Symbolic Model Checking Commitment
Protocols Using Reduction

Mohamed El-Menshawy!, Jamal Bentahar!, and Rachida Dssouli?

1 Concordia University, Faculty of Engineering and Computer Science, Canada
2 Concordia University, Canada and UAE University, Faculty of Inf. Tech., UAE
m elme@encs.concordia.ca, bentahar@ciise.concordia.ca,
dssouli@ciise.concordia.ca

Abstract. Using model checking to verify that interaction protocols
have given properties is widely recognized as an important issue in multi-
agent systems where autonomous and heterogeneous agents need to suc-
cessfully regulate and coordinate their interactions. In this paper, we
investigate the use of symbolic model checkers to verify the compliance
of a special kind of interaction protocols called commitment protocols
with some properties such as liveness and safety. These properties are
expressed as formulae in a new temporal logic, called CTLC, which ex-
tends the temporal logic CTL with modality for social commitments. Our
approach shows that the problem of model checking CTLC can be re-
duced to the problem of model checking either CTLK or ARCTL, which
are extensions of CTL. We finally present an implementation and report
on the experimental results of verifying the Contract Net Protocol mod-
eled in terms of commitments and associated actions using the symbolic
model checkers MCMAS and extended NuSMV.

Keywords: Multi-Agent Systems, Commitment Protocols, Symbolic
Model Checking, Protocol Properties.

1 Introduction

Over the last two decades, the researchers on Multi-Agent Systems (MASs) have
been focused both on defining a clear and standard semantics for Agent Commu-
nication Languages (ACLs), such as FIPA—AC7 and developing multi-agent in-
teraction protocols. The developers of FIPA-ACL have addressed the challenge of
incorporating ACL and protocols by proposing a set of multi-agent interaction pro-
tocols, called FIPA-ACL protocoldd. These protocols can be viewed as specific ACLs
designed for particular purposes such as Request Interaction Protocol (RIP), En-
glish Auction Interaction Protocol (EAIP) and Contract Net Protocol (CNP). In

! This term stands for the Foundation for Intelligent Physical Agents’ Agent Communi-
cation Language—see for examples, FIPA-ACL specifications (1997, 1999, 2001, 2002),
http://www.fipa.org/repository/aclspecs.php3

2 See for examples, FIPA-ACL Interaction Protocols (2001, 2002),
http://www.fipa.org/repository/ips.php3

A. Omicini, S. Sardina, and W. Vasconcelos (Eds.): DALT 2010, LNAI 6619, pp. 1854203| 2011.
© Springer-Verlag Berlin Heidelberg 2011

http://www.fipa.org/repository/aclspecs.php3
http://www.fipa.org/repository/ips.php3

186 M. El-Menshawy, J. Bentahar, and R. Dssouli

particular, CNP is designed from online business point of view to reach agreements
among interacting agents. FIPA-ACL protocols have succeed in specifying the rules
governing interactions and coordinating dialogues among agents by: 1) restricting
the range of allowed follow-up communicative acts at any stage during a dialogue;
and 2) describing the sequence of messages that FIPA compliant agents can ex-
change for particular applications. However, these protocols are quite rigid to be
used by autonomous agents (that do what is best for themselves) as they are spec-
ified so that agents must execute them without possibility of handling exceptions
that appear at run time, which restricts the protocols’ flexibility.

Recently, social approaches have been proposed to overcome FIPA-ACL pro-
tocols’ shortcomings. In particular, social approaches advocate declarative repre-
sentations of protocols and give semantics to protocol messages in terms of social
concepts. Bentahar et al. [2] have proposed a framework capable of specifying
effective multi-agent interaction protocols using a combination of argumenta-
tion theory and social commitments. Fornara and Colombetti [I2] have based
the semantics of agent communication protocols on social commitments such
that the meanings of exchanged messages are denoted by social commitments
and their associated actions. Yolum and Singh [29] have developed an approach
to flexibly specify multi-agent interaction protocols wherein protocols capture
the dynamic behaviors of the agents in terms of creation and manipulation of
commitments to one another. All these protocols have the characteristic of being
commitment-based and are called commitment protocols. Furthermore, Chopra,
Yolum and Singh have developed a formalism to represent and reason about
commitment protocols called commitment machines based on either event cal-
culus or non-monotonic theory of actions in terms of causal logic [28/[6]. This
formalism can represent flexible protocols that enable agents to exercise their
autonomy by dealing with exceptions and making choices. In the same line of
research, Singh [24] has generalized the formalism of commitment machines to
include natural non-terminal protocols (or protocols that have cycles) analogous
to those in real-life business applications.

In addition to providing flexibility during run time, these approaches make
it possible to provide a meaningful basis for compliance of agents with a given
protocol. This is because commitments can be stored publicly (or observed by
all participating agents) and agents that do not satisfy their commitments at
the end of the protocol can be identified as non-compliant [25/7126]. In order for
these approaches to make use of all these advantages, they should integrate rig-
orous design and automatic verification of interaction protocols within the same
framework. For instance, Venkatraman et al. [25] have presented an approach for
locally testing whether or not the behavior of an agent in open systems complies
with a given commitment protocol specified in Computational Tree Logic (CTL).
Cheng [5] and Desai et al. [I0] have used OWL-P to specify commitment pro-
tocols and their compositions. To verify their protocols against some properties
expressed in Linear Temporal Logic (LTL), they translate them into PROMELA
code, which is the input language of the automata-based model checker SPIN.
Yolum [27] has defined three “generic properties” taken from distributed systems

Symbolic Model Checking Commitment Protocols Using Reduction 187

that can be incorporated in a design tool to “semi-automate” the specification
of commitment protocols at design time.

Motivation. In this paper, we aim to introduce CTLC, a CTL-like logic for
social commitments. We present a fully-automatic verification technique of com-
mitment protocols specified on the basis of this logic using symbolic model check-
ing. This is done by introducing a mechanism to reduce the problem of model
checking CTLC to the problem of model checking either CTLK [21], to directly
use the MCMAS symbolic model checker [I7], or ARCTL [20] to use the extended
version of the NuSMV symbolic model checker introduced in [16]. The present
paper inspires by the methodology introduced in [16] to perform the reduction.
Finally, we present experimental results for the verification of the Contract Net
Protocol, taken from e-business domain as a motivating example and specified
in the proposed logic, against some desirable properties using MCMAS and the
extended version of NuSMV.

Overview of Paper. The remainder of this paper is organized as follows. We
begin in Section [2 by presenting the definition of social commitments and briefly
summarizing the formalism of the interpreted systems used as the model of our
CTLC logic. We then discuss generally the problem of model checking using
MCMAS and NuSMV. In Section Bl we present CTLK and ARCTL and how
the problem of model checking CTLC can be reduced to the problem of model
checking either CTLK or ARCTL. Thereafter, we proceed to introduce com-
mitment protocols and their translation along with expressing some properties
in Section [l The experimental results of verifying the Contract Net Protocol
using MCMAS and the extended version of NuSMV is discussed in Section Bl In
Section [6, we discuss relevant literature. We conclude the paper in Section [

2 Preliminaries

2.1 Commitments and Associated Actions

Social commitments have been recently gained attentions in MASs community.
This is because they are formal and concise methods for describing how au-
tonomous and heterogeneous agents communicate with one another. In partic-
ular, a social commitment is an engagement in the form of business contract
between two agents: a creditor who commits to a course of action and a debtor
on behalf of whom the action is done. In this paper, we distinguish between two
types of commitments: unconditional commitment and conditional commitment
that we need to represent commitment protocols.

Notation 1. Unconditional commitments are denoted by C(i,],), where i is
the debtor, j is the creditor and ¢ is a well-formed formula (wff) in the proposed
CTLC logic representing the commitment content. C(i, j, ©) means i socially (i.e.,
publicly) commits to j that ¢ holds.

Notation 2. Conditional commitments are denoted by v — C(i,],), where
“—7 s the logical implication, i, 7 and ¢ have the above meanings and ¢ is a
wff in the proposed CTLC logic representing the commitment condition.

188 M. El-Menshawy, J. Bentahar, and R. Dssouli

We will use CC(3, j, ¥, ¢) as an abbreviation of) — C(, j,). In order to manip-
ulate social commitments during the progress of protocols, we introduce a set
of associated actions (or operations), called commitment actions. These actions
are used to capture dynamic behavior of participating agents. Defined in [23],
these actions can be classified into two party actions and three party actions.
The former ones need only two agents to be performed: Create, Withdraw,
Fulfill, Violate and Release. The latter ones need an intermediate agent to be
completed: Delegate. In the following, we present the declarative representation
of these actions where ¢, j and k denote agent names.

— Create(i, j,C(i, 7, ¢)) to establish a new commitment.

— Withdraw(i, j,C(%, j, ¢)) to cancel an existing commitment.

— Fulfill(i, §,C(i,4,)) to satisfy the commitment content.

— Violate(i, §,C(i, j,)) to reflect there is no way to satisfy the commitment
content.

— Release(4,1,C(i,j,¢)) to free a debtor from carrying out his commitment.

— Delegate(i, k,C(i,j,»)) to delegate an existing commitment to another
debtor to satisfy it on his behalf.

2.2 Interpreted Systems and CTLC Logic

An interpreted system as introduced by Fagin et al. [11] is a formalism that
models the temporal evolution of a system of agents to reason about knowledge
and temporal properties. We start with assuming that a MAS is composed of n
agents A = {1,...,n}. Each agent i is characterized by a set of local states L; and
a set of local actions Act;. In this paper, these actions include the commitment
actions and a special action €; denoting the “null” action for agent i. Thus,
when an agent performs the null action, the local state of this agent remains
the same. Moreover, for each agent i € A, I; defines an initial state and a local
protocol P; : L; — 24¢ which is a function that maps the current state of the
agent ¢ with the set of enabled actions for that state. The agents act within an
“environment” (e), which can be also modeled with a set of local states L., a set
of local actions Act. and a local protocol P.. This can be seen as a special agent
that can capture any information that may not pertain to a specific agent.

Definition 1 ([I1]). A set G of global states in a MAS is: G C L;x... XLy XL,
where a state g = (l1,...,ln,le) € G can be seen as a “snapshot”of all agents
in the MAS at a given time and l;(g) represents the local state of agent i in the
global state g.

The evolution function that determines the transitions for an individual agent
between its local states is defined as follows: ¢; : L; X L, x ACT — L;, where
ACT = Acty x ... X Act, X Act. and each component a € ACT is a “joint
action”, which is a tuple of actions (one for each agent). The global evolution
function ¢ : G x ACT — G is defined as follows: t(g,acty,...,acty,,act.) = ¢’
iff there exists a € ACT such that (i) for each agent ¢ that is able to perform

Symbolic Model Checking Commitment Protocols Using Reduction 189

a, we have t;(l;,le,a) = I}; and (ii) for each agent j that is unable to perform
a, we have t;(l;,le,€¢;) = l;. Notice that we use a special class of interpreted
systems in which at each moment only one agent can perform an action in a
global evolution function and I denotes a set of initial states. Finally, given a set
&, of atomic propositions and the valuation function V for those propositions
V : G — 2%7_ an interpreted system is a tuple:

IS = <(L'La ACti7Pi7ti)i€Aa (LeaACteaPeate)ala V>

Computation tree logic of social commitments CTLC is an extension of CTL
[911] with the commitment modality C(, j, ¢). In particular, the syntax of CTLC
is given by the following BNF grammar, where p € &, is an atomic proposition:

pu=p| @ |pVel|EXe | EGp | E(pUp) | C(i, j, @)

where the CTLC temporal modalities have the standard meaning as in CTL—for
example, EXp means that “there is a path where ¢ holds at the next state in the
path”. C(i, j, ¢) is read as “agent ¢ commits towards agent j to bring about ¢”.
Other derived operators are defined in a standard way, see for example [9/T1].
In order to interpret CTLC formulae, a Kripke model M = (W, I, Ry, Rs., V) is
associated to a given interpreted system ZS as follows:

— W is the set G of global states,

— I C W is the set of initial states, which are defined in ZS,

— the temporal transition relation Ry C W x W is defined using the global
evolution function ¢,

— the relation R, : W x A x A — 2" is the social accessibility relation for
social commitments. It is defined by w’ € Ryc(w, 1,) iff Jw : [;(w) = l;(w)
and [;(w) = [;(w'),

— V is the valuation function as defined in ZS.

Excluding the commitment modality, the semantics of CTLC formulae is defined
in the model M as usual (semantics of CTL), see for example [9/11]. The notation
M, (w) = ¢ means the model M satisfies ¢ at a state w where |= is the standard
satisfaction relation. The commitment modality C(%, j,) is satisfied in the model
M at a state w iff the content ¢ is true in every accessible state from this state
using Rs.(w,1, 7). Formally:

M, (w) |= C(i, j, o) iff for all w’ € W, if w’ € Rg.(w,,5) then M, (w') | ¢

2.3 Model Checking Using MCMAS and NuSMV

Model checking is a method of formal verification used to verify if a system
satisfies given properties. In a nutshell, the problem of model checking is: given a
Kripke model M and property ¢ (expressed as a wif), does the model satisfy that
property? If an error is located (i.e., M ¥), the process will return a “counter-
example” showing the steps in which the error state was reached. Otherwise,

190 M. El-Menshawy, J. Bentahar, and R. Dssouli

it will return true (i.e., M | ¢). Recently, model checking has been used to
verify MASs [I7]. Verifying these systems is becoming more and more necessary
because they are increasingly used in several applications such as web-based
applications [25], business processes [BI10] and artificial institutions [26].

This paper focuses both on the symbolic model checkers MCMAS [17] and the
extended version of NuSMV [16], which are built on Ordered Binary Decision
Diagrams (OBDDs) that alleviate to overcome the “state-explosion” problem.
In particular, MCMAS is a tool used to solve the problem of model checking
MASs. MCMAS also has the following features: 1) it can check a variety of
properties specified as CTL formulae, epistemic, and cooperation modalities; 2)
it supports variables of the following types: Boolean, enumeration and bounded
integer where arithmetic operations can be performed on bounded integers; 3) it
supports counter-example/witness generation for efficient display of traces fal-
sifying/satisfying properties; and 4) it supports fairness constraints, which are
useful in eliminating bad or unwanted agents’ behaviors. MCMAS uses Inter-
preted System Programming Language (ISPL) as an input language. A system
of agents is encoded in ISPL using the interpreted system components. ISPL al-
lows user to define atomic propositions over global states of the system. The logic
formulae to be checked by MCMAS are defined over these atomic propositions.

On the other hand, the NuSMV symbolic model checker [§] is written in
ANSI C. It is a reimplementation and extension of SMV, the first model checker
based on OBDDs. NuSMYV is able to process files written in an extension of the
SMV language. In this language, it is possible to describe finite state machines by
means of declaration and instantiation mechanisms and processes and to express
a set of requirements in CTL and LTL. In addition to the above features, NuSMV
has the same features of MCMAS as MCMAS is technically an extended version
of NuSMV. NuSMV can also check Real-Time CTL specifications, which specifies
discrete timing constraints. However it does not model interpreted systems as
it is not specially designed for MASs but can overcome this limit by indirectly
checking interpreted system properties, which are encoded into its variables.

3 Model Checking CTLC

In this section, we briefly review CTLK (a logic of time and knowledge). We then
show how the problem of model checking CTLC can be reduced to the problem
of model checking either CTLK or ARCTL.

3.1 CTLK Logic

CTLK [21] is an epistemic logic on branching time; it allows for the expression of
properties that contain a notion of knowledge. In particular, given a set of atomic
propositions @, the syntax of CTLK is given by BNF grammar as follows:

pu=pl -] eVel|EXp | EGe | E(pUyp) | Kip

where the epistemic modality K;¢ is used to represent “knows” that is agent @
knowing ¢. As in CTL, other temporal operators can be defined in a standard

Symbolic Model Checking Commitment Protocols Using Reduction 191

way, see for example [9TT]. To define the semantic of CTLK formulae, a Kripke
model of the form M = (5,5, T, ~i,...,~n, V) is associated to a given inter-
preted system ZS, where: S is a set of global states; So C S is a set of initial
global states; T C S x S is a transition relation; ~;C S x S are the epistemic re-
lations defined for all i € A where s ~; s" iff [;(s) = l;(s’); and V is the valuation
function as defined in ZS.

Intuitively, the epistemic relation s ~; s’ means that the local state of the
agent 7 in the current global state s is indistinguishable from the local state of
this agent in the accessible state s’. The semantics of K;p is defined as follows:

M, (s) = K;p iff for all s’ € S if s ~; s’ then M, (s') = ¢
Hereafter, we use K; as an abbreviation of —K;—. Its semantics is as follows:

M, (s) |= K iff for some s’ € S if 5 ~; s’ then M, (s') |= ¢

3.2 Reducing CTLC to CTLK

In this section, we show how the problem of model checking CTLC (see Sect 2:2)
can be reduced to the problem of model checking CTLK. This reduction enables
us to directly use MCMAS. The problem is as follows: given a CTLC model Mg,
and a CTLC formula ¢s., we have to define a CTLK model M = %# (M) and
a CTLK formula #(ps.) such that My, = s it F(Mse) E F(pse). Let A =
{1,...,n} be a set of agents, and M. = (W, I, R¢, Rs., V') be a model for CTLC

associated to the interpreted system ZS = <(L¢, Act;, Pi,ti)ica, (Le, Acte, Pe,te),

I, V>. The model .% (M) is a CTLK model M = (S, So, T, {~;}ica, V) defined
as follows:

— § = WUS where S is constructed as follows: for all states w and w’ such that
w' € Rse(w,i,7) add a state s in S such that V(s) = V(w’) and [;(s)=(;(w").

- So=1.

— the transition relation T' = R; U R; where R; is constructed as follows: for all
states w and w’ such that w’ € Ry.(w,,7) add a transition in R; between s
(s € S and s = w) and the added s.

— the epistemic relations {~;};c 4 are obtained as follows: for all w and w’ such
that w' € Rse(w,1,j), we have s ~; s and s ~; s’ where w = s, w’ = s’ and
s is the added state (s, s,s’ € S).

Figure [illustrates an example of the reduction process from CTLC to CTLK.
The reduction of a CTLC formula into a CTLK formula is recursively defined
as follows:

(p) = p, if p is an atomic proposition.

(mp) = ~F(p) and F(p V) = F(p) V
(EXp) = EX.Z () and 7 (E(pU)) = L
(EGp) = EGF (p) and .F (C(i, j,) = Ki

%‘@‘&)‘&)

192 M. El-Menshawy, J. Bentahar, and R. Dssouli

Reduced

to
s s’

——> transition relation

— — — —=>accessibility relation

s

Fig. 1. An example of the reduction process from CTLC to CTLK

Thus, this reduction allows us to model check CTLC formulae by model checking
their reductions in CTLK using the MCMAS tool. The most important case in
this reduction is the one about commitments (see Figldl). The following theorem
proves the correctness of our reduction from CTLC to CTLK.

Theorem 1 (Correctness). Let M. and ps. be respectively a CTLC model
and formula and let F (Ms.) and F (psc) be the corresponding model and formula
in CTLK. We have M. |E vsc iff F(Mse) E F(psc).

Proof. We prove this theorem by induction on the structure of the formula @g,:

— If s is a pure CTL formula, the correctness is straightforward from the
fact that CTLK is also an extension of CTL.

— If s is not a pure CTL formula, by induction over the structure of ., all
the cases are straightforward once the case where ¢ . = C(i, j, %) is analyzed.
In this case we have: M., (w) = C(i, 4, %) iff for all w’ € Ry.(w, 4, j) we have

Mie, (w') = 9.
Accordlng to the definition of R, we obtain: M., (w) |= C(1,]) iff for all

w’ such that there exists w and {;(w) = {;(w) and [;(w) = [;(w’) we have
M. (') .

Since 1;(s) = l;(w’) and V(s) = V(w'), we obtain: sc), (8) E F ()

andﬁz sc), (8') F F(¢) and smceSNZsandSNJS so according to

the semantlcs of K;.Z () and ;. Z (v), we get: F(Ms.), (s) = K;Z(¢) and

F (M), (s = RF (1), A .

So since (s,s) € T, we obtain F (Ms.), (s) = Ki-# (¢¥) NEX K;. 7 ().]

3.3 Reducing CTLC to ARCTL

Lomuscio et al. [16] have proven that the problem of model checking CTLK can
be automatically reduced to the problem of model checking ARCTL. ARCTL

Symbolic Model Checking Commitment Protocols Using Reduction 193

is an extension of CTL with action formulae, so it mixes among state formulae
and action formulae. However, it restricts path formulae into paths whose actions
satisfy a given action formula. Instead of directly reducing CTLC to ARCTL,
we simply use the reduction from CTLK to ARCTL since we already reduced
CTLC to CTLK. The reduction from CTLC to ARCTL is then obtained by
transitivity (see dash arrow in Figl).

CTLC Reduced to > CTLK Supported by > MCMAS
~
.. 2
'~ ."fe U 5
S g £
. o

\0
\n
~

N\ S d b
ARCTL 2P0 o tended NuSMV

Fig. 2. The reduction processes of CTLC into CTLK and ARCTL

Before we introduce Lomuscio et al.’s reduction technique, we define the syn-
tax of ARCTL using the following BNF grammar [20]:

pu=p| -0 Ve |EXp | AuXp | Ea(@Up) | Aa(pUyp)
az=b|-alaVa

where ¢ is state formula, « is action formula, p € &, (a set of atomic proposi-
tions) and b € @, (a set of atomic actions). To define the semantics of ARCTL
formulae, the model M is defined as follows: M = (Z, Zy, A, TR, Vp, V), where:
Z is a set of states; Zy C Z is a set of initial states; A is a set of actions;
TR C Z x Ax Z is a labeled transition relation; V,, : Z — 2%7 is a function
that assigns to each state a set of atomic propositions to interpret this state; and
V4 : A — 2% is a function that assigns to each action a set of atomic actions
to interpret this action.

The complete semantics of ARCTL is introduced in [20]. The reduction from
a CTLK model M = (S, S0, T, {~i}ica,V) to an ARCTL model M = (Z, Zy, A,
TR,Vp,Vy4) is as follows:

- Z:SandZo:So.

— reconfiguring the set @, such that &, = {Run, Gt;,...,Gt,}, where Run is
an atomic proposition used to label temporal transitions defined by T and
n propositions Gt; (one for each agent) to label epistemics relations.

— the labeled transition relation T'R combines both the temporal transition 7'
and the epistemic relations {~;};c 4 under the following two conditions: for
states s,s" € S, (i) (s, {Run},s’) € TRiff (s,s') € T; (ii) (s,{Gt;},s') € TR
iff s ~; S/.

The reduction of a CTLK formula into an ARCTL formula is defined as follows
[16120]:

194 M. El-Menshawy, J. Bentahar, and R. Dssouli

(p) = p, if p is an atomic proposition.

(p) = 2F(p) and F(p V) = F(p) V.Z ().

(EXp) = ErunX. () and .Z (E(¢Up)) = Egun(F (0)UF (¢)).

F(EGp) = ERunG.Z (¢) and Z (Kip) = Agt, XF (@)

Using the reduction from CTLK to ARCTL and our reduction from CTLC to
CTLK, we obtain the reduction from CTLC to ARCTL (see Figlll). However,
we can also directly reduce CTLC to ARCTL. The reduction of all CTL formu-
lae is straightforward. The reduction of the commitment formula is as follows:
F(C(i,7,9)) = Agt;XZ () N ERunXAct;- 7 (¢). The correctness of this reduc-

tion follows from Theorem [I] and the correctness of the reduction of CTLK to
ARCTL.

%%%%

4 Commitment Protocols

After reducing CTLC to CTLK and ARCTL, let us apply this reduction to a case
study by verifying a commitment protocol. In this section, we define commitment
protocols as a set of actions on commitments with respect to the given interpreted
system ZS. These commitments are defined in our logic CTLC to capture the
business interactions among agent roles. In addition to what messages can be
exchanged and when, our protocol specifies the meaning of messages in terms
of their effects on the commitments. The participating autonomous agents can
communicate by exchanging messages in terms of creation and manipulation of
commitments such that this exchanging is reliable, meaning that messages do
not get lost and the communication channel is order-preserving.

Example 1. We consider the Contract Net Protocol (CNP)EL as a motivating
example to illustrate our representation of commitment protocols. The protocol
starts with a manager requesting proposals for a particular task. Each partici-
pant either sends a proposal or a reject message. The manager accepts only one
proposal among the received proposals and explicitly rejects the rest propos-
als. The participant with the accepted proposal informs the manager with the
proposal result or the failure of the proposal.

Figure [depicts our representation of the CNP commitment protocol using
commitments and associated actions. It begins with sending a call-for-proposals
at state wg, which means the manager M creates a conditional commitment:
Create(M, P,CC(M, P, proposal, reply)) such that if a participant P sends a pro-
posal, the manager will decide and reply with the result of the call-for-proposals
(proposal and reply are wff in CTLC). Then, the participant at state wy could
either accept this call-for-proposal, which means creating a conditional commit-
ment such that if the manager accepts the proposal, the participant will deliver
the result of the proposal or reject this call-for-proposal, which means releasing
the received commitment and the protocol will achieve the failure state ws as
a final state. After receiving the participant’s proposal, the manager can accept
this proposal or reject it.

3 FIPA Contract Net Interaction Protocol Specification (2002),
http://www.fipa.org/specs/fipa00029/index.html

http://www.fipa.org/specs/fipa00029/index.html

Symbolic Model Checking Commitment Protocols Using Reduction 195

delegate
Proposal (P4,P,)

sendResult(P,,M)

Fig. 3. Contract Net Protocol transitions

By sending the accept message to the participant, the conditional commitment
will be transformed to an unconditional commitment at state w4. At this state,
the participant has four possibilities: 1) to withdraw his commitment and then
move to the failure state ws; 2) to delegate it to another participant (say P;) to
deliver the result to the manager on his behalf: Delegate(P, P1,C(P, M, result));
3) to violate his commitment and then move to the failure state ws; or 4) to
directly send the result of the proposal to the manager and the protocol will
achieve the successful state ws as a final state.

As in [2§], the participant P; can delegate this commitment to another par-
ticipant (say P»), which delegates the commitment back to the participant P;.
The participants (P; and P») delegate the commitment back and forth infinitely
often and this is presented by a transition loop at wg. In a sound protocol, this
behavior should be avoided (in Sect L2 we will show how to verify this issue).
Finally, the participant P; can fulfill the delegated commitment by sending the
result of the proposal to the manager and then moves to the successful state ws.

Table [l depicts the possible actions in the enhanced version of CNP and the
corresponding commitment actions.

4.1 Translating Commitment Protocols

The main step in the verification of commitment protocols is translating them
into ISPL (the MCMAS’s input language) and SMV (the NuSMV’s input lan-
guage). An ISPL program reflects the structure of the interpreted system ZS
defined in the following four sections [22]:

196 M. El-Menshawy, J. Bentahar, and R. Dssouli

Table 1. Actions in the CNP and the corresponding commitment actions

sendCallFor Proposal(M, P) Create(M, P,CC(M, P, proposal, reply))
sendProposal (P, M) Create(P, M,CC(P, M, accept, result))
sendReject(P, M) Release(P, M, CC(M, P, proposal, reply))
sendAccept(M, P) Fulfill(M, P,C(M, P,reply))
sendWithdraw(P, M) Withdraw(P, M, C(P, M, result))
violateResult(P, M) Violate(P, M,C(P, M, result))
sendResult(P, M) Ful fill(P, M,C(P, M, result))

delegate Proposal(P, P1) Delegate(P, P1,C(P, M, result))
delegate Proposal(Py, Py) Delegate(Py, P>,C(Py, P, result))
sendResult(Py, M) Ful fill(Py, M,C(Py, M, result))

1. Agents’ declarations to define a list of ISPL agents with four sub-sections ac-
cording to the following syntax: Agent <agentID> <agent body> end Agent
where <agentID> is an ISPL identifier and <agent body> contains: 1) local
states; 2) local actions; 3) local protocol; and 4) evolution function.
2. Evaluation function is defined as follows:
Evaluation <proposition>if <condition on states> end Evaluation
where <proposition>is an ISPL proposition and <condition on states>
is a truth condition that defines a set of global states for atomic proposition.
3. Initial states to define the set of initial state conditions as follows:
InitStates <condition on states> end InitStates
4. List of formulae needed to be verified is defined using the following syntax:
Formulae <formulae list> end Formulae

Our translation process begins by extracting the set of interacting agents: M, P,
P, and P, in our protocol. For each agent, we define the possible commitment
states as knowledge states using state variables in the Vars sub-section. These
variables are of enumeration type, which also include the successful, and failure
states. The local actions on commitments are directly defined using the Actions
sub-section. Using these states and actions, we define the evolution function in
the Evolution sub-section that captures the transition relations among states.
The translation is completed by declaring a set of enabled actions at each state
in the Protocol sub-section, a set of initial states in the InitStates section,
and the list of formulae needed to be verified in the Formulae section.

As mentioned, we use the extended version of NuSMV introduced in [16],
which also uses the extended version of SMV program to verify the trans-
lated ARCTL formulae. In the extended version of SMV, the set of interacting
agents (M, P, P, and P, in our protocol) is defined in isolated modules MODULE
Agent<name>. Figure] shows an example of a typical translation of interacting
agents in our protocol into extended SMV modules. These modules are instan-
tiated in the main module with the definition of initial conditions using the
TINIT statement and the keyword SPEC to specify the formulae that need to be

Symbolic Model Checking Commitment Protocols Using Reduction 197

MODULE main
VAR M : Manager (argsl,args2) ;
P : Participant (argsl,agrs2);
TINIT(...);
SPEC <formulae_list>;

MODULE Manager (argsl, agrs?2)
VAR state: {...};
IVAR action: {...};

TINIT(...);
TRANS (next (action)= case ... esac);
TTRANS (next (state)= case ... esac);

Fig. 4. Example of agent translation into extended SMV module

checked. For each agent, we associate the SMV variables <v1>, ..., <vn> using
the VAR statement to define the agents commitment states plus the successful
and failure states. The actions of each agent are represented as input variables
in IVAR statement. The protocol of each agent is defined as a relation among its
local state and action variables in the TRANS statement. The labeled transitions
between commitment states are encoded using the TTRANS statement and an ini-
tial condition using the TINIT statement. Internally, TTRANS statements expand
to standard TRANS statements conditioned on {Run} with the next and Case
expressions that represent agent’s choices in a sequential manner.

4.2 Protocol Properties

To achieve the flexibility that gives each agent a great freedom and compli-
ance within the same framework, we need to verify the commitment protocols
against some properties that capture important requirements in MASs. Specifi-
cally, Guerin et al. [I4] have proposed three types of verification of multi-agent
interaction protocols depending on whether the verification process is done at
either design time or run time: 1) verify that an agent will always comply; 2)
verify compliance by observation; and 3) verify protocol properties. We adopt
the third type of verification for three reasons:

1. The desirable properties play an important role in verifying multi-agent in-
teraction protocols [IJI9], which reduces the cost of development process
at design time and restricts agents’ behaviors by removing bad behaviors
without loosing the flexibility.

2. Verifying the compliance of multi-agent interaction protocols with specifica-
tions requires adding planner mechanisms equipped with reasoning rules in
the code of each agent to reason about its actions to select appropriate ones
that satisfy its goals at run time, which can be expensive and may increase
the code of the agents [2824].

3. Protocol properties have a classification in both reactive and distributed
systems to guide protocol designers to check protocol specifications.

Some proposals have been put forward to formally express commitment protocol
properties [5IT0J26]. However, these proposals do not use a specific methodology

198 M. El-Menshawy, J. Bentahar, and R. Dssouli

to classify protocol properties. Hereafter, we use the classification introduced in
[15] to classify temporal properties into: Safety and Liveness. Manna and Pnueli,
in their seminal book [I8] have extended the liveness property into: Guarantee,
Obligation, Response, Persistence and Reactivity. In the following, the reacha-
bility, deadlock freedom, safety, liveness, and fairness constraint properties are
temporal CTLC formulae that we use to check the CNP commitment protocol.
Notice that the reachability property do the same function as guarantee prop-
erty, fairness constraint property captures response and reactivity properties,
and obligation property can be defined as a conjunction of safety and reacha-
bility properties. Moreover, we omit persistence property as it is mainly related
to concurrent behaviors. Consequently, our temporal protocol properties include
the properties introduced in [BIT0JT9] and satisfy the same functionalities of the
properties presented in [27].

Reachability property. Given a particular state, is there a valid computation
sequences to reach that state from an initial state. For example, in all paths in
the future (FE7 there is a possibility for the participant P to deliver the result
of the proposal to the manager:

p1 = AFEF CC(M, P, proposal, reply)

Deadlock property. It is the negation of the reachability property, which is
supposed to be false:

w2 = "AFEF CC(M, P, proposal, reply)

Fairness constraint property. The motivation behind this property is to
rule out unwanted behaviors of agents and remove any infinite loop in our pro-
tocol. For example, if we define the formula:

w3 = AGAF —C(Py, Py, result)

as an unconditional fairness constraint, then a path is fair iff in all paths and in
each state of these paths, in all emerging paths P; eventually does not delegate
commitments. This constraint will enable us to avoid situations such as the
participants delegate the commitment back and forth infinitely many times.

Safety property. This property means “something bad never happens”. For
example, in our protocol a bad situation is: the manager sends accept message,
but the participant never delivers the result of the proposal:

w4 = AG(—-C(M, P,reply) N AG —C(P, M, result))

Liveness: means that “something good will eventually happen”. For example, in
all paths globally if the manager sends call-for-proposal, then there is a path in
the future the participant will send proposal to the manager:

5 = AG(CC(M, P, proposal, reply) — EF CC(P, M, accept, result))
The above formulae are only some examples in our language.

4 EFp is the abbreviation of E(true U p).

Symbolic Model Checking Commitment Protocols Using Reduction 199
5 Experimental Results

We implemented the reduction tools on top of the two model checkers (MCMAS
and extended NuSMV) and provided a thorough assessment of this reduction on
two experiments. In the first experiment, we only consider two party actions on
commitments. In the second one, we add more commitments’ states by including
three party actions on commitments. These experiments were meant to check the
effectiveness of our reductions using MCMAS and extended NuSMV in terms of
memory in use. They are performed on a laptop with running Windows XP SP2
and equipped with 2.20 GHz AMD Dual Core and 896MB of RAM.

Table 2. Verification results for CNP protocol

First Experiment Second Experiment

Extended NuSMV MCMAS Extended NuSMV MCMAS

Model Size |M| ~ 10" ~ 106 ~ 10 ~ 10%°
Memory in MB ~4.77 ~ 6.37 ~4.77 ~ 6.53
OBDD variables 21 27 23 44
OBDD nodes 1,241 2,905 1,494 11,885
agents 2 2 4 4

Table [2 depicts that there is no big difference in the results of extended
NuSMYV in the two experiments, but by adding three party actions, the number
of OBDD variables and nodes in MCMAS are increased. Moreover, the num-
ber of OBDD variables and memory size increase by augmenting the number
of agents from 2 to 4. The performance of model checker tools also depend on
the size of the model M which we define as |M| = |W| + |R;|, where |[W] is
the number of possible combinations of the states and actions and |R;| is the
temporal relation. In the first experiment, the number of OBDD variables with
extended NuSMV (resp. MCMAS) is 21 (resp. 27), then the total state space
|[W| is 22! ~ 106 (resp. 227 ~ 10®). Whereas, in the second experiment, the total
state space |W| is 223 ~ 107 in extended NuSMV and 2% ~ 10'3 in MCMAS.
We approximate |R;| as |W|?, hence |[M| = |W|+ |R;| ~ |[W|? (see Table 2)).

6 Related Work

Several proposals on using existing model checkers (e.g., SPIN and CWB-NC)
by translating some agent specification languages (e.g., AgentSpeak(F)) into the
languages used by these model checkers [ISIT0I] have been put forward. In
particular, Bordini et al. [4] have introduced the language AgentSpeak(F) and
shown how the verification of this language can be translated to the verification

200 M. El-Menshawy, J. Bentahar, and R. Dssouli

of PROMELA code (the input language of the model checker SPIN). Bentahar et
al. [I] have introduced the translation of ACTL* formulae into a variant of alter-
nating tree automata called alternating Biichi tableau automata. Our approach
follows the same line of research but it is based on symbolic model checking and
not on automata-based model checking like SPIN. Consequently, our approach
does not suffer from the state explosion problem, which is a common problem
in the automata-based technique. Other researchers have proposed new algo-
rithms for verifying temporal and epistemic properties, see for example [21]]. In
particular, Lomuscio et al. [I7] have proposed MCMAS model checker to verify
multi-agent systems based on binary encoding in terms of OBDD representa-
tions where properties are specified by means of epistemic modalities such as
knowledge modality. This paper shows how high level interactions represented
by social commitments can be translated to agents’ knowledge without loosing
social or public features that characterize commitments.

Recently, Vigano and Colombetti [26] have used symbolic model checking to
verify institutions formally modeled with FIEVeL language in terms of the notion
of “status function” where properties are specified in an ordered many-sorted
first-order temporal logic (OMSFOTL). Their automatic verification process is
mainly concerned with satisfying certain properties to guarantee the soundness
of institutions without considering any standard temporal properties classifica-
tion. They regulate interactions between agents in terms of deontic norms (e.g.,
obligations) that are captured with respect to institution structures. Thus, this
model is less flexible than ours as, for example, they do not have possibilities
to withdraw or delegate obligations. Gerard and Singh [I3] have used CTL and
MCMAS to verify protocol refinement that are defined in terms of social com-
mitments without checking the conformance of protocols themselves before the
refinement and without considering transition loop within protocol specifica-
tions. In terms of commitment protocol properties, Yolum [27] has presented the
main generic properties that are required to develop commitment protocols at
design time. These properties are categorized into three classes: effectiveness,
consistency and robustness. Our properties meet the same functionalities, for
example the reachability and deadlock-freedom can be used to satisfy the same
objective of the effectiveness property.

7 Conclusion and Future Work

In this paper, we presented a new language CTLC to represent and reason about
social commitments. We used this language to specify commitment protocols and
their temporal properties in electronic business domains. We showed how to re-
duce the problem of model checking CTLC to the problem of model checking
either CTLK or ARCTL. Thus, it is the first step towards achieving the follow-
ing features within the same framework that formalizes commitment protocols:
1) formal (based on our logic); 2) meaningful (in terms of social commitments);
3) declarative (which focuses on what the message means not how the mes-
sage is exchanged); 4) verifiable (using efficient and available symbolic model

Symbolic Model Checking Commitment Protocols Using Reduction 201

checking); and 5) property-based (in terms of formally defined properties). To
clarify our approach, we have modeled the Contract Net Protocol (CNP) using
commitments and associated actions. In our implementation, we conducted two
experiments, which revealed promising results for multi-agent systems where in-
teraction protocols are involved. There are many directions for future work. We
plan to expand the formalization of commitment protocols with metacommit-
ments. We also plan to investigate other reductions, particularly from CTL*¢ (an
extension of CTL* with commitment modality) to GCTL* (generalized CTL*)
[3], so that we can use the CWB-NC model checker.

Acknowledgements

We would like to thank the reviewers for their valuable comments and sugges-
tions. Jamal Bentahar and Rachida Dssouli would like to thank Natural Sciences
and Engineering Research Council of Canada (NSERC) and Fond Québecois de
la recherche sur la société et la culture (FQRSC) for their financial support.

References

1. Bentahar, J., Meyer, J.J.C., Wan, W.: Model Checking Agent Communication. In:
Dastani, M., Hindriks, K.V., Meyer, J.J.C. (eds.) Specification and Verification of
Multi-Agent Systems, 1st edn., pp. 67-102. Springer, Heidelberg (2010)

2. Bentahar, J., Moulin, B., Chaib-draa, B.: Specifying and Implementing a Persua-
sion Dialogue Game using Commitment and Argument Network. In: Rahwan, I.,
Moraitis, P., Reed, C. (eds.) ArgMAS 2004. LNCS (LNATI), vol. 3366, pp. 130-148.
Springer, Heidelberg (2005)

3. Bhat, G., Cleaveland, R., Groce, A.: Efficient Model Checking via Biichi Tableau
Automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102,
pp. 38-52. Springer, Heidelberg (2001)

4. Bordini, R.H., Fisher, M., Pardavila, C., Wooldridge, M.: Model Checking
Agentspeak. In: Proceedings of the 2nd International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 409-416. ACM, Melbourne
(2003)

5. Cheng, Z.: Verifying Commitment based Business Protocols and their Composi-
tions: Model Checking using Promela and Spin. Ph.D. thesis, North Carolina State
University (2006)

6. Chopra, A.K., Singh, M.P.: Nonmonotonic Commitment Machines. In: Dignum,
F. (ed.) ACL 2003. LNCS (LNAI), vol. 2922, pp. 183-200. Springer, Heidelberg
(2004)

7. Chopra, A.K., Singh, M.P.: Producing Compliant Interactions: Conformance,
Coverage and Interoperability. In: Baldoni, M., Endriss, U. (eds.) DALT IV 2006.
LNCS (LNAI), vol. 4327, pp. 1-15. Springer, Heidelberg (2006)

8. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: Nusmv 2: An Open Source Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359-364. Springer, Heidelberg (2002)

202

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

M. El-Menshawy, J. Bentahar, and R. Dssouli

Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

Desai, N., Cheng, Z., Chopra, A.K., Singh, M.P.: Toward Verification of Commit-
ment Protocols and their Compositions. In: Proceedings of the 6th International
Joint Conference on Autonomous Agents and Multiagent Systems, pp. 144-146.
ACM, Honolulu (2007)

Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
The MIT Press, Cambridge (1995)

Fornara, N., Colombetti, M.: Operational Specification of a Commitment-based
Agent Communication Language. In: Proceedings of the 1st International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 535-542. ACM,
Bologna (2002)

Gerard, S.N., Singh, M.P.: Protocol Refinement: Formalization and Verification.
In: Artikis, A., Bentahar, J., Chopra, A.K., Dignum, F. (eds.) AAMAS Workshop
on Agent Communication (AC), Toronto, Canada, pp. 19-36 (2010)

Guerin, F., Pitt, J.: Guaranteeing Properties for E-Commerce Systems. In: Padget,
J.A., Shehory, O., Parkes, D.C., Sadeh, N.M., Walsh, W.E. (eds.) AMEC IV 2002.
LNCS (LNATI), vol. 2531, pp. 253-272. Springer, Heidelberg (2002)

Lamport, L.: Proving the Correctness of Multiprocess Programs. IEEE Transac-
tions on Software Engineering 3(2), 125-143 (1977)

Lomuscio, A., Pecheur, C., Raimondi, F.: Automatic Verification of Knowledge
and Time with Nusmv. In: Proceedings of the 20th International Joint Confer-
ence on Artificial Intelligence, pp. 1384-1389. Morgan Kaufmann Publishers Inc.,
Hyderabad (2007)

Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A Model Checker for the Verification
of Multi-Agent Systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 682-688. Springer, Heidelberg (2009)

Manna, Z., Pnueli, A.: The Temporal Logic of Rreactive and Concurrent Systems:
Specification, 1st edn. Springer, Inc., New York (1991)

Medellin, R., Atkinson, K., McBurney, P.: Model Checking Command Dialogues.
In: Proceedings of 2009 AAAI Fall Symposium on The Uses of Computational
Argumentation, pp. 58-63. AAAI Press, Arlington (2009)

Pecheur, C., Raimondi, F.: Symbolic model checking of logics with actions. In:
Edelkamp, S., Lomuscio, A. (eds.) MoChArt IV. LNCS (LNAI), vol. 4428, pp.
113-128. Springer, Heidelberg (2007)

Penczek, W., Lomuscio, A.: Verifying Epistemic Properties of Multi-Agent
Systems via Bounded Model Checking. Fundamenta Informaticae 55(2), 167185
(2003)

Raimondi, F.: Model Checking Multi-Agent Systems. Ph.D. thesis, University
College London (2006)

Singh, M.P.: An Ontology for Commitments in Multiagent Systems: Toward a
Unification of Normative Concepts. Artificial Intelligent and Law 7(1), 97-113
(1999)

Singh, M.P.: Formalizing Communication Protocols for Multiagent Systems. In:
Proceedings of the 20th International Joint Conference on Artificial Intelligence,
pp. 1519-1524. Morgan Kaufmann Publishers, Inc., Hyderabad (2007)
Venkatraman, M., Singh, M.P.: Verifying Compliance with Commitment Protocols:
Enabling Open Web-based Multiagent Systems. Autonomous Agents and Multi-
Agent Systems 2(3), 217-236 (1999)

26.

27.

28.

29.

Symbolic Model Checking Commitment Protocols Using Reduction 203

Vigano, F., Colombetti, M.: Symbolic Model Checking of Institutions. In:
Proceedings of the 9th International Conference on Electronic Commerce, pp. 35—
44. ACM Press, Minneapolis (2007)

Yolum, P.: Design Time Analysis of Multi-Agent Protocols. Data and Knowladge
Engineering 63(1), 137-1154 (2007)

Yolum, P., Singh, M.P.: Commitment machines. In: Meyer, J.J.C., Tambe, M. (eds.)
ATAL 2001. LNCS (LNAI), vol. 2333, pp. 235-247. Springer, Heidelberg (2002)
Yolum, P., Singh, M.P.: Reasoning about Commitments in the Event Calculus:
An Approach for Sepcifying and Executing Protocols. Annals of Mathematics and
Artificial Intelligence 42(1-3), 227-253 (2004)

	Symbolic Model Checking Commitment Protocols Using Reduction
	Introduction
	Preliminaries
	Commitments and Associated Actions
	Interpreted Systems and CTLC Logic
	Model Checking Using MCMAS and NuSMV

	Model Checking CTLC
	CTLK Logic
	Reducing CTLC to CTLK
	Reducing CTLC to ARCTL

	Commitment Protocols
	Translating Commitment Protocols
	Protocol Properties

	Experimental Results
	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

