Skip to main content

Communication Optimal Multi-valued Asynchronous Byzantine Agreement with Optimal Resilience

  • Conference paper
Information Theoretic Security (ICITS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6673))

Included in the following conference series:

Abstract

Byzantine Agreement (BA) and Broadcast (BC) are considered to be the most fundamental primitives for fault-tolerant distributed computing and cryptographic protocols. An important variant of BA and BC is Asynchronous Byzantine Agreement (ABA) and Asynchronous Broadcast (called as A-cast) respectively. Most often in the literature, protocols for ABA and A-cast were designed for a single bit message. But in many applications, these protocols may be invoked on long message rather than on single bit. Therefore, it is important to design efficient multi-valued protocols (i.e. protocols with long message) which extract advantage of directly dealing with long messages and are far better than multiple invocations to existing protocols for single bit. In synchronous network settings, this line of research was initiated by Turpin and Coan [27] and later it is culminated in the result of Fitzi et al. [15] who presented the first ever communication optimal (i.e. the communication complexity is minimal in asymptotic sense) multi-valued BA and BC protocols with the help of BA and BC protocols for short message. It was left open in [15] to achieve the same in asynchronous settings.

In [21], the authors presented a communication optimal multi-valued A-cast using existing A-cast [6] for small message. Here we achieve the same for ABA which is known to be harder problem than A-cast. Specifically, we design a communication optimal, optimally resilient (allows maximum fault tolerance) multi-valued ABA protocol, based on the existing ABA protocol for short message.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, I., Dolev, D., Halpern, J.Y.: An almost-surely terminating polynomial protocol for asynchronous Byzantine Agreement with optimal resilience. In: PODC, pp. 405–414 (2008)

    Google Scholar 

  2. Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-secure MPC with linear communication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Ben-Or, M.: Another advantage of free choice: Completely asynchronous agreement protocols. In: PODC, pp. 27–30 (1983)

    Google Scholar 

  4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)

    Google Scholar 

  5. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal resilience. In: PODC, pp. 183–192 (1994)

    Google Scholar 

  6. Bracha, G.: An asynchronous \(\lfloor (n - 1) / 3 \rfloor\)-resilient consensus protocol. In: PODC, pp. 154–162 (1984)

    Google Scholar 

  7. Canetti, R.: Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann Institute, Israel (1995)

    Google Scholar 

  8. Canetti, R., Rabin, T.: Fast asynchronous Byzantine Agreement with optimal resilience. In: STOC, pp. 42–51 (1993)

    Google Scholar 

  9. Carter, L., Wegman, M.N.: Universal classes of hash functions. Journal of Computer and System Sciences 18(4), 143–154 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults. In: STOC, pp. 383–395 (1985)

    Google Scholar 

  11. Feldman, P., Micali, S.: An optimal algorithm for synchronous Byzantine Agreemet. In: STOC, pp. 639–648 (1988)

    Google Scholar 

  12. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous Byzantine Agreement. SIAM Journal of Computing 26(4), 873–933 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus with one faulty process. JACM 32(2), 374–382 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fitzi, M.: Generalized Communication and Security Models in Byzantine Agreement. PhD thesis, ETH Zurich (2002)

    Google Scholar 

  15. Fitzi, M., Hirt, M.: Optimally efficient multi-valued Byzantine Agreement. In: PODC, pp. 163–168 (2006)

    Google Scholar 

  16. Hirt, M., Maurer, U.M., Przydatek, B.: Efficient secure multi-party computation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)

    MATH  Google Scholar 

  18. Patra, A., Choudhary, A., Rabin, T., Rangan, C.P.: The round complexity of verifiable secret sharing revisited. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 487–504. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Patra, A., Choudhary, A., Rangan, C.P.: Efficient statistical asynchronous verifiable secret sharing with optimal resilience. In: Kurosawa, K. (ed.) Information Theoretic Security. LNCS, vol. 5973, pp. 74–92. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Patra, A., Choudhary, A., Pandu Rangan, C.: Efficient asynchronous Byzantine Agreement with optimal resilience. In: PODC, pp. 92–101 (2009)

    Google Scholar 

  21. Patra, A., Rangan, C.P.: Communication optimal multi-valued asynchronous broadcast protocol. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 162–177. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Pease, M., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. JACM 27(2), 228–234 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pfitzmann, B., Waidner, M.: Unconditional Byzantine Agreement for any number of faulty processors. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 339–350. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  24. Prabhu, B.S., Srinathan, K., Pandu Rangan, C.: Trading players for efficiency in unconditional multiparty computation. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 342–353. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Rabin, M.O.: Randomized Byzantine generals. In: FOCS, pp. 403–409 (1983)

    Google Scholar 

  26. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: STOC, pp. 73–85 (1989)

    Google Scholar 

  27. Turpin, R., Coan, B.A.: Extending binary Byzantine Agreement to multivalued Byzantine Agreement. Information Processing Letters 18(2), 73–76 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Patra, A., Rangan, C.P. (2011). Communication Optimal Multi-valued Asynchronous Byzantine Agreement with Optimal Resilience. In: Fehr, S. (eds) Information Theoretic Security. ICITS 2011. Lecture Notes in Computer Science, vol 6673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20728-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20728-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20727-3

  • Online ISBN: 978-3-642-20728-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics