Skip to main content

Graceful Degradation in Multi-Party Computation (Extended Abstract)

  • Conference paper
Information Theoretic Security (ICITS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6673))

Included in the following conference series:

Abstract

The goal of Multi-Party Computation (MPC) is to perform an arbitrary computation in a distributed, private, and fault-tolerant way. For this purpose, a fixed set of n parties runs a protocol that tolerates an adversary corrupting a subset of the participating parties, and still preserves certain security guarantees.

Most MPC protocols provide security guarantees in an all-or-nothing fashion. In this paper, we provide the first treatment of MPC with graceful degradation of both security and corruptions. First of all, our protocols provide graceful degradation of security, i.e., different security guarantees depending on the actual number of corrupted parties: the more corruptions, the weaker the security guarantee. We consider all security properties generally discussed in the literature (secrecy, correctness, robustness, fairness, and agreement on abort). Furthermore, the protocols provide graceful degradation with respect to the corruption type, by distinguishing fully honest parties, passively corrupted parties, and actively corrupted parties. Security can be maintained against more passive corruptions than is possible for active corruptions.

We focus on perfect security, and prove exact bounds for which MPC with graceful degradation of security and corruptions is possible for both threshold and general adversaries. Furthermore, we provide protocols that meet these bounds. This strictly generalizes known results on hybrid security and mixed adversaries.

The full version of this paper is available at the Cryptology ePrint Archive: http://eprint.iacr.org/2011/094. This work was partially supported by the Zurich Information Security Center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaver, D.: Multiparty protocols tolerating half faulty processors. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 560–572. Springer, Heidelberg (1990)

    Google Scholar 

  2. Beerliová-Trubíniová, Z., Fitzi, M., Hirt, M., Maurer, U.M., Zikas, V.: MPC vs. SFE: Perfect security in a unified corruption model. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 231–250. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC 1988, pp. 1–10. ACM, New York (1988)

    Google Scholar 

  4. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: STOC 1988, pp. 11–19. ACM, New York (1988)

    Google Scholar 

  5. Chaum, D., Damgård, I.B., van de Graaf, J.: Multiparty computations ensuring privacy of each party’s input and correctness of the result. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 87–119. Springer, Heidelberg (1988)

    Google Scholar 

  6. Chaum, D.: The spymasters double-agent problem: Multiparty computations secure unconditionally from minorities and cryptograhically from majorities. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 591–602. Springer, Heidelberg (1990)

    Google Scholar 

  7. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. Journal of the ACM 40(1), 17–47 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fitzi, M., Hirt, M., Holenstein, T., Wullschleger, J.: Two-threshold broadcast and detectable multi-party computation. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 51–67. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Fitzi, M., Hirt, M., Maurer, U.M.: Trading correctness for privacy in unconditional multi-party computation (extended abstract). In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 121–136. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Fitzi, M., Hirt, M., Maurer, U.M.: General adversaries in unconditional multi-party computation. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 232–246. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  11. Fitzi, M., Holenstein, T., Wullschleger, J.: Multi-party computation with hybrid security. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 419–438. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC 1987, pp. 218–229. ACM, New York (1987)

    Google Scholar 

  13. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty computations with applications to threshold cryptography. In: PODC 1998, pp. 101–111. ACM, New York (1998)

    Google Scholar 

  14. Hirt, M., Maurer, U.: Complete characterization of adversaries tolerable in secure multi-party computation. In: PODC 1997, pp. 25–34. ACM, New York (1997)

    Google Scholar 

  15. Hirt, M., Maurer, U.M., Zikas, V.: MPC vs. SFE: Unconditional and computational security. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 1–18. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: On combining privacy with guaranteed output delivery in secure multiparty computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 483–500. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Katz, J.: On achieving the “best of both worlds” in secure multiparty computation. In: STOC 2007, pp. 11–20. ACM, New York (2007)

    Google Scholar 

  18. Kilian, J.: More general completeness theorems for secure two-party computation. In: STOC 2000, pp. 316–324. ACM, New York (2000)

    Google Scholar 

  19. Lucas, C., Raub, D., Maurer, U.: Hybrid-secure MPC: Trading information-theoretic robustness for computational privacy. In: PODC 2010, pp. 219–228. ACM, New York (2010)

    Google Scholar 

  20. Maurer, U.M.: Secure multi-party computation made simple. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 14–28. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: STOC 1989, pp. 73–85. ACM, New York (1989)

    Google Scholar 

  22. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS 1982, pp. 160–164. IEEE, Los Alamitos (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hirt, M., Lucas, C., Maurer, U., Raub, D. (2011). Graceful Degradation in Multi-Party Computation (Extended Abstract). In: Fehr, S. (eds) Information Theoretic Security. ICITS 2011. Lecture Notes in Computer Science, vol 6673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20728-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20728-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20727-3

  • Online ISBN: 978-3-642-20728-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics