Skip to main content

Quantum-Resilient Randomness Extraction

(Invited Talk)

  • Conference paper
  • 601 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6673))

Abstract

Randomness extraction is the art of distilling almost perfectly random bits from an entropy source. Since the source can generally be considered as one that emits classical data, randomness extraction is usually analyzed within the framework of classical probability theory. However, it has been realized recently that this classical treatment is limited: it does not cover situations where the source|while still emitting classical data|is correlated to quantum side information. Here, we review some recent work that overcomes this limitation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Aroya, A., Regev, O., de Wolf, R.: A hypercontractive inequality for matrix-valued functions with applications to quantum computing and LDCs. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, pp. 477–486 (2008)

    Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.: Generalized privacy amplification. IEEE Transaction on Information Theory 41(6), 1915–1923 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy amplification by public discussion. SIAM Journal on Computing 17(2), 210–229 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Computer and System Sciences 18, 143–154 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. De, A., Portmann, C., Vidick, T., Renner, R.: Trevisan’s extractor in the presence of quantum side information. arXiv:0912.5514 (2009)

    Google Scholar 

  6. De, A., Vidick, T.: Near-optimal extractors against quantum storage. In: Proceedings of the 42nd Annual ACM Symposium on Theory of Computing, STOC 2010, pp. 161–170 (2010)

    Google Scholar 

  7. Desrosiers, S.P., Dupuis, F.: Quantum entropic security and approximate quantum encryption. IEEE Transactions on Information Theory, 3455–3464 (2010)

    Google Scholar 

  8. Fehr, S., Schaffner, C.: Randomness extraction via δ-biased masking in the presence of a quantum attacker. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 465–481. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Gavinsky, D., Kempe, J., Kerenidis, I., Raz, R., de Wolf, R.: Exponential separations for one-way quantum communication complexity, with applications to cryptography. In: Proceeding of the 39th STOC (2007)

    Google Scholar 

  10. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions (extended abstract). In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 12–24 (1989)

    Google Scholar 

  11. König, R., Maurer, U., Renner, R.: On the power of quantum memory. IEEE Transactions on Information Theory 51(7), 2391–2401 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. König, R., Renner, R.: Sampling of min-entropy relative to quantum knowledge. IEEE Transactions on Information Theory (to appear, 2011); preprint: arXiv:0712.4291

    Google Scholar 

  13. König, R., Renner, R., Bariska, A., Maurer, U.: Small accessible quantum information does not imply security. Phys. Rev. Lett. 98, 140502 (2007)

    Article  Google Scholar 

  14. König, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-entropy. IEEE Transactions on Information Theory 55, 4337–4347 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. König, R., Terhal, B.: The bounded storage model in the presence of a quantum adversary. IEEE Transactions on Information Theory, 749–762 (2008)

    Google Scholar 

  16. Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and applications. In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing (STOC), pp. 213–223 (1990)

    Google Scholar 

  17. Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer and System Sciences 52, 43–52 (1996); A preliminary version appeared at STOC 1993

    Article  MathSciNet  MATH  Google Scholar 

  18. Renner, R.: Security of Quantum Key Distribution. PhD thesis, Swiss Federal Institute of Technology (ETH) Zurich (2005), Available at arXiv:quant-ph/0512258

    Google Scholar 

  19. Renner, R., König, R.: Universally composable privacy amplification against quantum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Shaltiel, R.: Recent developments in explicit constructions of extractors. Bulletin of the EATCS 77, 67–95 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Stinson, D.R.: Universal hash families and the leftover hash lemma, and applications to cryptography and computing. J. Combin. Math. Combin. Comput. (2002)

    Google Scholar 

  22. Ta-Shma, A.: Short seed extractors against quantum storage. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 401–408 (2009)

    Google Scholar 

  23. Tomamichel, M., Schaffner, C., Smith, A., Renner, R.: Leftover hashing against quantum side information. IEEE Transactions on Information Theory (to appear, 2011); preprint: arXiv:1002.2436

    Google Scholar 

  24. Trevisan, L.: Extractors and pseudorandom generators. Journal of the ACM 48, 860–879 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vadhan, S.P.: On constructing locally computable extractors and cryptosystems in the bounded storage model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 61–77. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. Journal of Computer and System Sciences 22, 265–279 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Renner, R. (2011). Quantum-Resilient Randomness Extraction. In: Fehr, S. (eds) Information Theoretic Security. ICITS 2011. Lecture Notes in Computer Science, vol 6673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20728-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20728-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20727-3

  • Online ISBN: 978-3-642-20728-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics