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Kolmogorov complexity as a language

Alexander Shen∗

Abstract

The notion of Kolmogorov complexity (=the minimal length ofa pro-
gram that generates some object) is often useful as a kind of language that
allows us to reformulate some notions and therefore providenew intuition.
In this survey we provide (with minimal comments) many different exam-
ples where notions and statements that involve Kolmogorov complexity are
compared with their counterparts not involving complexity.

1 Introduction

The notion of Kolmogorov complexity is often used as a tool; one may ask, how-
ever, whether it is indeed a powerful technique or just a way to present the argu-
ment in a more intuitive way (for people accustomed to this notion).

The goal of this paper is to provide a series of examples that support both
viewpoints. Each example shows some statements or notions that use complexity,
and their counterparts that do not mention complexity. In some cases these two
parts are direct translations of each other (and sometimes the equivalence can be
proved), in other cases they just have the same underlying intuition but reflect it
in different ways.

Hoping that most readers already know what is Kolmogorov (algorithmic, de-
scription) complexity, we still provide a short reminder tofix notation and termi-
nology. The complexity of a bit stringx is the minimal length of a program that
producesx. (The programs are also bit strings; they have no input and may pro-
duce binary string as output.) IfD(p) is the output of programp, the complexity
of stringx with respect toD is defined asKD(x) = inf{|p| : D(p) = x}. This defi-
nition depends on the choice of programming language (i.e.,its interpreterD), but
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we can choose an optimalD that makesKD minimal (up toO(1) constant). Fixing
some optimalD, we callKD(x) theKolmogorov complexityof x and denote it by
K(x).

A technical clarification: there are several different versions of Kolmogorov
complexity; if we require the programming language to be self-delimiting or
prefix-free (no program is a prefix of another one), we gotprefixcomplexity usu-
ally denoted byK(x); without this requirement we getplain complexity usually
denoted byC(x); they are quite close to each other (the difference isO(logn) for
n-bit strings and usually can be ignored).

Conditionalcomplexity of a stringx given conditiony is the minimal length of
a program that getsy as input and transforms it intox. Again we need to chose an
optimal programming language (for programs with input) among all languages.
In this way we getplain conditional complexity C(x|y); there exists also a prefix
versionK(x|y).

The value ofC(x) can be interpreted as the “amount of information” inx,
measured in bits. The value ofC(x|y) measures the amount of information that
exists inx but not iny, and the differenceI(y : x) = C(x)−C(x|y) measures the
amount of information iny aboutx. The latter quantity is almost commutative
(classical Kolmogorov – Levin theorem, one of the first results about Kolmogorov
complexity) and can be interpreted as “mutual information”in x andy.

2 Foundations of probability theory

2.1 Random sequences

One of the motivations for the notion of description complexity was to define ran-
domness:n-bit string is random if it does not have regularities that allow us to
describe it much shorter, i.e., if its complexity is close ton. For finite strings
we do not get a sharp dividing line between random and non-random objects; to
get such a line we have to consider infinite sequences. The most popular defi-
nition of random infinite sequences was suggested by Per Martin-Löf. In terms
of complexity one can rephrase it as follows: bit sequenceω1ω2 . . . is random
if K(ω1 . . .ωn) ≥ n− c for somec and for alln. (This reformulation was sug-
gested by Chaitin; the equivalence was proved by Schnorr andLevin. See more
in [14, 20].)

Note that in classical probability theory there is no such thing as an indi-
vidual random object. We say, for example, that randomly generated bit se-
quenceω1ω2 . . . satisfies the strong law of large numbers (has limit frequency
lim(ω1 + . . .+ ωn)/n equal to 1/2) almost surely, but this is just a measure-
theoretic statement saying that the set of allω with limit frequency 1/2 has mea-
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sure 1. This statement (SLLN) can be proved by using Stirlingformula for facto-
rials or Chernoff bound.

Using the notion of Martin-Löf randomness, we can split this statement into
two: (1) every Martin-Löf random sequence satisfies SLLN; and (2) the set of
Martin-Löf random sequences has measure 1. The second partis a general state-
ment about Martin-Löf randomness (and is easy to prove). The statement (1)
can be proved as follows: if the frequency of ones in a long prefix of ω deviates
significantly from 1/2, this fact can be used to compress this prefix, e.g., using
arithmetic coding or some other technique (Lempel–Ziv compression can be also
used), and this is impossible for a random sequence according to the definition.

(In fact this argument is a reformulation of a martingale proof for SLLN.)
Other classical results (e.g., the law of iterated logarithm, ergodic theorem)

can be also presented in this way.

2.2 Sampling random strings

In the proceeding of this conference S. Aaronson proves a result that can be con-
sidered as a connection between two meanings of the word “random” for finite
strings. Assume that we bought some device which is marketedas a random
number generator. It has some physical source of randomnessinside. The adver-
tisement says that, being switched on, this device producesann-bit random string.
What could be the exact meaning of this sentence?

There are two ways to understand it. First: the output distribution of this
machine is close to the uniform distribution onn-bit strings. Second: with high
probability the output string is random (=incompressible). The paper of Aaron-
son establishes some connections between these two interpretations (using some
additional machinery).

3 Counting arguments and existence proofs

3.1 A simple example

Kolmogorov complexity is often used to rephrase counting arguments. We give a
simple example (more can be found in [14]).

Let us prove by counting that there exists ann×n bit matrix without 3 logn×
3logn uniform minors. (We obtain minors by selecting some rows andcolumns;
the minor isuniform if all its elements are the same.)

Counting: Let us give an upper bound for the number of matrices with uni-
form minors. There are at mostn3logn×n3logn positions for a minor (we select
3 logn rows and 3logn columns). For each position we have 2 possibilities for the
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minor (zeros or ones) and 2n2−(3logn)2 possibilities for the rest, so the total number
of matrices with uniform minors does not exceed

n3logn ·n3logn ·2 ·2n2−9log2 n = 2n2−3log2n+1 < 2n2
,

so there are matrices without uniform minors.
Kolmogorov complexity: Let us prove that incompressible matrix does not

have uniform minors. In other words, let us show that matrix with a uniform minor
is compressible. Indeed, while listing the elements of sucha matrix we do not need
to specify all 9 log2n bits in the uniform minor individually. Instead, it is enough
to specify the numbers of the rows of the minor (3 logn numbers; each contains
logn bits) as well as the numbers of columns (this gives together 6log2n bits), and
to specify the type of the minor (1 bit), so we need only 6 log2n+1≪ 9log2n bits
(plus the bits outside the minors, of course).

3.2 One-tape Turing machines

One of the first results of computational complexity theory was the proof that
some simple operations (checking symmetry or copying) require quadratic time
when performed by one-tape Turing machine. This proof becomes very natural if
presented in terms of Kolmogorov complexity.

Assume that initially some stringx of lengthn is written on the tape (followed
by the end-marker and empty cells). The task is to copyx just after the marker
(Fig. 1).

x # → x x#

Figure 1: Copying a bit stringx.

It is convenient to consider a special case of this task when the first half ofx is
empty (Fig. 2) and the second halfy is an incompressible string of lengthn/2.

y # → y y#

n/2

Figure 2: Special case: the first half ofx is empty.

To copyy, our machine has to moven/2 bits of information across the gap of
lengthn/2. Since the amount of information carried by the head of TM isfixed
(logm bits for TM with m states), this requiresΩ(n2) steps (the hidden constant
depends on the number of states).
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The last statement can be formalized as follows. Fix some borderline inside
the gap and install a “customs office” that writes down the states of TM when it
crosses this border from left to right. This record (together with the office position)
is enough to reconstructy (since the behavior of TM on the right of the border is
determined by this record). So the record should be ofΩ(n) size. This is true for
each ofΩ(n) possible positions of the border, and the sum of the record lengths is
a lower bound for the number of steps.

3.3 Forbidden patterns and everywhere complex sequences

By definition the prefixes of a random sequence have complexity at leastn−O(1)
wheren is the length. Can it be true for all substrings, not only prefixes? No: if it
is the case, the sequence at least should be random, and random sequence contains
every combination of bits as a substring.

However, Levin noted that the weaker conditionC(x) > α|x| −O(1) can be
satisfied for all substrings (for any fixedα < 1). Such a sequence can be called
α-everywhere complexsequence. Levin suggested a proof of their existence using
some properties of Kolmogorov complexity [6].

The combinatorial counterpart of Levin’s lemma is the following statement:
let α < 1 be a real number and letF be a set of strings that contains at most 2αn

strings of lengthn. Then there exists a constantc and a sequenceω that does not
have substrings of length greater thanc that belong toF.

It can be shown that this combinatorial statement is equivalent to the original
formulation (so it can be formally proved used Kolmogorov complexity); how-
ever, there are other proofs, and the most natural one uses Lovasz local lemma.
(See [19].)

3.4 Gilbert–Varshamov bound and its generalization

The main problem of coding theory is to find a code with maximalcardinality
and given distance. This means that for a givenn and givend we want to find
some set ofn-bit strings whose pairwise Hamming distances are at leastd. The
strings are called code words, and we want to have as many of them as possible.
There is a lower bound that guarantees the existence of largecode, called Gilbert–
Varshamov bound.

The condition for Hamming distances guarantees that few (less thand/2) bit
errors during the transmission do not prevent us from reconstructing the original
code word. This is true only for errors that change some bits;if, say, some bit is
deleted and some other bit is inserted in a different place, this kind of error may
be irreparable.
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It turns out that we can replace Hamming distance by information distance and
get almost the same bound for the number of codewords. Consider some family
of n-bit strings{x1,x2, . . .}. We say that this family isd-separated, if C(xi |x j)≥ d
for i 6= j. This means that simple operations of any kind (not only bit changes)
cannot transformx j to xi . Let us show that for everyd there exists ad-separated
family of sizeΩ(2n−d). Indeed, let us choose randomly stringsx1, . . . ,xN of length
n. (The value ofN will be chosen later.) For giveni and j the probability of
the eventC(xi|x j) < d is less than 2d/2n. For giveni the probability thatxi is
not separated fromsome xj (in any direction) does not exceed 2N ·2d/2n, so the
expected number ofxi that are “bad” in this sense is less than 2N2 ·2d/2n. Taking
N = Ω(2n−d), we can make this expectation less thanN/2. Then we can take the
values ofx1, . . . ,xN that give less thatN/2 badxi and delete all the badxi , thus
decreasingN at most twice. The decreasedN is still Ω(2n−d).

It is easy to see that the Gilbert–Varshamov bound (up to someconstant) is a
corollary of this simple argument. (See [22] for more applications of this argu-
ment.)

4 Complexity and combinatorial statements

4.1 Inequalities for Kolmogorov complexity and their
combinatorial meaning

We have already mentioned Kolmogorov–Levin theorem about the symmetry of
algorithmic information. In fact, they proved this symmetry as a corollary of the
following result: C(x,y) = C(x)+C(y|x)+O(logn). Herex andy are strings of
length at mostn andC(x,y) is the complexity of some computable encoding of
the pair(x,y).

The simple direction of this inequality,C(x,y) ≤ C(x) +C(y|x) +O(logn),
has equally simple combinatorial meaning. LetA be a finite set of pairs(x,y).
Consider the first projection ofA, i.e., the setAX = {x: ∃y(x,y) ∈ A}. For eachx
in AX we also consider thexth section ofA, i.e., the setAx = {y: (x,y) ∈ A}. Now
the combinatorial counterpart for the inequality can be formulated as follows: if
#AX ≤ 2k and #Ax ≤ 2l for everyx, then #A≤ 2k+l . (To make the correspondence
more clear, we can reformulate the inequality as follows: ifC(x)≤ k andC(y|x)≤
l , thenC(x,y)≤ k+ l +O(logn).)

The more difficult direction,C(x,y) ≥ C(x) +C(y|x)−O(logn), also has a
combinatorial counterpart, though more complicated. Let us rewrite this inequal-
ity as follows: for every integersk and l , if C(x,y) ≤ k+ l , then eitherC(x) ≤
k+O(logn) orC(y|x)≤ l +O(logn). It is easy to see that this statement is equiv-
alent to the original one. Now we can easily guess the combinatorial counterpart:
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if A is a set of pairs that has at most 2k+l elements, then one can cover it by two
setsA′ andA′′ such that #A′

X ≤ 2k and #A′′
x ≤ 2l for everyx.

Kolmogorov–Levin theorem implies also the inequality 2C(x,y,z)≤C(x,y)+
C(y,z) +C(x,z). (Here are below we omitO(logn) terms, wheren is an up-
per bound of the length for all strings involved.) Indeed,C(x,y,z) = C(x,y) +
C(z|x,y) = C(y,z)+C(x|y,z). So the inequality can be rewritten asC(z|x,y)+
C(x|y,z)≤C(x,z). It remains to note thatC(x,z) =C(x)+C(z|x), thatC(z|x,y)≤
C(z|x) (more information in the condition makes complexity smaller), and that
C(x|y,z)≤C(x) (condition can only help).

The combinatorial counterpart (and the consequence of the inequality about
complexities) says that forA⊂ X×Y×Z we have(#A)2 ≤ #AX,Y ·#AX,Z ·#AY,Z,
whereAX,Y is the projection ofA ontoX ×Y, i.e., the set of all pairs(x,y) such
that(x,y,z) ∈ A for somez∈ Z, etc. In geometric terms: ifA is a 3-dimensional
body, then the square of its volume does not exceed the product of areas of three
its projections (onto three orthogonal planes).

4.2 Common information and graph minors

We have defined the mutual information in two stringsa,b as I(a : b) = C(b)−
C(b|a); it is equal (with logarithmic precision) toC(a) +C(b)−C(a,b). The
easiest way to construct some stringsa and b that have significant amount of
mutual information is to take overlapping substrings of a random (incompressible)
string; it is easy to see that the mutual information is closeto the length (and
complexity) of their overlap.

We see that in this case the mutual information is not an abstract quantity, but
is materialized as a string (the common part ofa andb). The natural question
arises: is it always the case? i.e., is it possible to find for every paira,b some
stringx such thatC(x|a)≈ 0,C(x|b)≈ 0 andC(x)≈ I(a : b)?

It turns out that it is not always the case (as found by Andrej Muchnik [5] in
Kolmogorov complexity setting and earlier by Gács and Körner [7] in Shannon
information setting which we do not describe here — it is not that simple).

The combinatorial counterpart of this question: consider abipartite graph with
(approximately) 2α vertices on the left and 2β vertices on the right; assume also
that this graph is almost uniform (all vertices in each part have approximately
the same degree). Let 2γ be the total number of edges. A typical edge connects
some vertexa on the left and some vertexb on the right, and corresponds to
a pair of complexityγ whose first componenta has complexityα and second
componentb has complexityβ , so the “mutual information” in this edge isδ =
α +β − γ. The question whether this information can be extracted corresponds
to the following combinatorial question: can all (or most) edges of the graph
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be covered by (approximately) 2δ minors of size 2α−δ × 2β−δ ? (Such a minor
connects some 2α−δ vertices on the left with 2β−δ vertices on the right.)

For example, consider some finite fieldF of size 2n and a plane over this field
(i.e., two-dimensional vector space). Consider a bipartite graph whose left vertices
are points on this plane, right vertices are lines, and edgescorrespond to incident
pairs. We have about 22n vertices is each part, and about 23n edges. This graph
does not have 2×2 minors (two different points on a line determine it uniquely).
Using this property, one can show thatM×M minor could cover onlyO(M

√
M)

edges. (Assume thatM vertices on the left side of such a minor have degrees
d1, . . . ,dM in the minor. Then forith vertex on the left there areΩ(d2

i ) pairs of
neighbor vertices on the right, and all these pairs are different, so∑d2

i ≤ O(M2);
Cauchy inequality then implies that∑di ≤ O(M

√
M), and this sum is the number

of edges in the minor).
Translating this argument in the complexity language, we get the following

statement: for a random pair(a,b) of incident point and line, the complexity ofa
andb is about 2n, the complexity of the pair is about 3n, the mutual information
is aboutn, but it is not extractable: there is no stringx of complexityn such that
C(x|a) andC(x|b) are close to zero. In fact, one can prove that for such a pair
(a,b) we haveC(x)≤ 2C(x|a)+2C(x|b)+O(logn) for all x.

4.3 Almost uniform sets

Here is an example of Kolmogorov complexity argument that isdifficult to trans-
late to combinatorial language (though one may find a combinatorial proof based
on different ideas). Consider the setA of pairs. Let us compare the maximal size of
its sectionsAx and the average size (that is equal to #A/#AX; we use the same no-
tation as in section 4.1); the maximal/average ratio will becalledX-nonuniformity
of A. We can defineY-nonuniformity in the same way.

Claim: every set A of pairs having cardinality N can be represented as a union
of polylog(N) sets whose X- and Y-nonuniformity is bounded bypolylog(N).

Idea of the proof: consider for each pair(x,y) ∈ A a quintuple of integers

p(x,y) = 〈C(x),C(y),C(x|y),C(y|x),C(x,y)〉

where all complexities are taken with additional conditionA. Each element(x0,y0)
in A is covered by the setU(x0,y0) that consists of all pairs(x,y) for which
p(x,y) ≤ p(x0,y0) (coordinate-wise). The number of elements inU(x0,y0) is
equal to 2C(x0,y0) up to polynomial inN factors. Indeed, it cannot be greater be-
causeC(x,y) ≤ C(x0,y0) for all pairs(x,y) ∈ U(x0,y0). On the other hand, the
pair (x0,y0) can be described by its ordinal number in the enumeration of all ele-
ments ofU(x0,y0). To construct such an enumeration we need to know only the
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setA andp(x0,y0). The setA is given as a condition, andp(x0,y0) has complexity
O(logN). So if the size ofU(x0,y0) were much less than 2C(x0,y0), we would get a
contradiction.

Similar argument shows that projectionU(x0,y0)X has about 2C(x0) elements.
Therefore, the average section size is about 2C(x0,y0)−C(x0); and the maximal sec-
tion size does not exceedC(y0|x0) sinceC(y|x)≤C(y0|x0) for all (x,y)∈U(x0,y0).
It remains to note thatC(y0|x0) ≈ C(x0,y0)−C(x0) according to Kolmogorov–
Levin theorem, and that there are only polynomially many different setsU(x,y).

Similar argument can be applied to sets of triples, quadruples etc. For a com-
binatorial proof of this result (in a stronger version) see [1].

5 Shannon information theory

5.1 Shannon coding theorem

A random variableξ that hask values with probabilitiesp1, . . . , pk, hasShannon
entropy H(ξ ) = ∑i pi(− logpi). Shannon coding theorem (in its simplest version)
says that if we want to transmit a sequence ofN independent values ofξ with
small error probability, messages ofNH(ξ )+o(N) bits are enough, while mes-
sages ofNH(ξ )−o(N) bits will lead to error probability close to 1.

Kolmogorov complexity reformulation:with probability close to1 the se-
quence of N independent values ofξ has complexity NH(ξ )+o(N).

5.2 Complexity, entropy and group size

Complexity and entropy are two ways of measuring the amount of information
(cf. the title of the Kolmogorov’s paper [11] where he introduced the notion of
complexity). So it is not surprising that there are many parallel results. There are
even some “meta-theorems” that relate both notions. A. Romashchenko [8] has
shown that the linear inequalities that relate complexities of 2n−1 tuples made
of n stringsa1, . . . ,an, are the same as for Shannon entropies of tuples made ofn
random variables.

In fact, this meta-theorem can be extended to provide combinatorial equiva-
lents for complexity inequalities [18]. Moreover, in [4] itis shown that the same
class of inequalities appears when we consider cardinalities of subgroups of some
finite group and their intersections!
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5.3 Muchnik’s theorem

Let a andb be two strings. Imagine that somebody knowsb and wants to knowa.
Then one needs to send at leastC(a|b) bits of information, i.e., the shortest pro-
gram that transformsb to a. However, if we want the message to be not only short,
but also simple relative toa, the shortest program may not work. Andrej Much-
nik [15] has shown that it is still possible:for every two strings a and b of length
at most n there exists a string x such that C(x) ≤ C(a|b)+O(logn), C(a|x,b) =
O(logn), and C(x|a) = O(logn). This result probably is one of the most funda-
mental discoveries in Kolmogorov complexity theory of the last decade. It corre-
sponds to Wolf–Slepyan theorem in Shannon information theory; the latter says
that for two dependent random variablesα and β and N independent trials of
this pair one can (with high probability) reconstructα1, . . . ,αN from β1, . . . ,βN

and some message that is a function ofα1, . . . ,αN and has bit length close to
NH(α|β ). However, Muchnik and Wolf–Slepyan theorem do not seem to be
corollaries of each other (in any direction).

5.4 Romashchenko’s theorem

Let α,β ,γ be three random variables. The mutual information inα andβ whenγ
is known is defined asI(α : β |γ) = H(α,γ)+H(β ,γ)+H(α,β ,γ)−H(γ). It is
equal to zero if and only ifα andβ are conditionally independent for every fixed
value ofγ.

One can show the following:If I (α : β |γ) = I(α : γ|β ) = I(β : γ|α) = 0, then
one can extract all the common information fromα,β ,γ in the following sense:
there is a random variableχ such that H(χ |α) = H(χ |β ) = H(χ |γ) = 0 and
α,β ,γ are independent random variables whenχ is known. (The latter statement
can be written asI(α : βγ|χ) = I(β : αγ|χ) = I(γ : αβ |χ) = 0.)

In algebraic terms: if in a 3-dimensional matrix with non-negative elements all
its 2-dimensional sections have rank 1, then (after a suitable permutation for each
coordinate) it is made of blocks that have tensor rank 1. (Each block corresponds
to some value ofχ .)

Romashchenko proved [17] a similarly looking result for Kolmogorov com-
plexity: if a,b,c are three strings such thatI(a : b|c), I(b : c|a) andI(a : c|b) are
close to zero, then there existsx such thatC(x|a), C(x|b), C(x|c) are close to zero
and stringsa,b,c are independent whenx is known, i.e.,I(a : bc|x), I(b : ac|x) and
I(c : ab|x) are close to zero.

This theorem looks like a direct translation of the information theory result
above. However, none of these results looks a corollary of the other one, and
Romashchenko’s proof is a very ingenious and nice argument that has nothing to
do with the rather simple proof of the information-theoretic version.

10



6 Computability (recursion) theory

6.1 Simple sets

Long ago Post definedsimpleset as (recursively) enumerable set whose comple-
ment is infinite but does not contain an infinite enumerable set (see, e.g., [16],
Sect. 8.1). His example of such a set is constructed as follows: letWi be theith
enumerable set; wait until a numberj > 2i appears inWi and include first such
numberj into the enumeration. In this way we enumerate some setSwith infinite
complement (S may contain at mostn integers less than 2n); on the other hand,
S intersects any infinite enumerable setWi , becauseWi (being infinite) contains
some numbers greater than 2i.

It is interesting to note that one can construct a natural example of a simple set
using Kolmogorov complexity. Let us say that a stringx is simple ifC(x)< |x|/2.
The setSof simple strings is enumerable (a short program can be discovered if it
exists). The complement ofS (the set of “complex” strings) is infinite since most
n-bit strings are incompressible and therefore non-simple.Finally, if there were
an infinite enumerable setx1,x2, . . . of non-simple strings, the algorithm “find the
first xi such that|xi |> 2n” will describe some string of complexity at leastn using
only logn+O(1) bits (needed for the binary representation ofn).

Similar argument, imitating Berry’s paradox, was used by Chaitin to provide
a proof for Gödel incompleteness theorem (see Sect. 7.2). Note also a (somewhat
mystical) coincidence: the word “simple” appears in two completely different
meanings, and the set of all simple strings turns out to be simple.

6.2 Lower semicomputable random reals

A real numberα is computableif there is an algorithm that computes rational ap-
proximations toα with any given precision. An old example of E. Specker shows
that a computable series of non-negative rationals can havea finite sum that is not
computable. (Let{n1,n2, . . .} be a computable enumeration without repetitions of
an enumerable undecidable setK; then∑i 2

−ni is such a series.) Sums of com-
putable series with non-negative rational terms are calledlower semicomputable
reals.

The reason why the limit of a computable series is not computable is that the
convergence is not effective. One can ask whether one can somehow classify
how ineffective the convergence is. There are several approaches. R. Solovay
introduced some reduction on lower semicomputable reals:α � β if α + γ = cβ
for some lower semicomputableγ and some rationalc> 0. Informally, this means
thatα converges “better” thanβ (up to a constantc). This partial quasi-ordering
has maximal elements calledSolovay completereals. It turned out (see [3, 13])
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that Solovay complete reals can be characterized as lower semicomputable reals
whose binary expansion is a random sequence.

Another characterization: we may consider themodulus of convergence, i.e.,
a function that for givenn gives the first place where the tail of the series becomes
less than 2−n. It turns out that computable series has a random sum if and only if
the modulus of convergence grows faster thanBP(n−O(1)) whereBP(k) is the
maximal computation time for all terminatingk-bit self-delimited programs.

7 Other examples

7.1 Constructive proof of Lovasz local lemma

Lovasz local lemma considers a big (unbounded) number of events that have small
probability and are mostly independent. It guarantees thatsometimes (with posi-
tive probability, may be very small) none of this events happens. We do not give
the exact statement but show a typical application:any CNF made of k-literal
clauses where each clause has t= o(2k) neighbors, is satisfiable. (Neighbors are
clauses that have a common variable.)

The original proof by Lovasz (a simple induction proving some lower bound
for probabilities) is not constructive in the sense that it does not provide any algo-
rithm to find the satisfying assignment (better than exhaustive search). However,
recently Moser discovered that naive algorithm: “resampleclauses that are false
until you are done” converges in polynomial time with high probability, and this
can be explained using Kolmogorov complexity. Consider thefollowing proce-
dure (Fig. 3; byresamplinga clause we mean that all variables in this clause get
fresh random values). It is easy to see that this procedure satisfies the specification
if terminates (induction).

{Clause C is false}

procedure Fix (C: clause)=

resample (C);

for all neighbor clauses C’ of C: if C’ is false then Fix(C’)

{Clause C is true; all the clauses that were true

before the call Fix(C), remain true}

Figure 3: Moses’ resampling algorithm.

The pre- and post-conditions guarantee that we can find a satisfying assign-
ment applying this procedure to all the clauses (assuming the termination). It
remains to show that with high probability this procedure terminates in a polyno-
mial time. Imagine thatFix(X) was called for some clauseX and this call does
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not terminate for a long time. We want to get a contradiction.Crucial observation:
at any moment of the computation the sequence of recursive calls made during the
execution(i.e., the ordered list of clausesC for whichFix(C) was called)together
with the current values of all variables determine completely the random bits used
for resampling. (This will allow us to compress the sequence of random bits used
for resampling and get a contradiction.) Indeed, we can rollback the computa-
tion; note that for every clause in the CNF there is exactly one combination of its
variables that makes it false, and our procedure is called only if the clause is false,
so we know the values before each resampling.

Now we estimate the number of bits needed to describe the sequence of recur-
sive calls. These calls form a tree. Consider a path that visits all the vertices of
this tree (=calls) in the usual way, following the executionprocess (going from a
calling instance to a called one and returning back). Note that called procedure
corresponds to one oft neighbors of the calling one, so each step down in the tree
can be described by 1+ logt bits (we need to say that it is a step down and specify
the neighbor). Each step up needs only 1 bit (since we return to known instance).
The number of steps up does not exceed the number of steps down, so we need
in total 2+ logt bits per call. Sincet = o(2k) by assumption, we can describe the
sequence of calls usingk−O(1) bits per call which is less than the number of
random bits (k per call), so the sequence of calls cannot be long.

7.2 Berry, Gödel, Chaitin, Raz

Chaitin found (and popularized) a proof of Gödel incompleteness theorem based
on the Berry paradox (“the smallest integer not definable by eight words”). He
showed that statements of the form “C(x) > k” where x is a string andk is a
number, can be proved (in some formal theory, e.g., Peano arithmetic) only for
bounded values ofk. Indeed, if it were not the case, we could try all proofs and for
every numbern effectively find some stringxn which has guaranteed complexity
aboven. Informally,xn is some string provably not definable byn bits. But it can
be defined by logn+O(1) bits (logn bits are needed to describen andO(1) bits
describe the algorithm transformingn to xn), so we get a contradiction for large
enoughn. (The difference with the Berry paradox is thatxn is not the minimal
string, just the first one in the proofs enumeration ordering.)

Recently Kritchman and Raz found that another paradox, “Surprise Examina-
tion” (you are told that there will be a surprise examinationnext week: you realize
that it cannot be at Saturday, since then you would know this by Friday evening;
so the last possible day is Friday, and if it were at Friday, you would know this by
Thursday evening, etc.), can be transformed into a proof of second Gödel incom-
pleteness theorem; the role of the day of the examination is played by the number
of incompressible strings of lengthn. (The argument starts as follows: We can
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prove that such a string exists; if it were only one string, itcan be found by wait-
ing until all other strings turn out to be compressible, so weknow there are at
least two, etc. In fact you need more delicate argument that uses some properties
of Peano arithmetic — the same properties as in Gödel’s proof.)

7.3 13th Hilbert problem

Thirteenth Hilbert problem asked whether some specific function (that gives a root
of a degree 7 polynomial as a function of its coefficients) canbe expressed as a
composition of continuous functions of one and two real variables. More than
fifty years later Kolmogorov and Arnold showed that the answer to this question
is positive: any continuous function of several real arguments can be represented
as a composition of continuous functions of one variable andaddition. (For other
classes instead of continuous function this is not the case.) Recently this question
was discussed in the framework of circuit complexity [10].

It has also some natural counterpart in Kolmogorov complexity theory. Imag-
ine that three stringa,b,c are written on the blackboard. We are allowed to write
any string that is simple (has small conditional complexity) relative to anytwo
strings on the board, and can do this several times (but not too many: otherwise
we can get any string by changing one bit at a time). Which strings could appear
if we follow this rule? The necessary condition: strings that appear are simple
relative to(a,b,c). It turns out, however, that it is not enough: some strings are
simple relative to(a,b,c) but cannot be obtained in this way. This is not difficult
to prove (see [21] for the proof and references); what would be really interesting
is to find some specific example, i.e., to give an explicit function with three string
arguments such thatf (a,b,c) cannot be obtained in the way described starting
from randoma, b, andc.

7.4 Secret sharing

Imagine some secret (i.e., password) that should be shared among several people
in such a way that some (large enough) groups are able to reconstruct the secret
while other groups have no information about it. For example, for a secrets that
is an element of the finite fieldF, we can choose a random elementa of the same
field and make three sharesa, a+ s anda+2s giving them to three participants
X,Y,Z respectively. Then each of three participants has no information about the
secrets, since each share is a uniformly distributed random variable. On the other
hand, any two people together can reconstruct the secret. One can say that this
secret sharing scheme implements the access structure{{X,Y},{X,Z},{Y,Z}}
(access structure lists minimal sets of participants that are authorized to know the
secret).
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Formally, a secret sharing scheme can be defined as a tuple of random vari-
ables (one for the secret and one for each participant); the scheme implements
some access structure if all groups of participants listed in this structure can
uniquely reconstruct the value of the secret, and for all other groups (that do not
contain any of the groups listed) their information is independent of the secret. It
is easy to see that any access structure can be implemented; the interesting (and
open) question is to find how big should be the shares (for a given secret size and
a given access structure).

We gave the definition of secret sharing in probability theory framework; how-
ever, one can also consider it in Kolmogorov complexity framework. For exam-
ple, take binary strings as a secret. We may look for three stringsx,y,z such that
C(s|x,y), C(s|y,z), andC(s|x,z) are very small (compared to the complexity of the
secret itself), as well as the values ofI(x : s), I(y : s), andI(z: s). The first require-
ment means that any two participants know (almost) everything about the secret;
the second requirement means each participant alone has (almost) no information
about it.

The interesting (and not well studied yet) question is whether these two frame-
works are equivalent in some sense (the same access structure can be implemented
with the same efficiency); one may also ask whether in Kolmogorov setting the
possibility of sharing secrets with given access structure and share sizes de-
pends only on the complexity ofs. Some partial results were obtained recently
by T. Kaced and A. Romashchenko (private communication). The use of Kol-
mogorov complexity in cryptography is discussed in [2].

7.5 Quasi-cryptography

The notion of Kolmogorov complexity can be used to pose some questions that
resemble cryptography (though probably are hardly practical). Imagine that some
intelligence agency wants to send a messageb to its agent. They know that agent
has some informationa. So their messagef should be enough to reconstructa
from b, i.e.,C(b|a, f ) should be small. On the other hand, the messagef without
a should have minimal information aboutb, so the complexityC(b| f ) should be
maximal.

It is easy to see thatC(b| f ) cannot exceed min(C(a),C(b)) because botha
andb are sufficient to reconstructb from f . Andrej Muchnik proved that indeed
this bound is tight, i.e., there is some messagef that reaches it (with logarithmic
precision).

Moreover, let us assume that eavesdropper knows somec. Then we want to
makeC(b|c, f ) maximal. Muchnik showed that in this case the maximal possible
value (for f such thatC(b|a, f )≈ 0) is min(C(a|c),C(b|c)). He also proved a more
difficult result that bounds the size off , at least in the case whena is complex

15



enough. The formal statement of the latter result:There exists some constant d
such that for every strings a,b,c of length at most N such that C(a|c)≥C(b|c)+
C(b|a)+ d logN, there exists a string f of length at most C(b|a)+d logN such
that C(b|a, f )≤ d logN and C(b|c, f )≥C(b|c)−d logN.
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