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CONSTRUCTING EXTENDED FORMULATIONS FROM REFLECTION RELAT IONS

VOLKER KAIBEL AND KANSTANTSIN PASHKOVICH

ABSTRACT. There are many examples of optimization problems whosecaged polyhedra can be
described much nicer, and with way less inequalities, byeptmns of higher dimensional polyhedra
than this would be possible in the original space. Howewvamently not many general tools to con-
struct such extended formulations are available. In thpepave develop a framework of polyhedral
relations that generalizes inductive constructions ofestéd formulations via projections, and we par-
ticularly elaborate on the special case of reflection reteti The latter ones provide polynomial size
extended formulations for several polytopes that can betoacted as convex hulls of the unions of (ex-
ponentially) many copies of an input polytope obtained eguences of reflections at hyperplanes. We
demonstrate the use of the framework by deriving small eledriormulations for thé&-permutahedra
of all finite reflection groups- (generalizing both Goeman|s|[6] extended formulation efglermutahe-
dron of sizeO(n log n) and Ben-Tal and Nemirovski’s[2] extended formulation witf) inequalities
for the regular2®-gon) and for Huffman-polytopes (the convex hulls of thegiivectors of Huffman
codes).

1. INTRODUCTION

An extensionof a polyhedronP C RR™ is some polyhedrorf) C R¢ and a linear projection
7 : RY — R™ with 7(Q) = P. A description of@Q by linear inequalities (and equations) is called an
extended formulatiofor P. Extended formulations have received quite some inteassiin several
cases, one can describe polytopes associated with comhaiptimization problems much easier
by means of extended formulations than by linear descriptio the original space. In particular,
such extension® can have way less facets than the polyhedfdmas. For a nice survey on extended
formulations we refer td [4].

Many fundamental questions on the existence of extendedulations with small numbers of
inequalities are open. A particularly prominent one askstiver there are polynomial size extended
formulations for the perfect matching polytopes of complptaphs (see [14] 9]). In fact, we lack good
techniques to bound the sizes of extended formulations frelmw, and we also need more tools to
construct extended formulations. This paper makes a tortih into the latter direction.

There are several ways to build extended formulations oftppes from linear decriptions or from
extended formulations of other ones (see, €.9/,[[10, 8])a’iqular simple way is to construct them
inductively from extended formulations one has alreadystroicted before. As for an example, let for
avectorp € R"} of processing timeand for somer ¢ &(n) (where&(n) is the set of all bijections
v : [n] = [n] with [n] = {1,...,n}), thecompletion time vectobe the vectort(p,o) € R"™ with
ct(p,0); = Z;’:(Jl) po—1;) forall j € [n]. By some simple arguments (resembling the correctness

proof of Smith’ rule), one can show th&, is the image of the polytop® = Pft x[0,1]"~1 for
p = (p1,...,pn_1) € R* ! under the affine mag : R?>"~2 — R" defined viaf(z) = (2' +
ppx”, (P, 1 — 2") + p,) with z = (2/,2”) anda’, 2" € R" 1,
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Applying this inductively, one finds tha?, is azonotopei.e., an affine projection of a cube of
dimensionn(n — 1)/2 (which had already been proved by Wolsey in the 1980’$ [13his may
appear surprisingly simple viewing the fact tigt has exponentially many facets (seel[12]). For
the special case of theermutahedror®Py,,,, = Pl = conv{(y(1),...,7(n)) € R" : vy € &(n)},
Goemans|[6] found an even smaller extended formulationzef G log n), which we will come
back to later.

Let us look again at one step in the inductive constructistideed above. With the polyhedron
R={(z,y) e R*" > xR":y = f(2)}, 1)

the extension derived in such a step reads
P’ ={yeR": (z,y) € Rfor somex € P}. (2)

Thus, we have derived the extended formulationfgrby applying in the sense dfl(2) the “polyhedral
relation” defined in[(ll) to a polytop€ of which we had found (inductively) an extended formulation
before. The goal of this paper is to generalize this tecleigjfuderiving extended formulations by
using other “polyhedral relations” than graphs of affine m@phich R as defined in[{1) is). We
will introduce the framework of such general polyhedrahtieins in Sectioh]2, and we are going to
elaborate on one particular type of those, catktection relationsin Sectiori 8. Reflection relations
provide, for affine halfspace§< C R"™ and polyhedra® C R", small extended formulations of the
convex hull of the union o? N H=< and the image of? N H= under the orthogonal reflection at the
boundary hyperplane df<. They turn out to be quite useful building blocks in the camstion of
some extended formulations. We derive some general resultsflection relations (Theoremh 1) that
allow to construct rather easily extended formulationssfame particular applications (in particular,
without explicitly dealing with the intermediate polyhedsf iterated constructions) .

In a first application, we show how to derive, for each polgtdp C R” that is contained in (the
topological closure of) a region of a finite reflection gradmn R"”, an extended formulation of the
G-permutahedron oP, i.e., the convex hull of the union of the polytopes in theitoob P under the
action of G (Sectior[ 4.11). These extended formulations have O(n log n) + O(n log m) inequali-
ties, wheren is the largest number such thiat{m) appears in the decomposition@finto irreducible
finite reflection groups, and provided that there is an exddrfdrmulation forP with at mostf in-
equalities. In particular, this generalizes Goemans'redee formulation of the permutahedrBf,,,,
with O(nlogn) inequalities[6]. In fact, the starting point of our reséameas to give an alternative
proof for the correctness of Goeman’s extended formulatian we would be able to generalize to
other constructions.

As a second application, we provide an extended formulatith O(nlogn) inequalities for
the convex hull of all weight-vectors of Huffman-codes wittwords (Section_412). Thisluffman-
polytopePy}. ¢ is the convex hull of all vectorgvy, ..., v,) € R™ for which there is a rooted binary
tree withn leaves labelled by, ..., n such that the distance of leafrom the root equals; for all
i € [n]. This provides another striking example of the power of edésl formulations, as no linear
descriptions oP}  in R™ is known so far, and Nguyen, Nguyen, and Maurras [11] showaid{)
has2¢2("logn) facets.

Two well-known results we obtain easily within the framelwof reflection relations are extended
formulations with2[log(m)] + 2 inequalities for regulam-gons (reproving a result of Ben-Tal and
Nemirovski [2], see Sectidn 4.1.1) and an extended forrnmrawith 4n — 1 inequalities of theparity
polytope i.e., the convex hull of alb € {0, 1}" with an odd number of one-entries (reproving a result
of Carr and Konjevod [3], see Sectibn 411.4).
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We conclude by briefly discussing (Sectidn 5) directiondtiture research on the further extension
of the tools presented in this paper .
Acknowledgements. We thank Samuel Fiorini and Michel Gagsrfar valuable hints and discus-
sions.

2. POLYHEDRAL RELATIONS

A polyhedral relationof type(n, m) is a non-empty polyhedro@ # R C R™ x R™. Theimage
of a subsefX C R™ under such a polyhedral relatiddis denoted by

R(X)={yeR™:(z,y) € Rforsomer € X}.

Clearly, we have the monotonicity relatiof§ X) € R(X) for X C X. Furthermore,R(X) is a
linear projection ofR N (X x R™) . Thus, images of polyhedra and convex sets under polyhedral
relations are polyhedra and convex sets, respectively.

A sequential polyhedral relatioof type (ko, ..., k) is a sequencéRy, ..., R,), whereR; is a
polyhedral relation of typék;_1, k;) for eachi € [r]; its lengthis r. For such a sequential polyhedral
relation, we denote bR = R (g, g, the setofal(z(?), (")) € R¥ x R* for which there is some
(M, ..., 2Dy with (20D, 2(0) € R; for all i € [r]. Note that, sincéR is a linear projection of
a polyhedronjR is a polyhedral relation of typgko, k). We callR g, ... r,) the polyhedral relation
that isinducedby the sequential polyhedral relatidR;, . .., R,).

For a polyhedrorP C R*o, the polyhedrorQ C R0 x --. x R¥" defined by

20 ep and (207Y 0)eRr; forallielr] 3)

satisfiest(Q) = R(P), wherer is the projection defined via(z(?,...,2(")) = 2("). Thus, [3)
provides an extended formulation of the polyhedf{P) with ky+- - -+ k, variables andy+- - -+ f,.
constraints, provided we have linear descriptions of tHghmalra P, Ry, ..., R, with fo, f1, ...,
fr constraints, respectively. Of course, one can reduce th#&eu of variables in this extended
formulation todim(Q). In order to obtain useful upper bounds on this number by sedrthe
polyhedral relations?y, ..., R, let us denote, for any polyhedral relatiGhC R"™ x R, by §;(R)
andds(R) the dimension of the non-empty fibers of the orthogonal ptma of aff (R) to the first
and second factor @™ x R™, respectively. Ibff(R) = {(z,y) € R" x R™ : Az + By = c}, then
01(R) = dim(ker(B)) anddy(R) = dim(ker(A)). With these parameters, we can estimate

dim(Q) < min{ko + Y 61(R), kr + Y 62(Ri)} .
i=1 i=1
Remark 1. Let (Ry,..., R,) be a sequential polyhedral relation of typky, . .., k) with induced
polyhedral relationR, letr : R¥ x. .. xRF" — R*" be the projection defined via (), ..., 2(") =
2("), and let f; be the number of facets @t; for eachi [r]. If the polyhedronP C R*o has

an extended formulation witk’ variables andf’ inequalities, then we can construct an extended
formulation forR (P) withmin{k'+>""_; 01(R;), k- +>_,_, 02(R;)} variables andf’+ fi+- - -+ f,
constraints.

A particularly simple class of polyhedral relations is defirby polyhedraR C R™ x R™ with
R = {(z,y) e R" x R™ : y = f(x)} for some affine mag : R" — R™. For these polyhedral
relations, a (linear description of a) polyhedréh C R™ is just an extended formulation of the
polyhedronR(P) via projectionf.
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Thedomainof a polyhedral relatiork C R™ x R™ is the polyhedron
dom(R) = {x € R" : (z,y) € R for somey € R™}.

We clearly haveR(X) = U,cxndom(r) B(z) for all X C R"™. Note that, for a polytope” =
conv (V') with a finite sefl” C R and a polyhedral relatioR C R"™ x R™, in general the inclusion

conv U R(v) € R(P) 4
veV

holds without equality, even in case #f C dom(R); as for an example you may consider =
conv{0,2} C R! andR = conv{(0,0), (1,1),(2,0)} with R(P) = [0,1] and R(0) = R(2) = {0}.
Fortunately, one can guarantee equalitylin (4) (which mékesich easier to analyz&(P)) for an
important subclass of polyhedral relations.

We call arelation? C R™ x R™ affinely generatety the family (o)) ;< r, if F is finite and every
o) : R® — R™ is an affine map such thdt(x) = conv J;c o'/ (x) holds for allz € dom(R).
The mapY) (f € F) are calledaffine generatorsf R in this case. For such a polyhedral relatiéin
and a polytope”? C R"™ with P N dom(R) = conv (V') for someV C R", we find

R(P) = U R(x) = U conv U o) ()

z€PnNdom(R) z€PNdom(R) fer
C conv U U o) (z) = conv U U o) (v) C conv U R(v),
z€PNdom(R) feF veV feF veV

where, due td_(4), all inclusions are equations. In paricuwle have established the following result.

Proposition 1. For every polyhedral relatiol? C R™ x R™ that is affinely generated by a finite
family (o)) ;e r, and for every polytop® C R™, we have

R(P) = conv U o (PN dom(R)). (5)

As we will often deal with polyhedral relatior® = R (g, ... r,) that are induced by a sequential
polyhedral relatior( Ry, ..., R,), it would be convenient to be able to derive affine generdtar®
from affine generators foR,... ,R,. This, however, seems impossible in general, where the diffi
culties arise from the interplay between images and doniniassequence of polyhedral relations.
However, one still can derive a very useful analogue of tisigion “C” in (B).

Lemma 1. If (Ry,..., R,) is a sequential polyhedral relation such that, for each [r], the rela-
tion R; is affinely generated by the finite fam(lyfi))fieFi, then the inclusion

R(P) C conv U o) (PN dom(R))
fer

holds for every polyhedro® C R", whereF = F x --- x F, and p{f) = (/") o... 0 o/1) for each
f: (fl,...,fr) e F.

We omit the straight-forward proof of Lemrha 1 in this extethddstract.
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3. REFLECTION RELATIONS

Fora € R™\ {0} andg € R, we denote bH™ (a, 8) = {x € R™ : (a,z) = B} the hyperplane
defined by the equatiofu, z) = 8 and byH=(a, ) = {z € R" : (a,z) < S} the halfspace defined
by the inequality(a, z) < g (with (v,w) = Y I, v;w; for all v,w € R™). The reflection atf =
H=(a,B) is o) : R* — R™ where o) (z) is the point witho)(z) — = € H™' lying in the
one-dimensional linear subspate" = {\a : A € R} that is orthogonal td7 and (a, o) (z)) =
2 — {(a, x). Thereflection relationdefined by(a, ) is

Rep={(z,y) e R"xR":y—z € (H=(a, 8))7F, (a,2) < (a,y) <28 — (a,2)}
(the definition is invariant against scalir(g, 3) by positive scalars). For the halfspades =
H=(a, B), we also denot® ;< = R, 3. The domain of the reflection relationdsm(R, ) = H=, as
(z,y) € R g implies(a,z) < 28 — (a,z), thus(a, z) < 3, and furthermore, for eache H=(qa, 3),
we obviously havegz, z) € R, 3. Note that, althouglia, 3) and(—a, —3) define the same reflection,
the reflection relation®, 3 andR_, _ 3 have different domains.

From the constraing — = € (H=(a, 8))" it follows thatd; (R, g) = 1 holds. Thus, we can deduce
the following from Remarkl1.

Remark 2. If R is induced by a sequential polyhedral relation of tyjpe. .., n) and lengthr con-
sisting of reflection relations only, then, for every polgiem P C R”, an extended formulation of
R(P) with n’ 4+ r variables andf’ + 2r inequalities can be constructed, provided one has at hands
an extended formulation faP with n’ variables andf’ inequalities.

Proposition 2. For a € R™ \ {O}, 5 € R and the hyperplané/ = H™ (a, 3), the reflection relation
R, s is affinely generated by the identity map and the reflecsiéh.

Proof. We need to showR,, s(z) = conv{z, o) (z)} for everyz € dom(R, 3) = H=(a, 8). Since,
for each suche, we have(z,z) € R, 5(x) and(z, o) (x)) € R, (), and due to the convexity
of R, s(x), it suffices to establish the inclusioi”. Thus, lety € R, g(x) be an arbitrary point in

R s(z). Due too)(z) — x € H+ andy — x € H*, bothx and o) (z) are contained in the line
y + H+. From28 — (a,z) = (a, o) (z)) and(a,z) < (a,y) < 28 — (a,z) we hence conclude
thaty is a convex combination of and (%) (z). O

From Propositiof]1 and Propositibh 2, one obtains the foiigwesult.

Corollary 1. If P C R™ is a polytope, then we have, farc R" \ {0} and € R defining the
hyperplaned = H=(a, 3) and the halfspacél < = H=(a, 8),

R, 5(P) = conv (PN HS)U o (PN HT)).

While Corollary[1 describes images under single reflectaations, for analyses of the images
under sequences of reflection relations we define, for eaefR” \ {0}, 3 € R, HS = HS(qa, ),

andH = H=(a, 3), the mapo*#=) : R" — R" via

: <
«(HS) (N _ )Y ifye H=
¢ ) {Q(H )(y) otherwise

for all y € R"™, which assigns a canonical preimage to evgry R". If R denotes the polyhedral
relation induced by the sequential polyhedral relatiBn,<, ..., R <), forally € R", we have
1 T

y € R(g"HD) 0.0 g*H) (). (6)
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Theorem 1. Let the sequential polyhedral reIaticéRng, . vRHS) with halfspacest, o, HE
R™ and boundary hyperplaned, ..., H, induce the polyhedral relatio®. For polytopesP, @)
R"™, with @ = conv(W) for someW C R", we have@Q = R(P), whenever the following two
conditions are satisfied:

(1) We haveP C Q and o) (Q) C Q for all i € [r].

(2) We have* (1) o - . 0 o*HF) () € Pforall w € W.

-
-

Proof. From the first condition it follows that the image Bfunder every combination of map§™:)
lies in Q. Thus, from Lemmall we have the inclusi®{P) C @. By the second condition and (6),
we havel’V C R(P), and henc&) = conv(W) C R(P) due to the convexity oR (P). O

In order to provide simple examples of extended formulatiohtained from reflection relations,
let us define thaigningof a polyhedronP C R to be

sign(P) = conv U e.P,
Ee{_v""}n
wheree.z is the vector obtained from € R"™ by changing the signs of all coordinatewith ¢; being
minus. Forz € R", we denote by:(39 ¢ R™ the vector that is obtained fromby changing every
component to its absolute value.

For the construction below we use the reflection relatiRns, o, denoted bys;, for all & € [n].
The corresponding reflectiar), : R™ — R™ is just the sign change of theth coordinate, given by

O’k(l’)z _ {—l’i ifi==%k

T otherwise

for all z € R™. The map which defines the canonical preimage with respéheteelationSy is given

by
* o ‘yz‘ ifi==F%
ok = {yl otherwise

forally € R™.

Proposition 3. If R is the polyhedral relation that is induced by the sequeftse. .., S,,) and P C
R" is a polytope with/(@9 ¢ P for each vertexw of P, then we have

R(P) = sign(P).

Proof. With @ = sign(P), the first condition of Theorein 1 is satisfied. Furthermore have) =
conv(W) with W = {ew : € € {—,+}", v vertex of P}. As, for everyw € W with w = e.v for
some vertexy of P ande € {—,+}", we haveo? o --- 0 o7 (w) = w@®9 = (@9 ¢ P also the
second condition of Theorelm 1 is satisfied. Hence the claliowie. O

Propositio B and Remalk 2 imply the following.

Theorem 2. For each polytope® C R"™ withv(@9 ¢ P for each vertex of P that admits an extended
formulation withn’ variables andf’ inequalities, there is an extended formulationsighn (P) with
n/ + n variables andf’ + 2n inequalities.
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4. APPLICATIONS

4.1. Reflection Groups. A finite reflection groups a groupG of finite cardinality that is generated
by a (finite) family o) : R — R" (i € I) of reflections at hyperplané® € H; C R" containing
the origin. We refer tol[7], /5] for all results on reflection gps that we will mention. The set of
reflection hyperplane&l C R" with o) € G (and thusD € H) — called theCoxeter arrangement
of G — cutsR” into open connected components, which are calleddéhwnsof G. The groupG
is in bijection with the set of its regions, and it acts trémely on these regions. If one distinguishes
arbitrarily the topological closure of one of them as tlnedamental domai® of G, then, for every
pointz € R”, there is auniquepoint z(®¢) € &, that belongs to the orbit of under the action of
the groupG onR™.

A finite reflection groupZ is calledirreducible if the set of reflection hyperplanes cannot be parti-
tioned into two set${, andH, such that the normal vectors of all hyperplane${inare orthogonal
to the normal vectors of all hyperplanes fré. According to a central classification result, up to
linear transformations, the family of irreducible finitdleetion groups consists of the four infinite
subfamiliesly(m) (onR?), A,,_1, By, andD,, (onIR™), as well as six special groups.

For a finite reflection grougs on R™ and some polytopé” C R" of GG, the G-permutahedron
I (P) of P is the convex hull of the union of the orbit 6f under the action ofr. In this subsection,
we show forG being one ofly(m), A,—1, By, or D,,, how to construct an extended formulation for
I (P) from an extended formulation fd?. The numbers of inequalities in the constructed extended
formulations will be bounded by + O(logm) in case ofG = I>(m) and by f + O(nlogn) in the
other cases, provided that we have at hands an extendedl&bionwf P with f inequalities. By the
decomposition into irreducible finite reflection groupse @an extend these constructions to arbitrary
finite reflection groupss on R, where the resulting extended formulations hgve O(nlogm) +
O(nlogn) inequalities, wheren is the largest number such tha{m) appears in the decomposition
of G into irreducible finite reflection groups. Details on thidlge in the full version of the paper.

4.1.1. The reflection grouplz(m). For¢ € R, let us denoted, = H~((—sin¢,cos¢),0) and
Hg = H=((—sin g, cos ¢),0). The grouply(m) is generated by the reflections At and Hy /y,,.
It is the symmetry group of the regulas-gon with its center at the origin and one of its vertices at
(1,0). The grouply(m) consists of the (finite) set of all reflectiops’+=/=) (for k € Z) and the
(finite) set of all rotations around the origin by anglBsr/m (for k£ € Z). We chooseby, ) =

{reR?: 2y >0,z € Hf/m} as the fundamental domain.

Proposition 4. LetR be induced by the sequende,< ,R,< ,R,< ,...,Ry< )ofreflec-

T/m 2_7r/m 4_7\'/m 2w /m
tion relations withr = [log(m)]. If P C R is a polytope with/(®2tm) e P for each vertex of P,
then we have’ (P) = Il () (P).

Proof. With Q = T, () (P), the first condition of Theorer 1 is satisfied. Furthermore, have
Q = conv(W) with W = {y.wv : v € Is(m),v vertex of P}. Letw € W be some point with
w = v.v for some vertex of P and~y € I»(m). Observing that

Q*(H‘r%/m) o Q*(H;‘rr/m) O+--0 Q*(H;"“rr/m)(w)
is contained in®y,(,,), we conclude that it equals(®2(m) = (®nm) ¢ p. Therefore, also the
second condition of Theorelm 1 is satisfied. Hence the claliovs. O

From Proposition 4 and Remdrk 2, we can conclude the follgwheorem.
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Theorem 3. For each polytopeP? C R2? with v(®2(m) ¢ P for each vertexs of P that admits
an extended formulation with’ variables andf’ inequalities, there is an extended formulation of
I, (m) (P) with n 4 [log(m)] + 1 variables andf’ + 2[log(m)] + 2 inequalities.

In particular, we obtain an extended formulation of a regutagon with [log(m)] + 1 variables
and2[log(m)] + 2 inequalities by choosing = {(1,0)} in TheoreniB, thus reproving a result due
to Ben-Tal and Nemirovski [2].

4.1.2. The reflection groupd,,_1. The groupA,,_; is generated by the reflections IR at the hy-
perplanedi= (e, — ey, 0) for all pairwise distinctt, £ € [n]. It is the symmetry group of thg, — 1)-
dimensional (hence the index in the notatidp_;) simplexconv{ey,...,e,} € R". We choose
Qy, , ={reR": 2y <--- <uz,} as the fundamental domain. The orbit of a pairgé R"™ under
the action ofA,,_; consists of all points which can be obtained franby permuting coordinates.
Thus theA,,_;-permutahedron of a polytope C R" is

114, ,(P) = conv U ~.P,
v€6(n)
where~.z is the vector obtained from € R" by permuting the coordinates accordingyto
Let us consider more closely the reflection relatibp, = Re,—¢,,0 € R" x R". The corre-
sponding reflectior, , = o%¢) : R™ — R™ with Hy,, = H= (e, — @, 0) is the transposition of
coordinates: and/, i.e., we have
Ty ifi==%
Tho(x); = Qg ifi=14
x; otherwise

for alz € R". The mapr; , = ¢*Hx.t) : R" — R" (assigning canonical preimages) is given by

o v ) Tre(y) i yr >y
Thely) = {y otherwise

forally € R™.

A sequenceky, 1), .., (k- ¢y) € [n] x [n] with k; # ¢; for all i € [r] is called asorting
networkif 71 , o---o7 , (y) =y holds for ally € R", where we denote by(s°® € R" the
vector that is obtained from by sorting the components in non-decreasing order. Noteatbdnave
y(P4n-1) = y(so for all y € R™.

Proposition 5. Let R be induced by a sequenc&}y, ¢,,..., Tk, ¢,.) of reflection relations, where
(k1,01), ..., (k.,£.) € [n] x [n] is a sorting network. 1P C R™ is a polytope withy(s°V ¢ P for
each vertew of P, then we hav&®R (P) =114, ,(P).

Proof. With @ = Il4, ,(P), the first condition of Theorefn 1 is satisfied. Furthermore, have
Q = conv(W) with W = {y.v : v € &(n),v vertex of P}. As, for everyw € W with w = ~.v for
some vertex of P andy € &(n), we have

Thon 0 0T g (w) = w = ¢ p
also the second condition of Theoréin 1 is satisfied. Hencelda follows. 0

As there are sorting networks of size= O(nlogn) (see [1]), from Proposition] 5 and Remark 2
we can conclude the following theorem
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Theorem 4. For each polytopeP C R™ with v(®Y ¢ P for each vertexv of P that admits
an extended formulation with’ variables andf’ inequalities, there is an extended formulation of
T4, ,(P)withn' + O(nlogn) variables andf’ + O(n logn) inequalities.

Choosing the one-point polytope = {(1,2,...,n)} € R"™, Theorem_ 4 yields basically the
same extended formulation with(n log n) variables and inequalities of the permutahedrdp,,,, =
I14, ,(P) that has been constructed by Goemans [6] (see the rematie inttoduction).

4.1.3. The reflection groupB,,. The groupB,, is generated by the reflections ™ at the hyper-
planesH™ (ex + @¢,0), H (e — e, 0) and H™ (e, 0) for all pairwise distinctk, ¢ € [n]. It is

the symmetry group of both the-dimensional cubeonv{—1,+1}" and then-dimensional cross-
polytopeconv{+tey,...,te,}. We choosebp, = {r e R" : 0 <z, <--- < uz,} as the funda-
mental domain. The orbit of a point € R™ under the action of3,, consists of all points which
can be obtained from by permuting its coordinates and changing the signs of sarhees of its

coordinates. Note that we hayé®s:) = y(Sotabs for gll y € R”, wherey(s0tab3 — /(SO yyith
v = (@9,

Proposition 6. Let R be induced by a sequen¢&y, ¢,,..., Ty, (., S1,...,S,) of reflection rela-

tions, where(ky,¢1),. .., (k. ¢;) € [n] x [n] is a sorting network (and th&; are defined as at the
end of Sectiofil3). IP C R™ is a polytope withy/(S°3b9 ¢ P for each vertex of P, then we have
R(P) =g, (P).

Proof. With @ = IIp,(P), the first condition of Theoreml 1 is satisfied. Furthermore, vave
Q = conv(W) with W = {v.ev : v € &(n),e € {—,+}",v vertex of P}. As, for everyw € W
with w = v.e.v for some vertew of P andy € &(n), e € {—,+}", we have

Th 4 O OTh 4 00 0 - 0an(w) = wsorabs _ , (sortaby o p
also the second condition of Theoréin 1 is satisfied. Hencelda follows. 0

As for A,,_1, we thus can conclude the following from Propositidon 6 andhRe(2.

Theorem 5. For each polytopeP C R™ with v(S9ab9 ¢ P for each vertexv of P that admits
an extended formulation with’ variables andf’ inequalities, there is an extended formulation of
IIp, (P) withn’ + O(nlogn) variables andf’ + O(nlog n) inequalities.

4.1.4. The reflection group),,. The groupD,, is generated by the reflections R at the hyper-
planesH™ (e + e/, 0) andH™ (ex, — e, 0) for all pairwise distinctk, ¢ € [n]. Thus,D,, is a proper
subgroup ofB,,. It is not the symmetry group of a polytope. We chodsg, = {z € R" :
|z1| < 29 <--- < x,} as the fundamental domain. The orbit of a painE R™ under the action
of D,, consists of all points which can be obtained frenby permuting its coordinates and chang-
ing the signs of avennumber of its coordinates. For everye R", the pointz(®2») arises from
£(808b3 by multiplying the first component by-1 in casez has an odd number of negative com-
ponents. Fok, /¢ € [n] with & # ¢, we denote the ordered pdiR¢, —¢,,0, R—ec,—e,,0) Of reflection
relations byFE, ;.

Proposition 7. LetR be induced by a sequen¢&y, ¢,, ..., Tk 0., E12,..., En_1,) Of polyhedral
relations, whereky, (1), ..., (kr,¢,) € [n] x [n] is a sorting network. I1f? C R™ is a polytope with
2(®rn) ¢ P for each vertew of P, then we havR(P) = IIp, (P).

Proof. With @ = IIp, (P), the first condition of Theoref 1 is satisfied. Let us denotg-by-+} & en
the set of alle € {—,+}" with an even number of components equal to minus. Then, we hav
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Q = conv(W) with W = {y.ev : v € S(n),e € {—,+}aven v Vertex of P}. Fork,?¢ € [n] with
k # ¢, we definen; , = "= (ek—ee0)) o +H=(—ex—ec0)  For eachy € R, the vector} ,(y)
is the vectory’ € {y, 7k.0(y) pre(y): pre(Tr,e(y)) } With [y, | < vy, wherepy, ,(y) arises fromy by
multiplying both components and/ by —1. As, for everyw € W with w = ~.e.v for some vertex
of Pandy € &(n), e € {—, +}aen We have

7_]:/‘(1,61 O+--0 TI:;-,ZT- o "71(72 O+--0 "7;;_17n(w) — w(q)Dn) — U(‘PDn) c P’
also the second condition of Theoréin 1 is satisfied. Henceldma follows. O

And again, similarly to the case$,_; and B,,, we derive the following result from Propositiéh 7
and Remarkl2.

Theorem 6. For each polytopeP? C R” with v(®=)(v) € P for each vertexw of P that admits
an extended formulation with’ variables andf’ inequalities, there is an extended formulation of
IIp, (P) withn’ + O(nlog n) variables andf’ + O(n logn) inequalities.

If we restrict attention to the polytoped = {(—1,1,...,1)} C R*andP = {(1,1,...,1)} C
R", then we can remove the reflection relatidis;,, ..., T;, ;. from the construction in Proposi-
tion[74. Thus, we obtain extended formulations w{n — 1) variables andi(n — 1) inequalities of
the convex hulls of all vectors ifr—1, +1}" with an odd respectively even number of ones. Thus, ap-
plying the affine transformation @&” given byy — %(]l —y), we derive extended formulations with
2(n — 1) variables and(n — 1) inequalities for theparity polytopesconv{v € {0,1}" : >, v; odd}
andconv{v € {0,1}" : > v; ever}, respectively (reproving a result by Carr and Konjevdd.[3])
4.2. Huffman Polytopes. A vectorv € R™ (with n > 2) is aHuffman-vectoiif there is a rooted
binary tree withn leaves (all non-leaf nodes having two children) and a laetf the leaves by
1,...,n such that, for eache [n], the number of arcs on the path from the root to the leaf latiell
equalsy;. Let us denote by}, 4 the set of all Huffman-vectors iR", and byP}, ¢ = conv(V] ¢) the
Huffman polytopeNote that currently no linear descriptionBf, z in R™ is known. In fact, it seems
that such descriptions are extremely complicated. Foaint&t, Nguyen, Nguyen, and Maurras![11]
proved that} ; has(€2(n))! facets.

It is easy to see that Huffman-vectors and -polytopes havéadllowing properties.

Observation 1.

(1) For eachy € &(n), we havey. Vil ¢ = Vi 4

(2) For eachv € V{4 there are at least two componentswoéqual tomax{vy, : k € [n]}.

(3) For eachv € Vi ¢ (n > 3) andv; = v; = max{vy : k € [n]} for some pairi < j, we have

(U1>--->Ui—1>Ui - 17”@'—}-1»--->Uj—lavj+1>--->vn) € Vﬁ}fl .

(4) For eachw’ € V' (n > 3), we have(w?, ..., w),_o,w)_{ + 1,w),_; +1) € VI .

Forn > 3, let us define the embedding
Pn_l = {(ml, ce T, Tp—1 + 1,21+ 1) : (xl, ... ,wn_l) S Pﬁgffl
of PP~ into R™.
Proposition 8. LetR C R™ x R™ be the polyhedral relation that is induced by the followiegsence
of transposition relations:
Trno2n-1,Tn-3n-2,-..,T23,T12, Tn_1n, Tn2n-1,...,T23,T12 (7)

Then we havR (P"~1) = P} .
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Proof. With P = P"~! and@ = P} 4, the first condition of Theorefd 1 is obviously satisfied (due t
parts (1) and (4) of Observatidh 1). We haye= conv(WW) with W = V{, . Furthermore, for every
w € W andz = 7*(w) with

* _ _* * * * * * * *
T =Tpn—2n—1°Tp—3n—2° ""0723°T120Ty,_1nC%Th—2n—1° ""0T23°T12, (8)

we haver, = z,_1 = max{w; : i € [n]}, hence part (3) of Observatién 1 (with= n — 1 and
j = n) implies7*(w) € P"~!. Therefore, the claim follows by Theordrh 1. O

From RemarkR we thus obtain an extended formulatiorPfhr; with n’ 4+ 2n — 3 variables and
f’+4n — 6 inequalities, provided we have an extended formulatiorP(:le;f1 with »’ variables and”
inequalities. A?ﬁuﬁ is a single point, we thus can establish inductively theofeihg result.

Corollary 2. There are extended formulations®ff ¢ with O(n?) variables and inequalities.

Actually, one can reduce the size of the extended formudatiaP},  to O(nlogn). In order to
indicate the necessary modifications, let us denot® pyhe sequence

(k—2k—1),(k—3,k—2),...,(2,3),(1,2),(k — 1,k), (k — 2,k — 1),...,(2,3),(1,2)

of pairs of indices used (witk = n) in (7)) and [8). For every sequen@= ((i1,751),.--, (ir,jr))

of pairs of pairwise different indices, we defing = 77, ; o--- o7} , (thus,7*in (8) equalsry ).
Furthermore, we denote by, : R¥ — R*! (for £ > 3) the linear map defined viay(y) =
(Y1, .., Yr—2,yx—1 — 1) for all y € R*. The crucial property for the above construction to work is
that the following holds for every € V} 4 andk € {3,...,n}: The vector

* * *
;L':T@konk_’_lOT@kJrl o...o'r}nOT@n(’U)

satisfiesr;,_1 = x;, = max{x; : 7 € [k]}. It turns out that this property is preserved when replacing
the sequenc®,, by an arbitrary sorting network (e.g. of siZgn logn), see Section 4.1.2) and, for
ke {3,...,n— 1}, the sequenc®; (of length2k — 3) by the sequence

(i§> Zlf)» (Zl§> Zg)v AR (iqlf(lg)—p iﬁ(k)-Q)» (Zylf(k)vzylf(k)—l)v (iqlf(lg)—p iﬁ(k)—2)> ceey (Zl§> Zg)v (2157 Z]f)
with if = k,i§ = k—1,4i§ =i} | —2"3forall £ > 3, andr (k) being the maximaf with i} > 1. As
(k) is bounded byO(log k) we obtain the following theorem, whose detailed proof wélibcluded
in the full version of the paper.

Theorem 7. There are extended formulationsi®f  with O(nlogn) variables and inequalities.

5. CONCLUSIONS

We hope to have demonstrated that and how the framework ettieih relations extends the cur-
rently available toolbox for constructing extended foratigns. We conclude with briefly mentioning
two directions for future research.

One of the most interesting questions in this context seerhs that for other polyhedral relations
that can be useful for constructing extended formulatidngarticular, what other types of affinely
generated polyhedral relations are there?

The reflections we referred to are reflections at hyperplaitesould be of great interest to find
tools to deal with reflections at lower dimensional subspaae well. This, however, seems to be
much harder. In particular, it is unclear whether some cphsinilar to that of polyhedral relations
can help here.
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