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CONSTRUCTING EXTENDED FORMULATIONS FROM REFLECTION RELAT IONS

VOLKER KAIBEL AND KANSTANTSIN PASHKOVICH

ABSTRACT. There are many examples of optimization problems whose associated polyhedra can be
described much nicer, and with way less inequalities, by projections of higher dimensional polyhedra
than this would be possible in the original space. However, currently not many general tools to con-
struct such extended formulations are available. In this paper, we develop a framework of polyhedral
relations that generalizes inductive constructions of extended formulations via projections, and we par-
ticularly elaborate on the special case of reflection relations. The latter ones provide polynomial size
extended formulations for several polytopes that can be constructed as convex hulls of the unions of (ex-
ponentially) many copies of an input polytope obtained via sequences of reflections at hyperplanes. We
demonstrate the use of the framework by deriving small extended formulations for theG-permutahedra
of all finite reflection groupsG (generalizing both Goeman’s [6] extended formulation of the permutahe-
dron of sizeO(n log n) and Ben-Tal and Nemirovski’s [2] extended formulation withO(k) inequalities
for the regular2k-gon) and for Huffman-polytopes (the convex hulls of the weight-vectors of Huffman
codes).

1. INTRODUCTION

An extensionof a polyhedronP ⊆ R

n is some polyhedronQ ⊆ R

d and a linear projection
π : Rd → R

n with π(Q) = P . A description ofQ by linear inequalities (and equations) is called an
extended formulationfor P . Extended formulations have received quite some interest,as in several
cases, one can describe polytopes associated with combinatorial optimization problems much easier
by means of extended formulations than by linear descriptions in the original space. In particular,
such extensionsQ can have way less facets than the polyhedronP has. For a nice survey on extended
formulations we refer to [4].

Many fundamental questions on the existence of extended formulations with small numbers of
inequalities are open. A particularly prominent one asks whether there are polynomial size extended
formulations for the perfect matching polytopes of complete graphs (see [14, 9]). In fact, we lack good
techniques to bound the sizes of extended formulations frombelow, and we also need more tools to
construct extended formulations. This paper makes a contribution into the latter direction.

There are several ways to build extended formulations of polytopes from linear decriptions or from
extended formulations of other ones (see, e.g., [10, 8]). A particular simple way is to construct them
inductively from extended formulations one has already constructed before. As for an example, let for
a vectorp ∈ Rn

+ of processing timesand for someσ ∈ S(n) (whereS(n) is the set of all bijections
γ : [n] → [n] with [n] = {1, . . . , n}), thecompletion time vectorbe the vectorct(p, σ) ∈ R

n with

ct(p, σ)j =
∑σ(j)

i=1 pσ−1(i) for all j ∈ [n]. By some simple arguments (resembling the correctness

proof of Smith’ rule), one can show thatPp
ct is the image of the polytopeP = Pp̃

ct×[0, 1]n−1 for
p̃ = (p1, . . . , pn−1) ∈ R

n−1 under the affine mapf : R2n−2 → R

n defined viaf(x) = (x′ +
pnx

′′, 〈p̃,1 − x′′〉+ pn) with x = (x′, x′′) andx′, x′′ ∈ Rn−1.
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Applying this inductively, one finds thatPp
ct is a zonotope, i.e., an affine projection of a cube of

dimensionn(n − 1)/2 (which had already been proved by Wolsey in the 1980’s [13]).This may
appear surprisingly simple viewing the fact thatPp

ct has exponentially many facets (see [12]). For
the special case of thepermutahedronPn

perm = P1n
ct = conv{(γ(1), . . . , γ(n)) ∈ Rn : γ ∈ S(n)},

Goemans [6] found an even smaller extended formulation of sizeO(n log n), which we will come
back to later.

Let us look again at one step in the inductive construction described above. With the polyhedron

R = {(x, y) ∈ R2n−2 ×R

n : y = f(x)} , (1)

the extension derived in such a step reads

Pp
ct = {y ∈ Rn : (x, y) ∈ R for somex ∈ P} . (2)

Thus, we have derived the extended formulation forPp
ct by applying in the sense of (2) the “polyhedral

relation” defined in (1) to a polytopeP of which we had found (inductively) an extended formulation
before. The goal of this paper is to generalize this technique of deriving extended formulations by
using other “polyhedral relations” than graphs of affine maps (whichR as defined in (1) is). We
will introduce the framework of such general polyhedral relations in Section 2, and we are going to
elaborate on one particular type of those, calledreflection relations, in Section 3. Reflection relations
provide, for affine halfspacesH≤ ⊆ R

n and polyhedraP ⊆ R

n, small extended formulations of the
convex hull of the union ofP ∩H≤ and the image ofP ∩H≤ under the orthogonal reflection at the
boundary hyperplane ofH≤. They turn out to be quite useful building blocks in the construction of
some extended formulations. We derive some general resultson reflection relations (Theorem 1) that
allow to construct rather easily extended formulations forsome particular applications (in particular,
without explicitly dealing with the intermediate polyhedra of iterated constructions) .

In a first application, we show how to derive, for each polytope P ⊆ R

n that is contained in (the
topological closure of) a region of a finite reflection groupG onRn, an extended formulation of the
G-permutahedron ofP , i.e., the convex hull of the union of the polytopes in the orbit of P under the
action ofG (Section 4.1). These extended formulations havef +O(n log n) + O(n logm) inequali-
ties, wherem is the largest number such thatI2(m) appears in the decomposition ofG into irreducible
finite reflection groups, and provided that there is an extended formulation forP with at mostf in-
equalities. In particular, this generalizes Goemans’ extended formulation of the permutahedronPn

perm

with O(n log n) inequalities [6]. In fact, the starting point of our research was to give an alternative
proof for the correctness of Goeman’s extended formulationthat we would be able to generalize to
other constructions.

As a second application, we provide an extended formulationwith O(n log n) inequalities for
the convex hull of all weight-vectors of Huffman-codes withn words (Section 4.2). ThisHuffman-
polytopePn

huff is the convex hull of all vectors(v1, . . . , vn) ∈ R

n for which there is a rooted binary
tree withn leaves labelled by1, . . . , n such that the distance of leafi from the root equalsvi for all
i ∈ [n]. This provides another striking example of the power of extended formulations, as no linear
descriptions ofPn

huff inRn is known so far, and Nguyen, Nguyen, and Maurras [11] showed thatPn
huff

has2Ω(n logn) facets.
Two well-known results we obtain easily within the framework of reflection relations are extended

formulations with2⌈log(m)⌉ + 2 inequalities for regularm-gons (reproving a result of Ben-Tal and
Nemirovski [2], see Section 4.1.1) and an extended formulation with 4n− 1 inequalities of theparity
polytope, i.e., the convex hull of allv ∈ {0, 1}n with an odd number of one-entries (reproving a result
of Carr and Konjevod [3], see Section 4.1.4).
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We conclude by briefly discussing (Section 5) directions forfuture research on the further extension
of the tools presented in this paper .
Acknowledgements. We thank Samuel Fiorini and Michel Goemans for valuable hints and discus-
sions.

2. POLYHEDRAL RELATIONS

A polyhedral relationof type(n,m) is a non-empty polyhedron∅ 6= R ⊆ R

n ×R

m. The image
of a subsetX ⊆ R

n under such a polyhedral relationR is denoted by

R(X) = {y ∈ Rm : (x, y) ∈ R for somex ∈ X} .

Clearly, we have the monotonicity relationsR(X) ⊆ R(X̃) for X ⊆ X̃. Furthermore,R(X) is a
linear projection ofR ∩ (X × R

m) . Thus, images of polyhedra and convex sets under polyhedral
relations are polyhedra and convex sets, respectively.

A sequential polyhedral relationof type(k0, . . . , kr) is a sequence(R1, . . . , Rr), whereRi is a
polyhedral relation of type(ki−1, ki) for eachi ∈ [r]; its lengthis r. For such a sequential polyhedral
relation, we denote byR = R(R1,...,Rr) the set of all(z(0), z(r)) ∈ Rk0 ×Rkr for which there is some
(z(1), . . . , z(r−1)) with (z(i−1), z(i)) ∈ Ri for all i ∈ [r]. Note that, sinceR is a linear projection of
a polyhedron,R is a polyhedral relation of type(k0, kr). We callR(R1,...,Rr) the polyhedral relation
that isinducedby the sequential polyhedral relation(R1, . . . , Rr).

For a polyhedronP ⊆ R

k0 , the polyhedronQ ⊆ R

k0 × · · · ×R

kr defined by

z(0) ∈ P and (z(i−1), z(i)) ∈ Ri for all i ∈ [r] (3)

satisfiesπ(Q) = R(P ), whereπ is the projection defined viaπ(z(0), . . . , z(r)) = z(r). Thus, (3)
provides an extended formulation of the polyhedronR(P ) with k0+· · ·+kr variables andf0+· · ·+fr
constraints, provided we have linear descriptions of the polyhedraP , R1, . . . ,Rr with f0, f1, . . . ,
fr constraints, respectively. Of course, one can reduce the number of variables in this extended
formulation todim(Q). In order to obtain useful upper bounds on this number by means of the
polyhedral relationsR1, . . . ,Rr, let us denote, for any polyhedral relationR ⊆ R

n ×R

m, by δ1(R)
andδ2(R) the dimension of the non-empty fibers of the orthogonal projection of aff(R) to the first
and second factor ofRn×Rm, respectively. Ifaff(R) = {(x, y) ∈ Rn ×R

m : Ax+By = c}, then
δ1(R) = dim(ker(B)) andδ2(R) = dim(ker(A)). With these parameters, we can estimate

dim(Q) ≤ min{k0 +
r

∑

i=1

δ1(Ri), kr +
r

∑

i=1

δ2(Ri)} .

Remark 1. Let (R1, . . . , Rr) be a sequential polyhedral relation of type(k0, . . . , kr) with induced
polyhedral relationR, letπ : Rk0×· · ·×Rkr → R

kr be the projection defined viaπ(z(0), . . . , z(r)) =
z(r), and letfi be the number of facets ofRi for eachi ∈ [r]. If the polyhedronP ⊆ R

k0 has
an extended formulation withk′ variables andf ′ inequalities, then we can construct an extended
formulation forR(P ) withmin{k′+

∑r
i=1 δ1(Ri), kr+

∑r
i=1 δ2(Ri)} variables andf ′+f1+· · ·+fr

constraints.

A particularly simple class of polyhedral relations is defined by polyhedraR ⊆ R

n × R

m with
R = {(x, y) ∈ Rn ×R

m : y = f(x)} for some affine mapf : Rn → R

m. For these polyhedral
relations, a (linear description of a) polyhedronP ⊆ R

n is just an extended formulation of the
polyhedronR(P ) via projectionf .
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Thedomainof a polyhedral relationR ⊆ R

n ×R

m is the polyhedron

dom(R) = {x ∈ Rn : (x, y) ∈ R for somey ∈ Rm} .

We clearly haveR(X) =
⋃

x∈X∩dom(R) R(x) for all X ⊆ R

n. Note that, for a polytopeP =

conv(V ) with a finite setV ⊆ R

n and a polyhedral relationR ⊆ R

n ×R

m, in general the inclusion

conv
⋃

v∈V

R(v) ⊆ R(P ) (4)

holds without equality, even in case ofP ⊆ dom(R); as for an example you may considerP =
conv{0, 2} ⊆ R

1 andR = conv{(0, 0), (1, 1), (2, 0)} with R(P ) = [0, 1] andR(0) = R(2) = {0}.
Fortunately, one can guarantee equality in (4) (which makesit much easier to analyzeR(P )) for an
important subclass of polyhedral relations.

We call a relationR ⊆ R

n×Rm affinely generatedby the family(̺(f))f∈F , if F is finite and every
̺(f) : Rn → R

m is an affine map such thatR(x) = conv
⋃

f∈F ̺(f)(x) holds for allx ∈ dom(R).

The maps̺ (f) (f ∈ F ) are calledaffine generatorsof R in this case. For such a polyhedral relationR
and a polytopeP ⊆ R

n with P ∩ dom(R) = conv(V ) for someV ⊆ R

n, we find

R(P ) =
⋃

x∈P∩dom(R)

R(x) =
⋃

x∈P∩dom(R)

conv
⋃

f∈F

̺(f)(x)

⊆ conv
⋃

x∈P∩dom(R)

⋃

f∈F

̺(f)(x) = conv
⋃

v∈V

⋃

f∈F

̺(f)(v) ⊆ conv
⋃

v∈V

R(v) ,

where, due to (4), all inclusions are equations. In particular, we have established the following result.

Proposition 1. For every polyhedral relationR ⊆ R

n × R

m that is affinely generated by a finite
family (̺(f))f∈F , and for every polytopeP ⊆ R

n, we have

R(P ) = conv
⋃

f∈F

̺(f)(P ∩ dom(R)) . (5)

As we will often deal with polyhedral relationsR = R(R1,...,Rr) that are induced by a sequential
polyhedral relation(R1, . . . , Rr), it would be convenient to be able to derive affine generatorsfor R
from affine generators forR1,. . . ,Rr. This, however, seems impossible in general, where the diffi-
culties arise from the interplay between images and domainsin a sequence of polyhedral relations.
However, one still can derive a very useful analogue of the inclusion “⊆” in (5).

Lemma 1. If (R1, . . . , Rr) is a sequential polyhedral relation such that, for eachi ∈ [r], the rela-
tion Ri is affinely generated by the finite family(̺(fi))fi∈Fi

, then the inclusion

R(P ) ⊆ conv
⋃

f∈F

̺(f)(P ∩ dom(R))

holds for every polyhedronP ⊆ R

n, whereF = F1 × · · · ×Fr and̺(f) = ̺(fr) ◦ · · · ◦ ̺(f1) for each
f = (f1, . . . , fr) ∈ F .

We omit the straight-forward proof of Lemma 1 in this extended abstract.
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3. REFLECTION RELATIONS

Fora ∈ R

n \ {O} andβ ∈ R, we denote byH=(a, β) = {x ∈ Rn : 〈a, x〉 = β} the hyperplane
defined by the equation〈a, x〉 = β and byH≤(a, β) = {x ∈ Rn : 〈a, x〉 ≤ β} the halfspace defined
by the inequality〈a, x〉 ≤ β (with 〈v,w〉 =

∑n
i=1 viwi for all v,w ∈ R

n). The reflection atH =

H=(a, β) is ̺(H) : Rn → R

n where̺(H)(x) is the point with̺(H)(x) − x ∈ H⊥ lying in the
one-dimensional linear subspaceH⊥ = {λa : λ ∈ R} that is orthogonal toH and〈a, ̺(H)(x)〉 =
2β − 〈a, x〉. Thereflection relationdefined by(a, β) is

Ra,β = {(x, y) ∈ Rn ×R

n : y − x ∈ (H=(a, β))⊥, 〈a, x〉 ≤ 〈a, y〉 ≤ 2β − 〈a, x〉}

(the definition is invariant against scaling(a, β) by positive scalars). For the halfspaceH≤ =
H≤(a, β), we also denoteRH≤ = Ra,β. The domain of the reflection relation isdom(Ra,β) = H≤, as
(x, y) ∈ Ra,β implies〈a, x〉 ≤ 2β−〈a, x〉, thus〈a, x〉 ≤ β, and furthermore, for eachx ∈ H≤(a, β),
we obviously have(x, x) ∈ Ra,β. Note that, although(a, β) and(−a,−β) define the same reflection,
the reflection relationsRa,β andR−a,−β have different domains.

From the constrainty−x ∈ (H=(a, β))⊥ it follows thatδ1(Ra,β) = 1 holds. Thus, we can deduce
the following from Remark 1.

Remark 2. If R is induced by a sequential polyhedral relation of type(n, . . . , n) and lengthr con-
sisting of reflection relations only, then, for every polyhedron P ⊆ R

n, an extended formulation of
R(P ) with n′ + r variables andf ′ + 2r inequalities can be constructed, provided one has at hands
an extended formulation forP with n′ variables andf ′ inequalities.

Proposition 2. For a ∈ Rn \ {O}, β ∈ R and the hyperplaneH = H=(a, β), the reflection relation
Ra,β is affinely generated by the identity map and the reflection̺(H).

Proof. We need to showRa,β(x) = conv{x, ̺(H)(x)} for everyx ∈ dom(Ra,β) = H≤(a, β). Since,
for each suchx, we have(x, x) ∈ Ra,β(x) and(x, ̺(H)(x)) ∈ Ra,β(x), and due to the convexity
of Ra,β(x), it suffices to establish the inclusion “⊆”. Thus, lety ∈ Ra,β(x) be an arbitrary point in
Ra,β(x). Due to̺(H)(x) − x ∈ H⊥ andy − x ∈ H⊥, bothx and̺(H)(x) are contained in the line
y + H⊥. From2β − 〈a, x〉 = 〈a, ̺(H)(x)〉 and〈a, x〉 ≤ 〈a, y〉 ≤ 2β − 〈a, x〉 we hence conclude
thaty is a convex combination ofx and̺(H)(x). �

From Proposition 1 and Proposition 2, one obtains the following result.

Corollary 1. If P ⊆ R

n is a polytope, then we have, fora ∈ R

n \ {O} andβ ∈ R defining the
hyperplaneH = H=(a, β) and the halfspaceH≤ = H≤(a, β),

Ra,β(P ) = conv
(

(P ∩H≤) ∪ ̺(H)(P ∩H≤)
)

.

While Corollary 1 describes images under single reflection relations, for analyses of the images
under sequences of reflection relations we define, for eacha ∈ R

n \ {O}, β ∈ R, H≤ = H≤(a, β),
andH = H=(a, β), the map̺ ⋆(H≤) : Rn → R

n via

̺⋆(H
≤)(y) =

{

y if y ∈ H≤

̺(H)(y) otherwise

for all y ∈ R

n, which assigns a canonical preimage to everyy ∈ R

n. If R denotes the polyhedral
relation induced by the sequential polyhedral relation(R

H≤
1
, . . . ,R

H≤
r
), for all y ∈ Rn, we have

y ∈ R(̺⋆(H
≤
1 ) ◦ · · · ◦ ̺⋆(H

≤
r )(y)) . (6)
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Theorem 1. Let the sequential polyhedral relation(R
H≤

1
, . . . ,R

H≤
r
) with halfspacesH≤

1 , . . . ,H≤
r ⊆

R

n and boundary hyperplanesH1, . . . ,Hr induce the polyhedral relationR. For polytopesP,Q ⊆
R

n, with Q = conv(W ) for someW ⊆ R

n, we haveQ = R(P ), whenever the following two
conditions are satisfied:

(1) We haveP ⊆ Q and̺(Hi)(Q) ⊆ Q for all i ∈ [r].

(2) We have̺ ⋆(H≤
1 ) ◦ · · · ◦ ̺⋆(H

≤
r )(w) ∈ P for all w ∈ W .

Proof. From the first condition it follows that the image ofP under every combination of maps̺(Hi)

lies inQ. Thus, from Lemma 1 we have the inclusionR(P ) ⊆ Q. By the second condition and (6),
we haveW ⊆ R(P ), and henceQ = conv(W ) ⊆ R(P ) due to the convexity ofR(P ). �

In order to provide simple examples of extended formulations obtained from reflection relations,
let us define thesigningof a polyhedronP ⊆ R

n to be

sign(P ) = conv
⋃

ǫ∈{−,+}n

ǫ.P ,

whereǫ.x is the vector obtained fromx ∈ Rn by changing the signs of all coordinatesi with ǫi being
minus. Forx ∈ R

n, we denote byx(abs) ∈ R

n the vector that is obtained fromx by changing every
component to its absolute value.

For the construction below we use the reflection relationsR−ek,0, denoted bySk, for all k ∈ [n].
The corresponding reflectionσk : Rn → R

n is just the sign change of thek-th coordinate, given by

σk(x)i =

{

−xi if i = k

xi otherwise

for all x ∈ Rn. The map which defines the canonical preimage with respect tothe relationSk is given
by

σ⋆
k(y)i =

{

|yi| if i = k

yi otherwise

for all y ∈ Rn.

Proposition 3. If R is the polyhedral relation that is induced by the sequence(S1, . . . ,Sn) andP ⊆
R

n is a polytope withv(abs) ∈ P for each vertexv of P , then we have

R(P ) = sign(P ) .

Proof. With Q = sign(P ), the first condition of Theorem 1 is satisfied. Furthermore, we haveQ =
conv(W ) with W = {ǫ.v : ǫ ∈ {−,+}n, v vertex ofP}. As, for everyw ∈ W with w = ǫ.v for
some vertexv of P andǫ ∈ {−,+}n, we haveσ⋆

1 ◦ · · · ◦ σ⋆
n(w) = w(abs) = v(abs) ∈ P , also the

second condition of Theorem 1 is satisfied. Hence the claim follows. �

Proposition 3 and Remark 2 imply the following.

Theorem 2. For each polytopeP ⊆ R

n withv(abs) ∈ P for each vertexv ofP that admits an extended
formulation withn′ variables andf ′ inequalities, there is an extended formulation ofsign(P ) with
n′ + n variables andf ′ + 2n inequalities.
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4. APPLICATIONS

4.1. Reflection Groups. A finite reflection groupis a groupG of finite cardinality that is generated
by a (finite) family̺(Hi) : Rn → R

n (i ∈ I) of reflections at hyperplanesO ∈ Hi ⊆ R

n containing
the origin. We refer to [7, 5] for all results on reflection groups that we will mention. The set of
reflection hyperplanesH ⊆ R

n with ̺(H) ∈ G (and thusO ∈ H) — called theCoxeter arrangement
of G — cutsRn into open connected components, which are called theregionsof G. The groupG
is in bijection with the set of its regions, and it acts transitively on these regions. If one distinguishes
arbitrarily the topological closure of one of them as thefundamental domainΦG of G, then, for every
point x ∈ R

n, there is auniquepoint x(ΦG) ∈ ΦG that belongs to the orbit ofx under the action of
the groupG onRn.

A finite reflection groupG is calledirreducible if the set of reflection hyperplanes cannot be parti-
tioned into two setsH1 andH2 such that the normal vectors of all hyperplanes inH1 are orthogonal
to the normal vectors of all hyperplanes fromH2. According to a central classification result, up to
linear transformations, the family of irreducible finite reflection groups consists of the four infinite
subfamiliesI2(m) (onR2), An−1, Bn, andDn (onRn), as well as six special groups.

For a finite reflection groupG onRn and some polytopeP ⊆ R

n of G, theG-permutahedron
ΠG(P ) of P is the convex hull of the union of the orbit ofP under the action ofG. In this subsection,
we show forG being one ofI2(m), An−1, Bn, orDn, how to construct an extended formulation for
ΠG(P ) from an extended formulation forP . The numbers of inequalities in the constructed extended
formulations will be bounded byf + O(logm) in case ofG = I2(m) and byf + O(n log n) in the
other cases, provided that we have at hands an extended formulation ofP with f inequalities. By the
decomposition into irreducible finite reflection groups, one can extend these constructions to arbitrary
finite reflection groupsG onRn, where the resulting extended formulations havef + O(n logm) +
O(n log n) inequalities, wherem is the largest number such thatI2(m) appears in the decomposition
of G into irreducible finite reflection groups. Details on this will be in the full version of the paper.

4.1.1. The reflection groupI2(m). For ϕ ∈ R, let us denoteHϕ = H=((− sinϕ, cosϕ), 0) and
H≤

ϕ = H≤((− sinϕ, cosϕ), 0). The groupI2(m) is generated by the reflections atH0 andHπ/m.
It is the symmetry group of the regularm-gon with its center at the origin and one of its vertices at
(1, 0). The groupI2(m) consists of the (finite) set of all reflections̺(Hkπ/m) (for k ∈ Z) and the
(finite) set of all rotations around the origin by angles2kπ/m (for k ∈ Z). We chooseΦI2(m) =

{x ∈ R2 : x2 ≥ 0, x ∈ H≤
π/m} as the fundamental domain.

Proposition 4. LetR be induced by the sequence(R
H≤

π/m

,R
H≤

2π/m

,R
H≤

4π/m

, . . . ,R
H≤

2rπ/m

) of reflec-

tion relations withr = ⌈log(m)⌉. If P ⊆ R

2 is a polytope withv(ΦI2(m)) ∈ P for each vertexv of P ,
then we haveR(P ) = ΠI2(m)(P ).

Proof. With Q = ΠI2(m)(P ), the first condition of Theorem 1 is satisfied. Furthermore, we have
Q = conv(W ) with W = {γ.v : γ ∈ I2(m), v vertex ofP}. Let w ∈ W be some point with
w = γ.v for some vertexv of P andγ ∈ I2(m). Observing that

̺
⋆(H≤

π/m
)
◦ ̺

⋆(H≤

2π/m
)
◦ · · · ◦ ̺

⋆(H≤

2rπ/m
)
(w)

is contained inΦI2(m), we conclude that it equalsw(ΦI2(m)) = v(ΦI2(m)) ∈ P . Therefore, also the
second condition of Theorem 1 is satisfied. Hence the claim follows. �

From Proposition 4 and Remark 2, we can conclude the following theorem.
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Theorem 3. For each polytopeP ⊆ R

2 with v(ΦI2(m)) ∈ P for each vertexv of P that admits
an extended formulation withn′ variables andf ′ inequalities, there is an extended formulation of
ΠI2(m)(P ) with n′ + ⌈log(m)⌉ + 1 variables andf ′ + 2⌈log(m)⌉+ 2 inequalities.

In particular, we obtain an extended formulation of a regular m-gon with⌈log(m)⌉ + 1 variables
and2⌈log(m)⌉ + 2 inequalities by choosingP = {(1, 0)} in Theorem 3, thus reproving a result due
to Ben-Tal and Nemirovski [2].

4.1.2. The reflection groupAn−1. The groupAn−1 is generated by the reflections inRn at the hy-
perplanesH=(ek − eℓ, 0) for all pairwise distinctk, ℓ ∈ [n]. It is the symmetry group of the(n− 1)-
dimensional (hence the index in the notationAn−1) simplexconv{e1, . . . ,en} ⊆ R

n. We choose
ΦAn−1 = {x ∈ Rn : x1 ≤ · · · ≤ xn} as the fundamental domain. The orbit of a pointx ∈ Rn under
the action ofAn−1 consists of all points which can be obtained fromx by permuting coordinates.
Thus theAn−1-permutahedron of a polytopeP ⊆ R

n is

ΠAn−1(P ) = conv
⋃

γ∈S(n)

γ.P ,

whereγ.x is the vector obtained fromx ∈ Rn by permuting the coordinates according toγ.
Let us consider more closely the reflection relationTk,ℓ = R

ek−eℓ,0 ⊆ R

n × R

n. The corre-
sponding reflectionτk,ℓ = ̺(Hk,ℓ) : Rn → R

n with Hk,ℓ = H=(ek − eℓ, 0) is the transposition of
coordinatesk andℓ, i.e., we have

τk,ℓ(x)i =











xℓ if i = k

xk if i = ℓ

xi otherwise

for al x ∈ Rn. The mapτ⋆k,ℓ = ̺⋆(Hk,ℓ) : Rn → R

n (assigning canonical preimages) is given by

τ⋆k,ℓ(y) =

{

τk,ℓ(y) if yk > yℓ

y otherwise

for all y ∈ Rn.
A sequence(k1, ℓ1), . . . , (kr, ℓr) ∈ [n] × [n] with ki 6= ℓi for all i ∈ [r] is called asorting

networkif τ⋆k1,ℓ1 ◦ · · · ◦ τ
⋆
kr,ℓr

(y) = y(sort) holds for ally ∈ Rn, where we denote byy(sort) ∈ Rn the
vector that is obtained fromy by sorting the components in non-decreasing order. Note that we have
y(ΦAn−1

) = y(sort) for all y ∈ Rn.

Proposition 5. Let R be induced by a sequence(Tk1,ℓ1 , . . . ,Tkr ,ℓr) of reflection relations, where
(k1, ℓ1), . . . , (kr, ℓr) ∈ [n] × [n] is a sorting network. IfP ⊆ R

n is a polytope withv(sort) ∈ P for
each vertexv of P , then we haveR(P ) = ΠAn−1(P ).

Proof. With Q = ΠAn−1(P ), the first condition of Theorem 1 is satisfied. Furthermore, we have
Q = conv(W ) with W = {γ.v : γ ∈ S(n), v vertex ofP}. As, for everyw ∈ W with w = γ.v for
some vertexv of P andγ ∈ S(n), we have

τ⋆k1,ℓ1 ◦ · · · ◦ τ
⋆
kr,ℓr(w) = w(sort) = v(sort) ∈ P ,

also the second condition of Theorem 1 is satisfied. Hence theclaim follows. �

As there are sorting networks of sizer = O(n log n) (see [1]), from Proposition 5 and Remark 2
we can conclude the following theorem
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Theorem 4. For each polytopeP ⊆ R

n with v(sort) ∈ P for each vertexv of P that admits
an extended formulation withn′ variables andf ′ inequalities, there is an extended formulation of
ΠAn−1(P ) with n′ +O(n log n) variables andf ′ +O(n log n) inequalities.

Choosing the one-point polytopeP = {(1, 2, . . . , n)} ⊆ R

n, Theorem 4 yields basically the
same extended formulation withO(n log n) variables and inequalities of the permutahedronPn

perm =
ΠAn−1(P ) that has been constructed by Goemans [6] (see the remarks in the Introduction).

4.1.3. The reflection groupBn. The groupBn is generated by the reflections inRn at the hyper-
planesH=(ek + eℓ, 0), H=(ek − eℓ, 0) and H=(ek, 0) for all pairwise distinctk, ℓ ∈ [n]. It is
the symmetry group of both then-dimensional cubeconv{−1,+1}n and then-dimensional cross-
polytopeconv{±e1, . . . ,±en}. We chooseΦBn = {x ∈ Rn : 0 ≤ x1 ≤ · · · ≤ xn} as the funda-
mental domain. The orbit of a pointx ∈ R

n under the action ofBn consists of all points which
can be obtained fromx by permuting its coordinates and changing the signs of some subset of its
coordinates. Note that we havey(ΦBn ) = y(sort-abs) for all y ∈ R

n, wherey(sort-abs) = v′(sort) with
v′ = v(abs).

Proposition 6. Let R be induced by a sequence(Tk1,ℓ1 , . . . ,Tkr,ℓr , S1, . . . , Sn) of reflection rela-
tions, where(k1, ℓ1), . . . , (kr, ℓr) ∈ [n] × [n] is a sorting network (and theSi are defined as at the
end of Section 3). IfP ⊆ R

n is a polytope withv(sort-abs) ∈ P for each vertexv of P , then we have
R(P ) = ΠBn(P ).

Proof. With Q = ΠBn(P ), the first condition of Theorem 1 is satisfied. Furthermore, we have
Q = conv(W ) with W = {γ.ǫ.v : γ ∈ S(n), ǫ ∈ {−,+}n, v vertex ofP}. As, for everyw ∈ W
with w = γ.ǫ.v for some vertexv of P andγ ∈ S(n), ǫ ∈ {−,+}n, we have

τ⋆k1,ℓ1 ◦ · · · ◦ τ
⋆
kr ,ℓr ◦ σ

⋆
1 ◦ · · · ◦ σ

⋆
n(w) = w(sort-abs) = v(sort-abs) ∈ P ,

also the second condition of Theorem 1 is satisfied. Hence theclaim follows. �

As for An−1, we thus can conclude the following from Proposition 6 and Remark 2.

Theorem 5. For each polytopeP ⊆ R

n with v(sort-abs) ∈ P for each vertexv of P that admits
an extended formulation withn′ variables andf ′ inequalities, there is an extended formulation of
ΠBn(P ) with n′ +O(n log n) variables andf ′ +O(n log n) inequalities.

4.1.4. The reflection groupDn. The groupDn is generated by the reflections inRn at the hyper-
planesH=(ek + eℓ, 0) andH=(ek − eℓ, 0) for all pairwise distinctk, ℓ ∈ [n]. Thus,Dn is a proper
subgroup ofBn. It is not the symmetry group of a polytope. We chooseΦDn = {x ∈ Rn :
|x1| ≤ x2 ≤ · · · ≤ xn} as the fundamental domain. The orbit of a pointx ∈ R

n under the action
of Dn consists of all points which can be obtained fromx by permuting its coordinates and chang-
ing the signs of anevennumber of its coordinates. For everyx ∈ R

n, the pointx(ΦDn) arises from
x(sort-abs) by multiplying the first component by−1 in casex has an odd number of negative com-
ponents. Fork, ℓ ∈ [n] with k 6= ℓ, we denote the ordered pair(R

ek−eℓ,0,R−ek−eℓ,0) of reflection
relations byEk,ℓ.

Proposition 7. LetR be induced by a sequence(Tk1,ℓ1 , . . . ,Tkr,ℓr , E1,2, . . . , En−1,n) of polyhedral
relations, where(k1, ℓ1), . . . , (kr, ℓr) ∈ [n]× [n] is a sorting network. IfP ⊆ R

n is a polytope with
x(ΦDn ) ∈ P for each vertexv of P , then we haveR(P ) = ΠDn(P ).

Proof. With Q = ΠDn(P ), the first condition of Theorem 1 is satisfied. Let us denote by{−,+}neven
the set of allǫ ∈ {−,+}n with an even number of components equal to minus. Then, we have
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Q = conv(W ) with W = {γ.ǫ.v : γ ∈ S(n), ǫ ∈ {−,+}neven, v vertex ofP}. For k, ℓ ∈ [n] with
k 6= ℓ, we defineη⋆k,ℓ = ̺⋆(H

≤(ek−eℓ,0)) ◦ ̺⋆(H
≤(−ek−eℓ,0)). For eachy ∈ R

n, the vectorη⋆k,ℓ(y)
is the vectory′ ∈ {y, τk,ℓ(y), ρk,ℓ(y), ρk,ℓ(τk,ℓ(y))} with |y′k| ≤ y′ℓ, whereρk,ℓ(y) arises fromy by
multiplying both componentsk andℓ by−1. As, for everyw ∈ W with w = γ.ǫ.v for some vertexv
of P andγ ∈ S(n), ǫ ∈ {−,+}neven, we have

τ⋆k1,ℓ1 ◦ · · · ◦ τ
⋆
kr,ℓr ◦ η

⋆
1,2 ◦ · · · ◦ η

⋆
n−1,n(w) = w(ΦDn ) = v(ΦDn ) ∈ P ,

also the second condition of Theorem 1 is satisfied. Hence theclaim follows. �

And again, similarly to the casesAn−1 andBn, we derive the following result from Proposition 7
and Remark 2.

Theorem 6. For each polytopeP ⊆ R

n with v(ΦDn )(v) ∈ P for each vertexv of P that admits
an extended formulation withn′ variables andf ′ inequalities, there is an extended formulation of
ΠDn(P ) with n′ +O(n log n) variables andf ′ +O(n log n) inequalities.

If we restrict attention to the polytopesP = {(−1, 1, . . . , 1)} ⊆ R

n andP = {(1, 1, . . . , 1)} ⊆
R

n, then we can remove the reflection relationsTi1,j1 , . . . , Tir ,jr from the construction in Proposi-
tion 7. Thus, we obtain extended formulations with2(n − 1) variables and4(n − 1) inequalities of
the convex hulls of all vectors in{−1,+1}n with an odd respectively even number of ones. Thus, ap-
plying the affine transformation ofRn given byy 7→ 1

2(1− y), we derive extended formulations with
2(n − 1) variables and4(n − 1) inequalities for theparity polytopesconv{v ∈ {0, 1}n :

∑

i vi odd}
andconv{v ∈ {0, 1}n :

∑

i vi even}, respectively (reproving a result by Carr and Konjevod [3]).

4.2. Huffman Polytopes. A vector v ∈ R

n (with n ≥ 2) is a Huffman-vectorif there is a rooted
binary tree withn leaves (all non-leaf nodes having two children) and a labeling of the leaves by
1, . . . , n such that, for eachi ∈ [n], the number of arcs on the path from the root to the leaf labelled i
equalsvi. Let us denote byVn

huff the set of all Huffman-vectors inRn, and byPn
huff = conv(Vn

huff) the
Huffman polytope. Note that currently no linear description ofPn

huff in Rn is known. In fact, it seems
that such descriptions are extremely complicated. For instance, Nguyen, Nguyen, and Maurras [11]
proved thatPn

huff has(Ω(n))! facets.
It is easy to see that Huffman-vectors and -polytopes have the following properties.

Observation 1.
(1) For eachγ ∈ S(n), we haveγ.Vn

huff = Vn
huff .

(2) For eachv ∈ Vn
huff there are at least two components ofv equal tomax{vk : k ∈ [n]}.

(3) For eachv ∈ Vn
huff (n ≥ 3) andvi = vj = max{vk : k ∈ [n]} for some pairi < j, we have

(v1, . . . , vi−1, vi − 1, vi+1, . . . , vj−1, vj+1, . . . , vn) ∈ Vn−1
huff .

(4) For eachw′ ∈ Vn−1
huff (n ≥ 3), we have(w′

1, . . . , w
′
n−2, w

′
n−1 + 1, w′

n−1 + 1) ∈ Vn
huff .

Forn ≥ 3, let us define the embedding

Pn−1 = {(x1, . . . , xn−2, xn−1 + 1, xn−1 + 1) : (x1, . . . , xn−1) ∈ Pn−1
huff }

of Pn−1
huff intoRn.

Proposition 8. LetR ⊆ R

n×Rn be the polyhedral relation that is induced by the following sequence
of transposition relations:

Tn−2,n−1,Tn−3,n−2, . . . ,T2,3,T1,2,Tn−1,n,Tn−2,n−1, . . . ,T2,3,T1,2 (7)

Then we haveR(Pn−1) = Pn
huff .
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Proof. With P = Pn−1 andQ = Pn
huff , the first condition of Theorem 1 is obviously satisfied (due to

parts (1) and (4) of Observation 1). We haveQ = conv(W ) with W = Vn
huff . Furthermore, for every

w ∈ W andx = τ⋆(w) with

τ⋆ = τ⋆n−2,n−1 ◦ τ
⋆
n−3,n−2 ◦ · · · ◦ τ

⋆
2,3 ◦ τ

⋆
1,2 ◦ τ

⋆
n−1,n ◦ τ⋆n−2,n−1 ◦ · · · ◦ τ

⋆
2,3 ◦ τ

⋆
1,2 , (8)

we havexn = xn−1 = max{wi : i ∈ [n]}, hence part (3) of Observation 1 (withi = n − 1 and
j = n) impliesτ⋆(w) ∈ Pn−1. Therefore, the claim follows by Theorem 1. �

From Remark 2 we thus obtain an extended formulation forPn
huff with n′ + 2n − 3 variables and

f ′+4n− 6 inequalities, provided we have an extended formulation forPn−1
huff with n′ variables andf ′

inequalities. AsP2
huff is a single point, we thus can establish inductively the following result.

Corollary 2. There are extended formulations ofPn
huff withO(n2) variables and inequalities.

Actually, one can reduce the size of the extended formulation of Pn
huff to O(n log n). In order to

indicate the necessary modifications, let us denote byΘk the sequence

(k − 2, k − 1), (k − 3, k − 2), . . . , (2, 3), (1, 2), (k − 1, k), (k − 2, k − 1), . . . , (2, 3), (1, 2)

of pairs of indices used (withk = n) in (7) and (8). For every sequenceΘ = ((i1, j1), . . . , (ir, jr))
of pairs of pairwise different indices, we defineτ⋆Θ = τ⋆i1,j1 ◦ · · · ◦ τ

⋆
ir ,jr (thus,τ⋆ in (8) equalsτ⋆Θn

).
Furthermore, we denote byηk : Rk → R

k−1 (for k ≥ 3) the linear map defined viaηk(y) =
(y1, . . . , yk−2, yk−1 − 1) for all y ∈ R

k. The crucial property for the above construction to work is
that the following holds for everyv ∈ Vn

huff andk ∈ {3, . . . , n}: The vector

x = τ⋆Θk
◦ ηk+1 ◦ τ

⋆
Θk+1

◦ · · · ◦ ηn ◦ τ⋆Θn
(v)

satisfiesxk−1 = xk = max{xi : i ∈ [k]}. It turns out that this property is preserved when replacing
the sequenceΘn by an arbitrary sorting network (e.g. of sizeO(n log n), see Section 4.1.2) and, for
k ∈ {3, . . . , n− 1}, the sequenceΘk (of length2k − 3) by the sequence

(ik2 , i
k
1), (i

k
3 , i

k
2), . . . , (i

k
r(k)−1, i

k
r(k)−2), (i

k
r(k), i

k
r(k)−1), (i

k
r(k)−1, i

k
r(k)−2), . . . , (i

k
3 , i

k
2), (i

k
2 , i

k
1)

with ik1 = k, ik2 = k−1, ikℓ = ikℓ−1−2ℓ−3 for all ℓ ≥ 3, andr(k) being the maximalℓ with ikℓ ≥ 1. As
r(k) is bounded byO(log k) we obtain the following theorem, whose detailed proof will be included
in the full version of the paper.

Theorem 7. There are extended formulations ofPn
huff withO(n log n) variables and inequalities.

5. CONCLUSIONS

We hope to have demonstrated that and how the framework of reflection relations extends the cur-
rently available toolbox for constructing extended formulations. We conclude with briefly mentioning
two directions for future research.

One of the most interesting questions in this context seems to be that for other polyhedral relations
that can be useful for constructing extended formulations.In particular, what other types of affinely
generated polyhedral relations are there?

The reflections we referred to are reflections at hyperplanes. It would be of great interest to find
tools to deal with reflections at lower dimensional subspaces as well. This, however, seems to be
much harder. In particular, it is unclear whether some concept similar to that of polyhedral relations
can help here.
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