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Kolmogorov complexity as a language

Alexander Sheh

Abstract

The notion of Kolmogorov complexity (=the minimal length ®fpro-
gram that generates some object) is often useful as a kirmhgtihge that
allows us to reformulate some notions and therefore pronele intuition.
In this survey we provide (with minimal comments) many difigt exam-
ples where notions and statements that involve Kolmogooowpdexity are
compared with their counterparts not involving complexity

1 Introduction

The notion of Kolmogorov complexity is often used as a took onay ask, how-
ever, whether it is indeed a powerful technique or just a wegyrésent the argu-
ment in a more intuitive way (for people accustomed to thisom.

The goal of this paper is to provide a series of examples tingpat both
viewpoints. Each example shows some statements or notiahase complexity,
and their counterparts that do not mention complexity. Imescases these two
parts are direct translations of each other (and sometingesduivalence can be
proved), in other cases they just have the same underlytngion but reflect it
in different ways.

Hoping that most readers already know what is Kolmogorayq@ihmic, de-
scription) complexity, we still provide a short reminderfionotation and termi-
nology. The complexity of a bit stringis the minimal length of a program that
produce. (The programs are also bit strings; they have no input andpra
duce binary string as output.) I(p) is the output of programp, the complexity
of stringx with respect td is defined a¥p(x) = inf{|p|: D(p) = x}. This defi-
nition depends on the choice of programming language iisenterpreteiD), but
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we can choose an optim@lthat make4p minimal (up toO(1) constant). Fixing
some optimaD, we callKp(x) the Kolmogorov complexitef x and denote it by
K(X).

A technical clarification: there are several different v@ns of Kolmogorov
complexity; if we require the programming language to béd-delimiting or
prefix-free (no program is a prefix of another one), wegefixcomplexity usu-
ally denoted byK (x); without this requirement we g@lain complexity usually
denoted byC(x); they are quite close to each other (the differend@(isgn) for
n-bit strings and usually can be ignored).

Conditionalcomplexity of a string given conditiory is the minimal length of
a program that getgas input and transforms it into Again we need to chose an
optimal programming language (for programs with input) amall languages.
In this way we geplain conditional complexity (x|y); there exists also a prefix
versionK (x|y).

The value ofC(x) can be interpreted as the “amount of information”xin
measured in bits. The value 6{x|y) measures the amount of information that
exists inx but not iny, and the differencé(y : x) = C(x) — C(x|y) measures the
amount of information iny aboutx. The latter quantity is almost commutative
(classical Kolmogorov — Levin theorem, one of the first resabout Kolmogorov
complexity) and can be interpreted as “mutual informatimnx andy.

2 Foundations of probability theory

2.1 Random sequences

One of the motivations for the notion of description comfilewas to define ran-
domness:n-bit string is random if it does not have regularities thabwlus to
describe it much shorter, i.e., if its complexity is closento For finite strings
we do not get a sharp dividing line between random and noderanobjects; to
get such a line we have to consider infinite sequences. Thé popsilar defi-
nition of random infinite sequences was suggested by PerMait. In terms
of complexity one can rephrase it as follows: bit sequeswgey. .. is random
if K(wz...wn) > n—c for somec and for alln. (This reformulation was sug-
gested by Chaitin; the equivalence was proved by SchnoriLawth. See more
in [14,/20].)

Note that in classical probability theory there is no sucimghas an indi-
vidual random object. We say, for example, that randomlyegatied bit se-
quencew, wy ... satisfies the strong law of large numbers (has limit frequenc
lim(cn + ...+ wh)/n equal to ¥2) almost surely, but this is just a measure-
theoretic statement saying that the set otallith limit frequency 12 has mea-



sure 1. This statement (SLLN) can be proved by using Stifiamgnula for facto-
rials or Chernoff bound.

Using the notion of Martin-Lof randomness, we can splisthiiatement into
two: (1) every Martin-Lof random sequence satisfies SLLNg §2) the set of
Martin-Lof random sequences has measure 1. The seconi pageneral state-
ment about Martin-L6f randomness (and is easy to prove)e Jtatement (1)
can be proved as follows: if the frequency of ones in a londpé w deviates
significantly from 22, this fact can be used to compress this prefix, e.g., using
arithmetic coding or some other technique (Lempel-Ziv caragion can be also
used), and this is impossible for a random sequence accpiaihe definition.

(In fact this argument is a reformulation of a martingalegdrfor SLLN.)

Other classical results (e.g., the law of iterated logarijtiergodic theorem)
can be also presented in this way.

2.2 Sampling random strings

In the proceeding of this conference S. Aaronson provestdt st can be con-
sidered as a connection between two meanings of the worddrahfor finite
strings. Assume that we bought some device which is markated random
number generator. It has some physical source of randonmmsads. The adver-
tisement says that, being switched on, this device prodarmebit random string.
What could be the exact meaning of this sentence?

There are two ways to understand it. First: the output dhgtion of this
machine is close to the uniform distribution abit strings. Second: with high
probability the output string is random (=incompressibl€he paper of Aaron-
son establishes some connections between these two gttrpns (using some
additional machinery).

3 Counting arguments and existence proofs

3.1 A simple example

Kolmogorov complexity is often used to rephrase countimgarents. We give a
simple example (more can be foundlini[14]).

Let us prove by counting that there existsrax n bit matrix without 3logn x
3logn uniform minors. (We obtain minors by selecting some rows @ldmns;
the minor isuniformif all its elements are the same.)

Counting: Let us give an upper bound for the number of matrices with uni
form minors. There are at mog#'°9" x 399" positions for a minor (we select
3lognrows and 3log columns). For each position we have 2 possibilities for the



minor (zeros or ones) and’z (3logn)? possibilities for the rest, so the total number
of matrices with uniform minors does not exceed

2 2 2 2
p3logn  y3logn 5 on —9log?n _ o’ =3log’n+1 _ on :

so there are matrices without uniform minors.

Kolmogorov complexity: Let us prove that incompressible matrix does not
have uniform minors. In other words, let us show that matttka uniform minor
is compressible. Indeed, while listing the elements of suctatrix we do not need
to specify all 9logn bits in the uniform minor individually. Instead, it is endug
to specify the numbers of the rows of the minor (3hogumbers; each contains
logn bits) as well as the numbers of columns (this gives togethw’® bits), and
to specify the type of the minor (1 bit), so we need only log 1 < 9log? n bits
(plus the bits outside the minors, of course).

3.2 One-tape Turing machines

One of the first results of computational complexity theorgsvithe proof that
some simple operations (checking symmetry or copying)ireqquadratic time
when performed by one-tape Turing machine. This proof besovery natural if
presented in terms of Kolmogorov complexity.

Assume that initially some stringof lengthn is written on the tape (followed
by the end-marker and empty cells). The task is to copyst after the marker
(Fig.[1).

= #] - [E#Fs

Figure 1: Copying a bit string.

It is convenient to consider a special case of this task whefirtst half ofx is
empty (Fig[2) and the second hglfs an incompressible string of lengti2.
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Figure 2. Special case: the first halfxofs empty.

To copyy, our machine has to mowg 2 bits of information across the gap of
lengthn/2. Since the amount of information carried by the head of T¥ixisd
(logm bits for TM with m states), this requireQ(n?) steps (the hidden constant
depends on the number of states).



The last statement can be formalized as follows. Fix somddsbne inside
the gap and install a “customs office” that writes down théestaf TM when it
crosses this border from left to right. This record (togethi¢h the office position)
is enough to reconstrugt(since the behavior of TM on the right of the border is
determined by this record). So the record should b@@f) size. This is true for
each ofQ(n) possible positions of the border, and the sum of the recowgthes is
a lower bound for the number of steps.

3.3 Forbidden patterns and everywhere complex sequences

By definition the prefixes of a random sequence have complakieasin— O(1)
wheren is the length. Can it be true for all substrings, not only pes? No: if it
Is the case, the sequence at least should be random, andrardaence contains
every combination of bits as a substring.

However, Levin noted that the weaker conditié(x) > a|x| — O(1) can be
satisfied for all substrings (for any fixed < 1). Such a sequence can be called
a-everywhere complesequence. Levin suggested a proof of their existence using
some properties of Kolmogorov complexity [6].

The combinatorial counterpart of Levin’s lemma is the fallog statement:
let a < 1 be a real number and IBtbe a set of strings that contains at mo$t 2
strings of lengtm. Then there exists a constanénd a sequena® that does not
have substrings of length greater tratiat belong td-.

It can be shown that this combinatorial statement is egeintab the original
formulation (so it can be formally proved used Kolmogorovngdexity); how-
ever, there are other proofs, and the most natural one usestdocal lemma.
(Seel19].)

3.4 Gilbert—Varshamov bound and its generalization

The main problem of coding theory is to find a code with maxicedinality

and given distance. This means that for a gimeaind givend we want to find

some set of-bit strings whose pairwise Hamming distances are at l@a3the

strings are called code words, and we want to have as mangwof 83 possible.
There is a lower bound that guarantees the existence ofdadgs called Gilbert—
Varshamov bound.

The condition for Hamming distances guarantees that fese leand /2) bit
errors during the transmission do not prevent us from rdcocting the original
code word. This is true only for errors that change some ljtsay, some bit is
deleted and some other bit is inserted in a different pldge,kind of error may
be irreparable.



It turns out that we can replace Hamming distance by infoilonatistance and
get almost the same bound for the number of codewords. Gamstone family
of n-bit strings{xy, 2, ...}. We say that this family is-separategif C(x;|xj) > d
for i # j. This means that simple operations of any kind (not only banges)
cannot transfornx; to x;. Let us show that for everg there exists @-separated
family of sizeQ(2"9). Indeed, let us choose randomly strings . ., xy of length
n. (The value ofN will be chosen later.) For givenand | the probability of
the eventC(x|xj) < d is less than 2/2". For giveni the probability that; is
not separated frorsome x (in any direction) does not exceedll 224 /2" so the
expected number of that are “bad” in this sense is less thamzzzd/zn. Taking
N = Q(2"-9), we can make this expectation less thaf2. Then we can take the
values ofxy, ..., Xy that give less thal /2 badx; and delete all the bax], thus
decreasingN at most twice. The decreasbds still Q(2"9).

It is easy to see that the Gilbert—Varshamov bound (up to smnstant) is a
corollary of this simple argument. (See [22] for more apgiiens of this argu-
ment.)

4 Complexity and combinatorial statements

4.1 Inequalities for Kolmogorov complexity and their
combinatorial meaning

We have already mentioned Kolmogorov—Levin theorem abdwisymmetry of
algorithmic information. In fact, they proved this symnyesis a corollary of the
following result: C(x,y) = C(x) + C(y|x) + O(logn). Herex andy are strings of
length at mosh andC(x,y) is the complexity of some computable encoding of
the pair(x,y).

The simple direction of this inequalitZ(x,y) < C(x) + C(y|x) + O(logn),
has equally simple combinatorial meaning. lkebe a finite set of pairgx,y).
Consider the first projection &, i.e., the seAx = {x: Jy(x,y) € A}. For eachx
in Ax we also consider theh section ofA, i.e., the sefx = {y: (x,y) € A}. Now
the combinatorial counterpart for the inequality can benfalated as follows: if
#Ax < 2Kand #A < 2' for everyx, then #A < 2!, (To make the correspondence
more clear, we can reformulate the inequality as follow€(K) < kandC(y|x) <
|, thenC(x,y) < k+1+0O(logn).)

The more difficult directionC(x,y) > C(x) + C(y|x) — O(logn), also has a
combinatorial counterpart, though more complicated. Isatewrite this inequal-
ity as follows: for every integerk andl, if C(x,y) < k+1, then eithelC(x) <
k+O(logn) or C(y|x) <1+ O(logn). Itis easy to see that this statement is equiv-
alent to the original one. Now we can easily guess the connilahcounterpart:



if Ais a set of pairs that has at mo&t2elements, then one can cover it by two
setsA’ andA” such that A} < 2¢and #/ < 2! for everyx.

Kolmogorov—Levin theorem implies also the inequali/(&,y,z) < C(X,y) +
C(y,2) + C(x,2). (Here are below we omiD(logn) terms, wheren is an up-
per bound of the length for all strings involved.) Inde&dx,y,z) = C(x,y) +
C(Zx,y) = C(y,z) + C(X|y,z). So the inequality can be rewritten @$z|x,y) +
C(xly,2) <C(x,2). It remains to note that(x, z) = C(x) +C(z]x), thatC(zx,y) <
C(zx) (more information in the condition makes complexity smdlland that
C(xly,z) < C(x) (condition can only help).

The combinatorial counterpart (and the consequence ofntguality about
complexities) says that fak C X xY x Z we have(#A)2 <HAx Yy -#Ax 7 - #Av Z,
whereAy y is the projection ofA onto X x Y, i.e., the set of all pairéx,y) such
that(x,y,z) € Afor somez e Z, etc. In geometric terms: i is a 3-dimensional
body, then the square of its volume does not exceed the proflaceas of three
its projections (onto three orthogonal planes).

4.2 Common information and graph minors

We have defined the mutual information in two striregb asl(a: b) = C(b) —
C(bja); it is equal (with logarithmic precision) t€(a) + C(b) —C(a,b). The
easiest way to construct some strirgsind b that have significant amount of
mutual information is to take overlapping substrings ofradi@an (incompressible)
string; it is easy to see that the mutual information is clas¢he length (and
complexity) of their overlap.

We see that in this case the mutual information is not an attsuantity, but
is materialized as a string (the common partacdndb). The natural question
arises: is it always the case? i.e., is it possible to find Y@rye paira,b some
stringx such thaC(x|a) ~ 0, C(x|b) ~ 0 andC(x) ~ I (a: b)?

It turns out that it is not always the case (as found by Andraghhik [5] in
Kolmogorov complexity setting and earlier by Gacs andn&ir[7] in Shannon
information setting which we do not describe here — it is hat tsimple).

The combinatorial counterpart of this question: consid@partite graph with
(approximately) 2 vertices on the left and®vertices on the right; assume also
that this graph is almost uniform (all vertices in each patehapproximately
the same degree). Let De the total number of edges. A typical edge connects
some vertexa on the left and some vertdx on the right, and corresponds to
a pair of complexityy whose first componerd has complexitya and second
componenb has complexity3, so the “mutual information” in this edge &=
o + B —y. The question whether this information can be extractedesponds
to the following combinatorial question: can all (or mostiges of the graph



be covered by (approximatelyf 2ninors of size 22 x 26-92 (Such a minor
connects some® 2 vertices on the left with2-2 vertices on the right.)

For example, consider some finite fi¢tdof size 2' and a plane over this field
(i.e., two-dimensional vector space). Consider a bigagtiaph whose left vertices
are points on this plane, right vertices are lines, and edgesspond to incident
pairs. We have about®? vertices is each part, and abodf 2dges. This graph
does not have 2 2 minors (two different points on a line determine it unigyel
Using this property, one can show tdtx M minor could cover onyO(M+v/M)
edges. (Assume thad vertices on the left side of such a minor have degrees
di,...,dw in the minor. Then foith vertex on the left there ar@(diz) pairs of
neighbor vertices on the right, and all these pairs arereiffe soy di2 < O(M?);
Cauchy inequality then implies thatd; < O(M+/M), and this sum is the number
of edges in the minor).

Translating this argument in the complexity language, wetlge following
statement: for a random pd, b) of incident point and line, the complexity af
andb is about 2, the complexity of the pair is abounh3the mutual information
is aboutn, but it is not extractable: there is no strirngpf complexityn such that
C(x|a) andC(x|b) are close to zero. In fact, one can prove that for such a pair
(a,b) we haveC(x) < 2C(x|a) + 2C(x|b) + O(logn) for all x.

4.3 Almost uniform sets

Here is an example of Kolmogorov complexity argument thaiiffscult to trans-
late to combinatorial language (though one may find a contdiiz proof based
on different ideas). Consider the getf pairs. Let us compare the maximal size of
its section®\x and the average size (that is equal &/#Ax; we use the same no-
tation as in section 4l.1); the maximal/average ratio wilthkkedX-nonuniformity
of A. We can defin&-nonuniformity in the same way.

Claim: every set A of pairs having cardinality N can be represented anion
of polylog(N) sets whose X- and Y -nonuniformity is boundegdlylog(N).

|dea of the proof: consider for each péity) € A a quintuple of integers

p(x,y) = (C(x),C(y),C(x]y),C(y[x),C(x,y))

where all complexities are taken with additional condi#orEach elemen(xg, yo)

in A is covered by the sdtl(xp,yp) that consists of all pairgx,y) for which
p(X,y) < p(xo,Yo) (coordinate-wise). The number of elementsUiixg,Yo) is
equal to £00¥) up to polynomial inN factors. Indeed, it cannot be greater be-
causeC(x,y) < C(xo,Yo) for all pairs(x,y) € U(xo,Y¥o). On the other hand, the
pair (Xo,Yo) can be described by its ordinal number in the enumeratiofi efea
ments ofU (Xo, Yo). To construct such an enumeration we need to know only the



setAandp(xp,Yo). The setAis given as a condition, analxo, yo) has complexity
O(logN). So if the size o) (xo, yo) were much less tharf2o¥o), we would get a
contradiction.

Similar argument shows that projectib{xo, yo)x has about %) elements.
Therefore, the average section size is ab&20)-C0): and the maximal sec-
tion size does not exce€yp|xo) sinceC(y|x) < C(yo|xo) for all (x,y) € U (xo, Yo).

It remains to note thaC(yp|Xo) ~ C(Xo,Yo) — C(Xo) according to Kolmogorov—
Levin theorem, and that there are only polynomially manfedént setd) (x,y).

Similar argument can be applied to sets of triples, quaesuptc. For a com-

binatorial proof of this result (in a stronger version) &g [

5 Shannon information theory

5.1 Shannon coding theorem

A random variable that hask values with probabilitieps, . .., px, hasShannon
entropy H¢) = 3 pi(—logpi). Shannon coding theorem (in its simplest version)
says that if we want to transmit a sequenceNoindependent values d with
small error probability, messages MH (&) + o(N) bits are enough, while mes-
sages oNH(&) —o(N) bits will lead to error probability close to 1.

Kolmogorov complexity reformulationwith probability close tol the se-
quence of N independent valuesafias complexity NKE ) +o(N).

5.2 Complexity, entropy and group size

Complexity and entropy are two ways of measuring the amotintformation

(cf. the title of the Kolmogorov’s paper [11] where he intuogéd the notion of
complexity). So it is not surprising that there are many Wa@reesults. There are
even some “meta-theorems” that relate both notions. A. Rbistaenko([8] has
shown that the linear inequalities that relate complesite2' — 1 tuples made
of nstringsay, ..., a,, are the same as for Shannon entropies of tuples maule of
random variables.

In fact, this meta-theorem can be extended to provide coabdial equiva-
lents for complexity inequalities [18]. Moreover, in [4]ig shown that the same
class of inequalities appears when we consider cardiesiiti subgroups of some
finite group and their intersections!



5.3 Muchnik’s theorem

Letaandb be two strings. Imagine that somebody kndwand wants to knova.
Then one needs to send at le@sa|b) bits of information, i.e., the shortest pro-
gram that transformisto a. However, if we want the message to be not only short,
but also simple relative ta, the shortest program may not work. Andrej Much-
nik [15] has shown that it is still possibléor every two strings a and b of length
at most n there exists a string x such thakC< C(a|b) + O(logn), C(a|x,b) =
O(logn), and Qx|a) = O(logn). This result probably is one of the most funda-
mental discoveries in Kolmogorov complexity theory of thstldecade. It corre-
sponds to Wolf—Slepyan theorem in Shannon informationrihetbe latter says
that for two dependent random variablesand 8 and N independent trials of
this pair one can (with high probability) reconstruxy,. .., ayn from Bq,..., By

and some message that is a functionagf...,an and has bit length close to
NH(a|B). However, Muchnik and Wolf-Slepyan theorem do not seem to be
corollaries of each other (in any direction).

5.4 Romashchenko’s theorem

Leta, 3,y be three random variables. The mutual informatioor iand3 wheny
is known is defined a(a : B|y) =H(a,y)+H(B,y)+H(a,B,y) —H(y). Itis
equal to zero if and only ir and are conditionally independent for every fixed
value ofy.

One can show the followindf | (a : Bly) =1(a :y|B) =1(B:yla) =0, then
one can extract all the common information framp, y in the following sense
there is a random variableg such that Hyx|a) = H(x|B) = H(x|y) = 0 and
a, 3,y are independent random variables whems known (The latter statement
can be written as(a : By|x) =1(B:ay|x)=1(y:aB|x)=0.)

In algebraic terms: if in a 3-dimensional matrix with norgagve elements all
its 2-dimensional sections have rank 1, then (after a deitarmutation for each
coordinate) it is made of blocks that have tensor rank 1. l{feéack corresponds
to some value ofk.)

Romashchenko proved [17] a similarly looking result for iKolgorov com-
plexity: if a,b,c are three strings such thigla: b|c), I (b: c|a) andl (a: c|b) are
close to zero, then there existsuch thatC(x|a), C(x|b), C(x|c) are close to zero
and strings, b, c are independent whetis known, i.e.] (a: bc/x), | (b: ac/x) and
I (c: ablx) are close to zero.

This theorem looks like a direct translation of the inforroattheory result
above. However, none of these results looks a corollary efathher one, and
Romashchenko’s proof is a very ingenious and nice argurhabhtis nothing to
do with the rather simple proof of the information-theczetersion.
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6 Computability (recursion) theory

6.1 Simple sets

Long ago Post definesimpleset as (recursively) enumerable set whose comple-
ment is infinite but does not contain an infinite enumerabtgsee, e.g., [16],
Sect. 8.1). His example of such a set is constructed as feiltet\W be theith
enumerable set; wait until a numbgr>- 2i appears iWW and include first such
numberj into the enumeration. In this way we enumerate som&gath infinite
complement$ may contain at most integers less thann; on the other hand,
Sintersects any infinite enumerable ¥4t becaus&\ (being infinite) contains
some numbers greater than 2

It is interesting to note that one can construct a naturahgt@of a simple set
using Kolmogorov complexity. Let us say that a striig simple ifC(x) < |x|/2.
The setS of simple strings is enumerable (a short program can be d#sed if it
exists). The complement & (the set of “complex” strings) is infinite since most
n-bit strings are incompressible and therefore non-simpleally, if there were
an infinite enumerable s&f, X, ... of non-simple strings, the algorithm “find the
firstx such thatx;| > 2n” will describe some string of complexity at leastising
only logn+ O(1) bits (needed for the binary representatiompf

Similar argument, imitating Berry’s paradox, was used byi@h to provide
a proof for Godel incompleteness theorem (see Sedt. 7@p &lso a (somewhat
mystical) coincidence: the word “simple” appears in two @bately different
meanings, and the set of all simple strings turns out to belsim

6.2 Lower semicomputable random reals

A real number is computablef there is an algorithm that computes rational ap-
proximations tax with any given precision. An old example of E. Specker shows
that a computable series of non-negative rationals candémnée sum that is not
computable. (Lefny,ny, ...} be a computable enumeration without repetitions of
an enumerable undecidable $&ttheny; 27" is such a series.) Sums of com-
putable series with non-negative rational terms are cétle@r semicomputable
reals.

The reason why the limit of a computable series is not conippeitia that the
convergence is not effective. One can ask whether one caelsmnclassify
how ineffective the convergence is. There are several apgpes. R. Solovay
introduced some reduction on lower semicomputable reals:( if o +y=cf3
for some lower semicomputabjeand some rationa > 0. Informally, this means
thata converges “better” thaf (up to a constant). This partial quasi-ordering
has maximal elements call&blovay completesals. It turned out (seél[3,/13])
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that Solovay complete reals can be characterized as lowd@csmputable reals
whose binary expansion is a random sequence.

Another characterization: we may consider thedulus of convergencee.,
a function that for givem gives the first place where the tail of the series becomes
less than 2". It turns out that computable series has a random sum if alydfon
the modulus of convergence grows faster tB&in — O(1)) whereBP(k) is the
maximal computation time for all terminatirkgbit self-delimited programs.

7 Other examples

7.1 Constructive proof of Lovasz local lemma

Lovasz local lemma considers a big (unbounded) number oltevieat have small
probability and are mostly independent. It guaranteesstbiatetimes (with posi-
tive probability, may be very small) none of this events happ We do not give
the exact statement but show a typical applicatiany CNF made of k-literal
clauses where each clause has b(2) neighbors, is satisfiabl¢Neighbors are
clauses that have a common variable.)

The original proof by Lovasz (a simple induction proving solower bound
for probabilities) is not constructive in the sense thabiésinot provide any algo-
rithm to find the satisfying assignment (better than exheeisearch). However,
recently Moser discovered that naive algorithm: “resanctdeses that are false
until you are done” converges in polynomial time with higlolpability, and this
can be explained using Kolmogorov complexity. Considerftiewing proce-
dure (Fig[3B; byresamplinga clause we mean that all variables in this clause get
fresh random values). Itis easy to see that this procedtisfisa the specification
if terminates (induction).

{Clause C is false}
procedure Fix (C: clause)=
resample (C);
for all neighbor clauses C’> of C: if C’ is false then Fix(C’)
{Clause C is true; all the clauses that were true
before the call Fix(C), remain true}

Figure 3: Moses’ resampling algorithm.

The pre- and post-conditions guarantee that we can find sfysag assign-
ment applying this procedure to all the clauses (assumiagdimination). It
remains to show that with high probability this procedumeni@ates in a polyno-
mial time. Imagine thaFix(X) was called for some clausé and this call does
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not terminate for a long time. We want to get a contradictiorucial observation:
at any moment of the computation the sequence of recurdigewade during the
executior(i.e., the ordered list of claus€sfor whichFix(C) was calledfogether
with the current values of all variables determine completiee random bits used
for resampling (This will allow us to compress the sequence of random lsiésiu
for resampling and get a contradiction.) Indeed, we canbatk the computa-
tion; note that for every clause in the CNF there is exactly combination of its
variables that makes it false, and our procedure is callgdiftihe clause is false,
so we know the values before each resampling.

Now we estimate the number of bits needed to describe therequwf recur-
sive calls. These calls form a tree. Consider a path thas\adlithe vertices of
this tree (=calls) in the usual way, following the executmocess (going from a
calling instance to a called one and returning back). Noa¢ ¢hlled procedure
corresponds to one dheighbors of the calling one, so each step down in the tree
can be described by-logt bits (we need to say that it is a step down and specify
the neighbor). Each step up needs only 1 bit (since we retukndwn instance).
The number of steps up does not exceed the number of steps dowre need
in total 2+ logt bits per call. Sincé = o(2) by assumption, we can describe the
sequence of calls using— O(1) bits per call which is less than the number of
random bitsk per call), so the sequence of calls cannot be long.

7.2 Berry, Godel, Chaitin, Raz

Chaitin found (and popularized) a proof of Godel incomghetss theorem based
on the Berry paradox (“the smallest integer not definableibiitevords”). He
showed that statements of the for8(X) > k” where x is a string andk is a
number, can be proved (in some formal theory, e.g., Peattuagtic) only for
bounded values & Indeed, if it were not the case, we could try all proofs and fo
every numben effectively find some string, which has guaranteed complexity
aboven. Informally, x, is some string provably not definable byits. But it can
be defined by log+ O(1) bits (logn bits are needed to describeandO(1) bits
describe the algorithm transformimgto x,), so we get a contradiction for large
enoughn. (The difference with the Berry paradox is th@tis not the minimal
string, just the first one in the proofs enumeration ordejing

Recently Kritchman and Raz found that another paradox,pi$se Examina-
tion” (you are told that there will be a surprise examinatent week: you realize
that it cannot be at Saturday, since then you would know thiSriday evening;
so the last possible day is Friday, and if it were at Friday, would know this by
Thursday evening, etc.), can be transformed into a proo¢cdisd Godel incom-
pleteness theorem; the role of the day of the examinatiolajsed by the number
of incompressible strings of length (The argument starts as follows: We can
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prove that such a string exists; if it were only one stringaih be found by wait-

ing until all other strings turn out to be compressible, sokmew there are at

least two, etc. In fact you need more delicate argument theg some properties
of Peano arithmetic — the same properties as in Godel’'sfproo

7.3 13th Hilbert problem

Thirteenth Hilbert problem asked whether some specifictfangthat gives a root
of a degree 7 polynomial as a function of its coefficients) lsarexpressed as a
composition of continuous functions of one and two realalalgs. More than
fifty years later Kolmogorov and Arnold showed that the ansiwehis question
is positive: any continuous function of several real argataean be represented
as a composition of continuous functions of one variableauition. (For other
classes instead of continuous function this is not the p&sscently this question
was discussed in the framework of circuit complexity [10].

It has also some natural counterpart in Kolmogorov complekieory. Imag-
ine that three string, b, c are written on the blackboard. We are allowed to write
any string that is simple (has small conditional complexiglative to anytwo
strings on the board, and can do this several times (but oaintny: otherwise
we can get any string by changing one bit at a time). Whicingsrcould appear
if we follow this rule? The necessary condition: stringsttappear are simple
relative to(a,b,c). It turns out, however, that it is not enough: some strings ar
simple relative tda, b, c) but cannot be obtained in this way. This is not difficult
to prove (see[21] for the proof and references); what woelddally interesting
is to find some specific example, i.e., to give an explicit fiorcwith three string
arguments such thédt(a,b,c) cannot be obtained in the way described starting
from randoma, b, andc.

7.4 Secret sharing

Imagine some secret (i.e., password) that should be sharedgseveral people
in such a way that some (large enough) groups are able tostgaonthe secret
while other groups have no information about it. For examfalea secres that
is an element of the finite field, we can choose a random elemartf the same
field and make three sharasa+ s anda+ 2s giving them to three participants
X,Y,Z respectively. Then each of three participants has no irdtion about the
secrets, since each share is a uniformly distributed random vagiabh the other
hand, any two people together can reconstruct the secret.c@&m say that this
secret sharing scheme implements the access strugfde’'}, {X,Z},{Y,Z}}
(access structure lists minimal sets of participants treatathorized to know the
secret).
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Formally, a secret sharing scheme can be defined as a tupd@adm vari-
ables (one for the secret and one for each participant); chense implements
some access structure if all groups of participants listedhis structure can
uniquely reconstruct the value of the secret, and for akogroups (that do not
contain any of the groups listed) their information is ineiegent of the secret. It
IS easy to see that any access structure can be implememedteresting (and
open) question is to find how big should be the shares (forengsecret size and
a given access structure).

We gave the definition of secret sharing in probability tlygdcamework; how-
ever, one can also consider it in Kolmogorov complexity fesmrark. For exam-
ple, take binary string as a secret. We may look for three stringg z such that
C(slx,y), C(s]y,z), andC(s|x,z) are very small (compared to the complexity of the
secret itself), as well as the valued ¢t : s), 1 (y: s), andl (z: s). The first require-
ment means that any two participants know (almost) evargthbout the secret;
the second requirement means each participant alone nassno information
about it.

The interesting (and not well studied yet) question is whethese two frame-
works are equivalent in some sense (the same access stroatulbe implemented
with the same efficiency); one may also ask whether in Kolmagsetting the
possibility of sharing secred with given access structure and share sizes de-
pends only on the complexity & Some partial results were obtained recently
by T. Kaced and A. Romashchenko (private communication)e U$e of Kol-
mogorov complexity in cryptography is discussed.in [2].

7.5 Quasi-cryptography

The notion of Kolmogorov complexity can be used to pose sounesiipns that
resemble cryptography (though probably are hardly praBtitmagine that some
intelligence agency wants to send a mesdatgeits agent. They know that agent
has some informatioa. So their messagé should be enough to reconstruect
fromb, i.e.,C(b|a, f) should be small. On the other hand, the mesdagéhout

a should have minimal information aboht so the complexity(b| f) should be
maximal.

It is easy to see thaZ(b|f) cannot exceed m{&(a),C(b)) because botla
andb are sulfficient to reconstruttfrom f. Andrej Muchnik proved that indeed
this bound is tight, i.e., there is some mességkat reaches it (with logarithmic
precision).

Moreover, let us assume that eavesdropper knows sorniden we want to
makeC(b|c, f) maximal. Muchnik showed that in this case the maximal pdssib
value (forf such thaC(bja, f) ~ 0) is min(C(alc),C(b|c)). He also proved a more
difficult result that bounds the size d¢f at least in the case whenis complex
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enough. The formal statement of the latter restliliere exists some constant d
such that for every strings b, c of length at most N such tha{&c) > C(b|c) +
C(bla) + dlogN, there exists a string f of length at mosthfa) + dlogN such
that C(bja, f) < dlogN and Qbjc, f) > C(b|c) — dlogN.
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