi

1 is an in-tree then the contraction of the fringe out-trees
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produces an in-tree Ĝi
1. We repeat the same process for Gj

2. Next, we assign a depth-first search

interval I1(z) to each vertex z in Ĝi
1 and a depth-first search interval I2(z) to each vertex z in Ĝj

2,
as in Section 3.3. The vertices in Vi,j are assigned a depth-first search interval in both trees, and
therefore can be mapped to horizontal segments in a 3d space, as in Section 3.3. Hence, we can
employ the method of Section 3.3 with some necessary changes that involve the fringe vertices. Let
z ∈ Vi,j be a fringe vertex in at least one of Gi

1 and Gj
2. If the fringe tree containing z is an in-tree

then we only include in Ji,j arcs leaving z; otherwise we only include arcs entering z.
Finally we need to show that the size of the resulting graph is O(n log2 n). This follows from

the fact that each subgraph Ji,j has size O(n log2 n) and that each vertex can appear in at most
four such subgraphs. Theorem 3.1(b) follows.

3.5 Planar Digraphs

Now we turn to planar digraphs and combine our previous constructions with Thorup’s reachability
oracle [18]. From this combination we derive the bounds stated in Theorem 3.1(c) and (d). First
we need to provide some details for the reachability oracle of [18].

Let G be a planar digraph, and let G0, G1, . . . , Gµ−1 be the sequence of 2-layered digraphs
produced from G as described in Section 1.1. Consider one of these digraphs Gi. The next step
is to obtain a separator decomposition of Gi. To that end, we treat Gi as an undirected graph
and compute a separator S whose removal separates Gi into components, each with at most half
the vertices. The separator S consists of three root paths of a spanning tree of Gi rooted at r0.
Because Gi is 2-layered, each root path in S corresponds to at most two dipaths in Gi. The key
idea now is to process each separator dipath Q and find the connections between V (Gi) and Q.
For each v ∈ V (Gi) two quantities are computed: (i) fromv[Q] which is equal to rQ(u), where u ∈ Q
is the vertex with the highest rank in Q such that u Gi v, and (ii) tov[Q] which is equal to rQ(u),
where u ∈ Q is the vertex with the lowest rank in Q such that v  Gi u. Clearly there is a path
from a to b that passes though Q if and only if toa[Q] ≤ fromb[Q]. The same process is carried out
recursively for each component of Gi \V (S). The depth of this recursion is O(log n), so each vertex
is connected to O(log n) separator dipaths. The space and construction time for this structure is
O(n log n).

Now we consider how to construct a join-reachability graph when G1 is a planar digraph. We
begin with the case where G2 is a dipath. First we perform the layer decomposition of G1 and
construct the corresponding graph sequence G0

1, G
1
1, . . . , G

µ−1
1 . Then we form pairs of digraphs

Pi = {Gi
1, G

i
2} where Gi

2 is a dipath containing only the vertices in V (Gi
1) in the order they appear

in G2. Clearly a  J b if and only if a  Jι(b)−1
b or a  Jι(b)

b, where Ji is the join-reachability
graph of Pi. Then J is formed from the union of J0, . . . ,Jµ−1.

To construct Ji we perform the separator decomposition of Gi
1, so that each vertex is associated

with O(log n) separator dipaths. Let Q be such a separator dipath. Also, let VQ be the set of vertices
that have a successor or a predecessor in Q. We build a subgraph Ji,Q of Ji for the vertices in
VQ; Ji is formed from the union of the subgraphs Ji,Q for all the separator dipaths of Gi

1. The
construction of Ji,Q is carried out as follows. Let z ∈ VQ. If z has a predecessor in Q then we
create a vertex z− which is assigned coordinates x1(z

−) = fromz[Q] and x2(z
−) = rG2(z), and add
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the arc (z, z−). Similarly, if z has a successor in Q then we create a vertex z+ which is assigned
coordinates x1(z

+) = toz[Q] and x2(z
+) = rG2(z), and add the arc (z+, z).

Now we can use the method of Section 3.1 to build the rest of Ji,Q, so that a  Ji,Q
b if and

only if (x1(a
+), x2(a

+)) ≤ (x1(b
−), x2(b

−)). Let ℓ be the vertical line with x1-coordinate equal
to n/2. The first step is to construct the subgraph of Ji,Q that connects the vertices a+ with
x1(a

+) ≤ n/2 to the vertices b− with x1(b
−) ≥ n/2. For each such b− we create a Steiner vertex

b′ and add the arc (b′, b−). Also, we assign to b′ the coordinates (n/2, x2(b
−)). We connect these

Steiner vertices in a dipath starting from the vertex with the lowest x2-coordinate. Next, for each
vertex a+ with x1(a

+) ≤ n/2 we locate the Steiner vertex b′ with the smallest x2-coordinate such
that x2(a

+) ≤ x2(b
′). If b′ exists we add the arc (a+, b′). Finally we recurse for the vertices with

x1-coordinate in [1, n/2) and for the vertices with x1-coordinate in (n/2, n].
It remains to bound the size of J . From Section 3.1, we have |Ji,Q| = O(|VQ| log |VQ|). More-

over, the bound
∑

Q |VQ| = O(|V (Gi
1)| log |V (Gi

1)|), where the sum is taken over all separator paths

of Gi
1, implies |Ji| ≤

∑
Q |Ji,Q| = O(|V (Gi

1)| log2 |V (Gi
1)|). Finally, since

∑
i |V (Gi

1)| = O(n) we

obtain |J | ≤ ∑
i |Ji| = O(n log2 n).

We handle the case where G2 is an unordered dipath as noted in Section 3.1, which implies
Theorem 3.1(c). The methods we developed here in combination with the structures of Section 3.4
result to a join-reachability graph of size O(n log3 n) for a planar digraph and an unoriented tree.
The same bound of O(n log3 n) is achieved for two planar digraphs, as stated in Theorem 3.1(d).

3.6 General Graphs

A technique that is used to speed up transitive closure and reachability computations is to cover
a digraph with simple structures such as dipaths, chains, or trees (e.g., see [1]). Such techniques
are well-suited to our framework as they can be combined with the structures we developed earlier.
We also remark that the use of the preprocessing steps of Section 1.1 reduces the problem from
general digraphs to acyclic and 2-layered digraphs. In this section we describe how to obtain
join-reachability graphs with the use of dipath covers. This gives the bounds stated in Theorem
3.1(e)-(g); similar results can be derived with the use of tree covers. Again for simplicity, we first
consider the case where G1 is a general digraph and G2 is a dipath.

A dipath cover is a decomposition of a digraph into vertex-disjoint dipaths. Let P 1
1 , P

2
1 , . . . P

κ1
1

be a dipath cover of G1. For each vertex v and each path P i
1 we compute fromv[P

i
1], i.e., rP i

1
(z)

where z ∈ P i
1 is the vertex with the highest rank in P i

1 such that z  G1 v. Let P i
2 be the dipath that

consists of the vertices in P i
1 ordered by increasing rank in G2. Also, set fromv[P

i
2] = rP i

2
(z) where

z ∈ P i
2 is the vertex with the largest rank such that rG2(z) ≤ rG2(v). Let VP i

1
be set of vertices

that have a predecessor in P i
1. We build a subgraph Ji of J that connects the vertices of P i

1 to
VP i

1
. Then J is formed from the union of the subgraphs Ji. For each z ∈ VP i

1
we create a vertex

z− which is assigned coordinates x1(z
−) = fromz[P

i
1] and x2(z

−) = fromz[P
i
2], and add the arc

(z−, z). Also, for each z ∈ P i
1 we create a vertex z+ which is assigned coordinates x1(z

+) = rP i
1
(z)

and x2(z
+) = rP i

2
(z), and add the arc (z, z+). Now we can build a join-reachability graph, so that

a Ji
b if and only if (x1(a

+), x2(a
+)) ≤ (x1(b

−), x2(b
−)), as in Section 3.5.
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The size of this graph is bounded by
∑

i |VP i
1
| log |VP i

1
| = O(κ1n log n), which implies the result

of Theorem 3.1(e). We can extend this method to handle two general digraphs and obtain the
bound of Theorem 3.1(g). The case where G2 is planar digraph is handled by combining the above
method with the techniques of Section 3.5, resulting to Theorem 3.1(f).

4 Data Structures for Join-Reachability

Now we deal with the data structure version of the join-reachability problem. Our goal is to
construct an efficient data structure for J ≡ J ({G1, G2}) such that given a query vertex b it can
report all vertices a satisfying a  J b. We state the efficiency of a structure using the notation
〈s(n), q(n, k)〉 which refers to a data structure with O(s(n)) space and O(q(n, k)) query time for
reporting k elements. In order to design efficient join-reachability data structures we apply the
techniques we developed in Section 3. The bounds that we achieve this way are summarized in the
following theorem.

Theorem 4.1. Given two digraphs G1 and G2 with n vertices we can construct join-reachability
data structures with the following efficiency:

(a) 〈n, k〉 when G1 is an unoriented tree and G2 is an unoriented dipath.

(b) 〈n, log n+ k〉 when G1 is an out-tree and G2 is an unoriented tree.

(c) 〈n logε n, log log n+ k〉 (for any constant ε > 0), when G1 and G2 are unoriented trees.

(d) 〈n log n, k log n〉 when G1 is planar digraph and G2 is an unoriented tree.

(e) 〈n log2 n, k log2 n〉 when both G1 and G2 are planar digraphs.

(f) 〈nκ1, k〉 when G1 is a general digraph that can be covered with κ1 vertex-disjoint dipaths and
G2 is an unoriented tree.

(g) 〈n(κ1+log n), kκ1 log n〉 or 〈nκ1 log n, k log n〉 when G1 is a general digraph that can be covered
with κ1 vertex-disjoint dipaths and G2 is planar digraph.

(h) 〈n(κ1 + κ2), κ1κ2 + k〉 or 〈nκ1κ2, k〉 when each Gi, i = 1, 2, is a digraph that can be covered
with κi vertex-disjoint dipaths.

Next we provide the constructions that prove the bounds stated in Theorem 4.1. Throughout
this section k denotes the size of the output of a join-reachability reporting query.

4.1 Two Paths

Let G1 and G2 be two dipaths. We use the mapping of Section 2. Recall that each vertex a is
mapped to a point (x1(a), x2(a)) on an n × n grid so that a  J b if and only if (x1(a), x2(a)) ≤
(x1(b), x2(b)). This is a two-dimensional point dominance problem that can be solved optimally
with a Cartesian tree [6]. Thus, we immediately get an 〈n, k〉 join-reachability structure for two
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dipaths. We provide the details of this structure as we will need them in later constructions. A
Cartesian tree T is a binary tree defined recursively as follows. The root of T is the point a
with minimum x2-coordinate. The left subtree of the root is a Cartesian tree for the points b with
x1(b) < x1(a) and the right subtree of the root is a Cartesian tree for the points b with x1(b) > x1(a).
Clearly this structure uses linear space, and moreover it can be constructed in linear time [6]. The
reporting algorithm uses the following property of Cartesian trees. Consider two points a and
b, and let c be the point with minimum x2-coordinate such that x1(a) ≤ x1(c) ≤ x1(b). Then,
c = ncaT (a, b). Now let ζ be the point with the smallest x1-coordinate. In order to find all points
a such that (x1(a), x2(a)) ≤ (x1(b), x2(b)) we first locate y = ncaT (ζ, b). The returned point y has
the smallest x2-coordinate in the x1-range [0, x1(b)]. If x2(y) > x2(b) then the answer is null and
we stop our search. Otherwise we return y and search recursively in the x1-ranges [0, x1(y)−1] and
[x1(y) + 1, x1(b)]. Using the fact that nearest common ancestor queries in a tree can be answered
in constant time after linear time preprocessing [10], it follows that the time to report k vertices is
O(k).

As in Section 3.1, we can achieve the same bounds when G1 and G2 are unoriented dipaths by
splitting them into maximal subpaths consisting of arcs with the same orientation.

4.2 Tree and Path

Next we consider the case where G1 is a rooted tree and G2 is a dipath. As in Section 3.2,
we note that a rooted tree can be described by two linear orders, and therefore we can get an
〈n, log n+k〉 solution using a three-dimensional dominance reporting structure [11]. Here we develop
an alternative method that reduces the dimension of our problem and as a result it achieves an 〈n, k〉
bound. Furthermore, this method can be extended to give more efficient structures for two trees
(compared to four-dimensional dominance reporting [11]). We will distinguish two cases depending
on whether G1 is an out-tree or an in-tree. In any case, let T be the rooted tree that results from
G1 after removing arc directions. We associate each vertex x ∈ T with a label h(x) = hG2(x), the
height of x in G2. For an in-tree we wish to support the following query: Given a vertex b and a
label j find all vertices a ∈ T (b) with h(a) > j. Equivalently, for an out-tree the query algorithm
needs to find all ancestors a of b in T with h(a) > j. We present a geometry-based method, which
achieves O(log n+k) reporting time for an in-tree and O(k) for an out-tree. An alternative method,
based on a heavy-path decomposition of T [15], is given in Appendix A.

We use the mapping of Section 3.2. Each vertex a is assigned a depth-first search interval
I(a) = [s(a), t(a)] in T and is mapped to the x1-axis-parallel segment S(a) = I(a)×h(a). Now the
choice of the structure we use depends on the arc directions in G1. For an out-tree we have that
a J b if and only if S(a) is above S(b) and the x1-projection of S(a) covers the x1-projection of
S(b). The fact that interval endpoints are distinct implies that a J b if and only if the vertical ray
vb emanating from (s(b), h(b)) towards the (+x2)-direction intersects S(a). Indeed, if a J b then
h(b) ≤ h(a) and b ∈ T (a), so I(b) ⊆ I(a). Similarly, if S(a) is above S(b) and I(b) ⊆ I(a) then vb
intersects S(a). Therefore, we have reduced our problem to a planar segment intersection problem.
We can get an 〈n, k〉 structure by adapting either the hive graph of Chazelle [4] or the persistence-
based planar point location structure of Sarnak and Tarjan [14]. Both these data structures require
O(n log n) preprocessing time as they need to sort the endpoint coordinates. In our case sorting
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is not necessary, since the x1-coordinates are produced in sorted order by the depth-first search,
and the x2-coordinates correspond to the height of the vertices in G2. Hence our preprocessing
time is O(n). Furthermore, the reporting time using either the hive graph or the persistence-based
structure is O(log n + k), where the log n term is due to a point location query. In our case this
term can be reduced to constant; point location is not necessary since the segment endpoints are
the only possible query locations. Hence our reporting time is O(k).

We turn to the case where G1 is an in-tree. Here we have that a J b if and only if S(a) is below
S(b) and the x1-projection of S(b) covers the x1-projection of S(a). Since the interval endpoints
are distinct we have a J b if and only if the endpoints of S(a) are contained inside the rectangle
[s(b), t(b)] × [0, h(b)]. This is a two-dimensional grounded range search problem (one side of the
query rectangle always lies on the x1-axis). Since we have integer coordinates in [1, 2n]× [0, n− 1]
we can get an 〈n, k〉 structure again with the use of a Cartesian tree [6].

The 〈n, k〉 bound is also achieved when G1 is an unoriented tree, as stated in Theorem 4.1(a),
by applying the method of Section 3.4. Let G0

1, G
2
1, . . . , G

µi−1
1 be the sequence of 2-layered rooted

trees produced from G1. We construct a join-reachability structure for each pair Pi = {Gi
1, G

i
2},

where Gi
2 is a dipath containing only the vertices in V (Gi

1) in the order they appear in G2. A query
for a vertex b needs to search the structures for the pairs Pι(b)−1 and Pι(b). The structure for Pi is
constructed as follows. We contract each fringe tree to its root and let the new core supervertex
correspond to the vertices of the contracted fringe tree. Let Ĝi

1 be the tree produced from this
process. Next, we assign a depth-first search interval I1(z) to each vertex z in Ĝi

1, and map z to the
x1-axis-parallel segment I1(z)×x2(z), where x2(z) = hGi

2
(z). Using this mapping we can construct

the data structures developed above depending on whether Ĝi
1 is an out-tree or an in-tree. One

important detail is that if Ĝi
1 is an in-tree then the data structure for Pi does not store the segments

that correspond to fringe vertices; the segment of such a fringe vertex z is needed however in order
to answer a join-reachability query for z. Equivalently, if Ĝi

1 is an out-tree and the query vertex b
is an fringe in-tree of Gi

1 then we do not search the structure for Pi.

4.3 Two Trees

We extend the method of Section 4.2 in order to deal with two rooted trees G1 and G2. We
distinguish three cases depending on the type, in-tree or out-tree, of each tree. Then, by applying
the layer decomposition method of Section 3.4, we can extend our structures to handle unoriented
trees. This way we achieve the bounds stated in Theorem 4.1(b) and (c).

Let T1 and T2 be the corresponding undirected trees. We assign each vertex a two depth-first
search intervals I1(a) = [s1(a), t1(a)] and I2(a) = [s2(a), t2(a)], where Ij(a) corresponds to Tj , for
j = 1, 2. We use the two intervals I1(a) = [s1(a), t1(a)] and I2(a) = [s2(a), t2(a)] to map each
vertex a to an axis-parallel rectangle R(a) = I1(a)× I2(a). See Figure 8. Again we exploit the fact
that for any two vertices a and b, the intervals Ij(a) and Ij(b) are either disjoint or one contains
the other. If I1(a) ∩ I1(b) = ∅ or I2(a) ∩ I2(b) = ∅, then R(a) and R(b) do not intersect. Now
suppose that both I1(a)∩ I1(b) 6= ∅ and I2(a)∩ I2(b) 6= ∅. Without loss of generality, consider that
I1(b) ⊆ I1(a). If I2(b) ⊆ I2(a) then R(b) is contained in R(a). Otherwise, if I2(a) ⊆ I2(b) then
both horizonal edges of R(a) intersect both vertical edges of R(b). Next, we distinguish three cases
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Figure 8: Example of the mapping of Section 4.3

19



depending on the type of the two trees.
First suppose that both G1 and G2 are out-trees. Then a J b implies b ∈ T1(a) and b ∈ T2(a).

So here we have I1(b) ⊆ I1(a) and I2(b) ⊆ I2(a), thus R(b) is contained in R(a). In particular, the
rectangle arrangement has the property that a J b if and only if R(a) encloses a corner of R(b).
This property implies that we have a two-dimensional point enclosure: In order to report all vertices
a such that a J b we need to find all rectangles R(a) that enclose a corner of R(b). To that end,
we can use the point enclosure structure of Chazelle [4] to get an 〈n, log n + k〉 join-reachability
structure.

Next, suppose that G1 is an out-tree and G2 is an in-tree. In this case a  J b if and only if
b ∈ T1(a) and a ∈ T2(b), which implies I1(b) ⊆ I1(a) and I2(a) ⊆ I2(a). Thus, R(a) intersects R(b).
Furthermore, the properties of the depth-first search intervals imply that a J b if and only if the
segment s1(b)× I2(b) intersects I1(a)× s2(a). This is an orthogonal segment intersection problem,
for which we can get an 〈n, k〉 join-reachability structure as in Section 4.2.

The last case is when G1 and G2 are in-trees. Now a  J b if and only if a ∈ T1(b) and
a ∈ T2(b). Then we have I1(a) ⊆ I1(b) and I2(a) ⊆ I2(b), which implies that a J b if and only if
R(b) encloses a corner of R(a). Thus, our reporting query reduces to orthogonal range searching.
Here the results of Alstrup et al. [3] imply an 〈n logε n, log log n+k〉 join-reachability structure (for
any constant ε > 0).

4.4 Planar Digraphs

With the help of Thorup’s reachability oracle [18] we can develop efficient structures for join-
reachability in planar digraphs. Suppose first that G2 is a dipath. We perform the layer decompo-
sition of G1 and construct the corresponding graph sequence G0

1, G
1
1, . . . , G

µ−1
1 . Then we form pairs

of digraphs Pi = {Gi
1, G

i
2} where Gi

2 is a dipath containing only the vertices in V (Gi
1) in the order

they appear in G2. Clearly a  J b if and only if a  Jι(b)−1
b or a  Jι(b)

b, where Ji is the join-
reachability graph of Pi. For each pair Pi we build a join-reachability structure. In order to answer
a reporting query for b we query the structures for Pι(b)−1 and Pι(b) independently and return the
union of the results. It remains to describe the structure for a pair Pi = {Gi

1, G
i
2}. We perform the

separator decomposition of Gi
1, so that each vertex is associated with O(log n) separator dipaths.

For each vertex v ∈ V (Gi
1) we record a set S(v) containing the separator dipaths Q that reach v

together with the number fromv[Q] (see Section 3.5). For each separator dipath Q we record the
vertices v that reach Q together with the numbers tov[Q]. Next, for each separator dipath Q we
build the data structure of Section 4.1 for the vertices that reach Q. Each such vertex a receives
coordinates (x1(a), x2(a)) where x1(a) = toa[Q] and x2(a) is the rank of a in G2 among the vertices
that reach Q. Now we can report the vertices that reach b through Q by finding the vertices a that
satisfy (x1(a), x2(a)) ≤ (fromb[Q], x2(b)). To that end, we use a Cartesian tree T as in Section 4.1.
Here we need to modify this structure in order to allow points with identical x1-coordinates. Since
the x1-coordinates are integers in the range [0, |Q| − 1] we find for each integer i in that range the
point ai with x1(ai) = i and minimum x2-coordinate. Then we build a Cartesian tree for the points
ai, 0 ≤ i ≤ |Q| − 1. Also, we associate with ai a list of the remaining points with x1-coordinate
equal to i in increasing x2-coordinate. Next, in order to initiate the search we also need to locate
the vertex c with x1(c) = fromb[Q]. We can do that easily in O(1) time by using an array of size
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|Q| to map the x1-coordinates to the corresponding locations in T . Recall that the basic step of
the reporting algorithm is to locate the point with smallest x2-coordinates in an x1-range [α, β]. If
y is the corresponding point, then we check if x2(y) ≤ fromb[Q]. If this is the case, then we report
y and search the list associated with y and report all points with x2(z) ≤ fromb[Q]. Clearly the
reporting time for k points is still O(k). Also the required space and preprocessing is O(|V (Gi

1)|).
Therefore, the asymptotic preprocessing time and space are the same as in Thorup’s structure, i.e.,
O(n log n). Finally we need to specify how to report all vertices a such that a J b. We query the
structures for Pι(b)−1 and Pι(b). To perform a query for Pi we use the list of separator dipaths that
reach b, and for each such dipath Q we use the corresponding Cartesian tree to report the vertices
a that satisfy (x1(a), x2(a)) ≤ (fromb[Q], x2(b)). Let kQ be the number of reported vertices. The
total reporting time is bounded by

∑
Q∈S(b) kQ = O(k log n).

Using the results of Section 4.2 we can get join-reachability structures when G2 is a rooted or
an unoriented tree. Let I2(a) be the depth-first search interval assigned to each vertex a in T2,
where T2 is the undirected version of G2. If G2 is an out-tree then we report the vertices a that
satisfy toa[Q] ≤ fromb[Q] and I2(b) ⊆ I2(a), which by Section 4.2 can be done in O(kQ) time. So,
the total reporting time is O(k log n). Similarly, if G2 is an in-tree then we report the vertices a
that satisfy toa[Q] ≤ fromb[Q] and I2(a) ⊆ I2(b), which again takes O(kQ) time with the structure
of Section 4.2. So, the total reporting time in both cases is bounded by O(k log n). Theorem 4.1(d)
follows. With similar ideas we can obtain an 〈n log2 n, k log2 n〉 structure when G2 is also a planar
digraph, as stated by Theorem 4.1(e).

4.5 General Digraphs

Here we examine how to obtain join-reachability strucures for general digraphs with the use of
dipath covers. We begin with the case where G2 is a dipath.

Let P 1
1 , P

2
1 , . . . P

κ1
1 be a dipath cover of G1, and let P i

2 be the dipath that consists of the vertices
in P i

1 ordered by increasing rank in G2. Also, let VP i
1
be set of vertices that have a predecessor in

P i
1. We build a join-reachability structure for each pair {P i

1, P
i
2} which we use in order to report

the vertices in P i
1 that reach a query vertex in both G1 and G2. To that end, each vertex a in P i

1 is
assigned coordinates x1(a) = rP i

1
(a) and x2(a) = rP i

2
(a), and we build a join-reachability structure

for these vertices as in Section 4.1. With this structure we can answer a reporting query for vertex b
by finding the vertices a that satisfy (x1(a), x2(a)) ≤ (fromb[P

i
1], fromb[P

i
2]) for each i ∈ {1, . . . , κ1}.

The reporting time is O(k + κ1) using O(κ1n) space. The reporting time can be reduced to O(k)
if we store for each vertex v a list I(v) of the indices i ∈ {1, . . . , κ1} such that the reporting query
for v in the join-reachability structure for the pair {P i

1, P
i
2} is non-empty. Then we only need to

query the structures for i ∈ I(v). The asymptotic space bound remains O(κ1n).
We can extend the above method in order to handle two general graphs. The resulting bounds,

however, are interesting only when the product κ1κ2 is small compared to n, where κ2 is the number
of disjoint dipaths in a dipath cover of G2. Specifically, we can get either O((κ1 + κ2)n) space and
O(κ1κ2 + k) reporting time, or O((κ1κ2)n) space and O(k) reporting time. (In the latter structure
we improve the reporting time by storing for each vertex v the pairs of dipaths in the cover of G1

and G2 that contain a common predecessor of v.) This implies Theorem 4.1(h). By combining the
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dipath cover method with the techniques of Section 4.2 we obtain the bound of Theorem 4.1(f).
Similarly, the techniques of Section 4.4 imply Theorem 4.1(g).

5 Conclusions and Open Problems

We explored the computational and combinatorial complexity of the join-reachability graph, and
the design of efficient join-reachability data structures for a variety of graph classes. We believe that
several open problems deserve further investigation. For instance, from the aspect of combinatorial
complexity, it would be interesting to prove or disprove that an O(m ·polylog(n)) bound on the size
of the join-reachability graph J ({G1, G2}) is attainable when G1 is a general digraph with n vertices
and m arcs and G2 is a dipath. Another direction is to consider the problem of approximating the
smallest join-reachability graph for specific graph classes. From the aspect of data structures, we
can consider the following type of join-reachability query: Given vertices b and c, report (or count)
all vertices a such that a G1 b and a G2 c.

Acknowledgement. We would like to thank Li Zhang for several useful discussions.
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Appendices

In the Appendices we provide additional join-reachability data structures. In Appendix A we
apply the heavy-path decomposition of trees [15] in order to get alternative join-reachability data
structures for trees and paths. In Appendix B we consider the case of planar st-graphs [17], and in
Appendix C we consider lattices.

A Join-Reachability for Trees based on Heavy-Path Decomposi-

tion

Let T be the rooted tree that results from G1 after removing arc directions. We develop a method
based on partitioning T into heavy paths [15]. This is done as follows. A child a′ of a is heavy if
|T (a′)| ≥ |T (a)|/2, and light otherwise. The light level of a vertex a is the number of light vertices
on the path from a to the root of T . Each vertex has at most one heavy child and its light level is
O(log n). The heavy paths are formed by the edges connecting a heavy child to its parent and the
topmost vertex of a heavy path is light.

First we consider the case where G2 is a dipath, and then the case where G2 is a (in- or out-)tree.

A.1 Tree and Path

Based on the heavy-path decomposition of T , we describe a structure with O(k log n) reporting
time for an in-tree and O(log n + k) reporting time for an out-tree. These bounds are inferior to
the ones given in Section 4.2, but are achieved with simpler structures.

Consider the in-tree query first. Here our method is inspired by a routing scheme for trees by
Thorup and Zwick [19]. Let h(T (a)) be the maximum label in T (a). Obviously, we need to search
T (a) only if h(T (a)) > j. Let h′(T (a)) be the maximum label in T (a)\T (a′), where a′ is the heavy
child of a (if it exists). The search proceeds top-down starting from b. Let a be the current vertex
such that h(T (a)) > j. If h(a) > j, we report a. Then we identify the light children c of a such
that h(T (c)) > j. Moreover, if a is the topmost vertex of its heavy path P , then we identify the
vertices d ∈ P such that h′(T (d)) > j. Then, we repeat this process at each vertex that we have
identified. In order to locate these vertices quickly, for each vertex a we order its light children c
by h(T (c)), and for each heavy path P we order the vertices d ∈ P by h′(T (d)). Note that when
we visit a light child c, the light level increases and there is at least one x ∈ T (c) with h(x) > j.
The O(k log n) bound follows.

For the out-tree query we use the same heavy-path decomposition and construct a Cartesian
tree for each heavy path P . (See Section 4.1). The Cartesian tree for P stores the vertices in a ∈ P
according to coordinates (x1(a), x2(a)) = (hP (a), hG2(a)). Furthermore, each vertex has a pointer
to the topmost vertex of its heavy path, and each topmost vertex of a heavy path has a pointer
to its parent in T . Let b be the query vertex and let Q be the tree path from the root of T to b.
The goal is to identify the vertices a ∈ Q with h(a) > j. We locate the heavy paths that intersect
Q and query them individually. For each such heavy path P we identify the bottommost vertex
p ∈ P ∩Q. The query for P has to report the vertices a ∈ P such that (x1(a), x2(a)) ≥ (x1(p), j).
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As mentioned in Section 4.1, Cartesian trees can report these vertices in constant time per vertex.
Since Q intersects O(log n) heavy paths the total query time is O(log n+ k).

A.2 Two Trees

With the heavy-path decomposition method we can get an efficient join-reachability structure when
one of the two trees is an out-tree. Without loss of generality we assume that G1 is an out-tree.
We perform the heavy-path decomposition of T as earlier and associate with each heavy path P
a secondary data structure DP ; the choice of the secondary structure depends on the type of G2.
Also for each vertex a ∈ P we store hP (a), the height of a in P . Given a query vertex b we want
to report the ancestors a of b in T that reach b in G2. Let Q be the path in T from the root to
b. Our algorithm queries the structure DP for each heavy path P that intersects Q. For each such
heavy path P we identify the bottommost vertex p ∈ P ∩Q. If G2 is an out-tree then we need to
report the vertices a ∈ P that satisfy I2(b) ⊆ I2(a) and hP (a) ≥ hP (p). In this case, a suitable
choice for DP is a join-reachability structure for an out-tree and a path. Either of the two solutions
we developed earlier (Sections 4.2 and A.1) achieves O(log |P |+ kP ) reporting time (because here
we need to locate b in DP ), where kP is the number of reported vertices on P . This results to an
overall 〈n, log2 n+ k〉 structure. For the case where G2 is an in-tree we need to report the vertices
a ∈ P that satisfy I2(a) ⊆ I2(b) and hP (a) ≥ hP (p). Here we choose DP to be a join-reachability
structure for an in-tree and a path. Using the geometry-based structure of Section 4.2 results to
an overall 〈n, log2 n+ k〉 structure.

B Planar st-Graphs

Here we consider the case where G1 is a planar st-graph [17] and G2 is a dipath. A planar st-
graph is planar acyclic digraph with a single source s and a single sink t, such that s and t are
on the boundary of the same face. For these graphs Kameda [12] gave an O(n)-space structure
that answers reachability queries in constant time. His algorithm performs two modified depth-first
searches and assigns to each vertex a two integer labels ℓ1(a) and ℓ2(a) both in the range [1, n].
Kameda then shows that these labels satisfy the property that a G1 b if and only if ℓ1(a) ≤ ℓ1(b)
and ℓ2(a) ≤ ℓ2(b). Our data structure for the join-reachability problem also assigns each vertex a
a third label ℓ3(a) equal to the rank of a in G3. Now each vertex corresponds to a point in a three-
dimensional rank space and a J b if and only if (ℓ1(a), ℓ2(a), ℓ3(a)) ≤ (ℓ1(b), ℓ2(b), ℓ3(b)). Using a
three-dimensional dominance structure we can get an 〈n, log n+ k〉 join-reachability structure [11].
With minor adjustments we can get an efficient data structure for the more general class of spherical
st-graphs [17], which are planar st-graphs without the requirement that s and t appear on the
boundary of the same face. Tamassia and Tollis [17] showed how to reduce the reachability problem
on these graphs to a reachability problem on planar st-graphs.
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C Lattices

Let (≤, V ) be a partial order. An element z ∈ V is an upper bound of x, y ∈ V if x ≤ z and
y ≤ z. If z is an upper bound of x, y and moreover z ≤ w for all upper bounds w of x, y then z
is a least upper bound of x, y. Similarly, if z ≤ x and z ≤ y then z is a lower bound of x, y, and
if w ≤ z for all lower bounds w of x, y then z is a greatest lower bound of x, y. A partial order
(≤, V ) is a lattice if any two x, y ∈ V have both a least upper bound and a greatest lower bound.
A partial lattice (≤, V ) is a partial order that can be extended to lattice by adding elements s and
t such that s ≤ x and x ≤ t for any x ∈ V . Any acyclic digraph G = (V,A) has an associated
partial order PG = (≤, V ) such that for u, v ∈ V , u ≤ v if and only if u  G v. We say that G
satisfies the lattice property if and only if its associated partial order is a lattice. For this class
of digraphs, Talamo and Vocca presented an O(n

√
n)-space structure that answers reachability

queries in constant time [16]. Their structure is also capable of reporting the predecessors of a
query vertex in O(k) time. In this section we show how their structure can be extended in order to
support efficient join-reachability. Roughly speaking, the Talamo-Vocca structure represents G as
a collection of disjoint clusters with O(

√
n) vertices each. Moreover, we can assume that there are

Θ(
√
n) clusters; refer to [16] for details. Each cluster C has a root vertex c and consists of either

a subset of the predecessors of c, in which case it is an in-cluster, or of a subset of the successors
of c, in which case it is an out-cluster. A vertex x ∈ C is an internal vertex of C; a vertex x 6∈ C
that either reaches or is reachable from a vertex in C is an external vertex of C. External vertices
have the following key property: If x is an external vertex that reaches (resp. is reachable from)
a subset S ⊆ C then S contains the greatest lower bound (resp. least upper bound) of S, which
is the representative of x in C. Now each vertex x is associated with a subgraph G(x) consisting
of two trees rooted at x; an internal spanning tree I(x) and an external spanning tree E(x). If
the cluster C containing x is an in-cluster then the internal tree is an in-tree that contains the
predecessors of x in C and the external tree is an out-tree that contains the external vertices of C
with x as their representative. Similarly, if the cluster C containing x is an out-cluster then the
internal tree is an in-tree that contains the successors of x in C and the external tree is an in-tree
that contains the external vertices of C with x as their representative. In order to be able to report
all the predecessors of a query vertex b this data structure can explicitly store the predecessors of
each vertex x that are located in the same cluster with x. Since each cluster has O(

√
n) vertices

the data structure still occupies O(n
√
n) space. The predecessors of b outside its cluster are the

predecessors of the vertices that are representatives of b in other clusters for which b is an external
vertex.

We can easily enhance the above structure so that it supports efficient join-reachability. We
demonstrate this first for the case where G2 is a dipath. For each vertex x we construct a list
L1(x) of the internal predecessors of x sorted in increasing rank in G2. Also we keep track of the
minimum rank in G2 of the vertices in L1(x). Then we construct another list L2(x) which contains
the representatives of x in the clusters where x is an external vertex. Furthermore, y ∈ L2(x)
only if the minimum rank in L1(y) is less than the rank of x. Now in order to report the vertices
reaching b in the join-reachability graph, we report the vertices in L1(a) with rank less than b, for
all a ∈ L2(b) ∪ {b}. Notice that we only visit clusters that contain a least one predecessor of b.
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Therefore the reporting time is O(k).
Now we show how the same bounds are achieved when G2 is a rooted tree. Let I2(a) =

[s2(a), t2(a)] be the depth-first search interval assigned to each vertex a in T2, where T2 is the
undirected version of G2. For each vertex x we construct a structure D(x) that contains the
vertices in L1(x). In order to report the vertices that reach b in the join-reachability graph, we
query the structure D(a) for all a ∈ L2(b)∪{b}. This structure reports the vertices γ ∈ L1(a) that
satisfy I2(b) ⊆ I2(γ) if G2 is an out-tree, or I2(γ) ⊆ I2(b) if G2 is an in-tree. Note that during the
construction of the join-reachability data structure we can ensure that a ∈ L2(b) ∪ {b} only if the
answer of D(a) to query b is nonempty. Finally, we need to specify how D(a) operates. If G2 is
an out-tree then D(a) stores the intervals I2(γ) for all γ ∈ L1(a); a query asks for those γ ∈ L1(a)
such that I2(γ) contains the point s2(b). Otherwise, when G2 is an in-tree, D(a) stores the points
s2(γ) for all γ ∈ L1(a); now a query asks for those γ ∈ L1(a) such that s2(γ) is contained in I2(b).
Such queries can be answered optimally by Chazelle’s interval overlap structure [4], which gives us
the desired result.

Theorem C.1. Given a lattice G1 and an unoriented tree G2 with n vertices we can construct an
〈n√n, k〉 join-reachability data structure.
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