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Abstract. The game description language (GDL), which is the basis
for the grand AI challenge of general game playing, can be viewed as yet
another action language. However, due to its unique way of addressing
the frame problem, GDL turned out to be surprisingly difficult to relate
to any of the classical action formalisms. In this paper, we present the
first complete embedding of GDL into an existing member, known as,
C+, of the family of action languages. Our provably correct translation
paves the way for applying known results from reasoning about actions,
including competitive implementations such as the Causal Calculator, to
the new and ambitious challenge of general game playing.

1 Introduction

General game playing is concerned with the development of systems that under-
stand the rules of previously unknown games and learn to play these games well
without human intervention. Identified as one of the contemporary grand AI
challenges, this endeavour requires to build intelligent agents that are capable of
high-level reasoning and learning. An annual competition has been established in
2005 to foster research in this area [10]. This has lead to a number of successful
approaches and systems [12, 5, 18, 6].

Representing and reasoning about actions is a core technique in general game
playing. A game description language (GDL) has been developed to formalise
the rules of arbitrary n-player games (n ≥ 1) in such a way that they can be
automatically processed by a general game player [14]. The emphasis is on high-
level, declarative descriptions. This allows successful players to reason about the
rules of an unknown game in order to extract game-specific knowledge [19, 23]
and to automatically design evaluation functions [12, 5, 18].

The game description language shares principles with action formalisms, a
central aspect of logic-based knowledge representation ever since the introduction
of the classical Situation Calculus [15]. For instance, a game description must
entail the conditions under which a move is legal. This corresponds to action
preconditions. Furthermore, the rules of a game must include how the various
moves change the game state. This corresponds to effect specifications.

Although GDL can thus be viewed as a special-purpose action language,
formally relating GDL relates to any existing action formalism proved to be



surprisingly difficult. The main reason seems to be that GDL is based on a
rather unique solution to the fundamental frame problem [16] where positive
frame axioms are combined with the principle of negation-by-failure [4] to encode
negative effects. This makes it notoriously difficult to infer the explicit positive
and negative effects of an individual move from its GDL description [21].

In this paper, we present the first formal result that links the general game
description language to an existing action formalism. Specifically, we develop an
embedding of GDL into a successor of the Action Description Language invented
by Michael Gelfond and his colleague Vladimir Lifschitz [9]. The target action
language we chose, known as C+ [11], allows to circumvent the problem of
identifying the positive and negative effects of individual moves. As the main
result we formally prove that our embedding is correct and provides an easily
automatable translation of full GDL into an action language.

Our result paves the way for applying known methods from reasoning about
actions in the area of general game playing. For example, we can immediately
deploy an existing implementation for C+, the Causal Calculator [11, 1], to do
automated reasoning with, and about, game descriptions in GDL. In this way
the relatively new field of General Game Playing can profit from many years
of research in reasoning about actions. Conversely, this grand AI challenge may
provide a new and interesting testbed for existing action formalisms.

The rest of the paper is organised as follows. In Section 2, we recapitulate the
basic syntax and semantics of the general game description language, followed
by a brief introduction to action languages. In Section 3, we present a complete
embedding of this language into the action language C+. In the section that
follows, we prove that this translation is correct. We conclude in Section 5.

2 Preliminaries

2.1 Describing Games in GDL

The Game Description Language (GDL) has been developed to formalise the
rules of any finite game with complete information in such a way that the de-
scription can be automatically processed by a general game player [10, 14]. GDL
is based on the standard syntax of logic programs, including negation. We as-
sume familiarity with the basic notions of normal logic programs, as can be
found in [3]. We adopt the Prolog convention according to which variables are
denoted by uppercase letters and predicate and function symbols start with a
lowercase letter. As a tailor-made specification language, GDL uses a few pre-
defined predicate symbols shown in Table 1. The use of these keywords must
obey the following syntactic restrictions [14].

Definition 1. In a valid GDL game description,

– role only appears in facts;

– init and next only appear as head of clauses;



role(R) R is a player
init(F) F holds in the initial position

true(F) F holds in the current position
legal(R,M) player R has legal move M

does(R,M) player R does move M

next(F) F holds in the next position

terminal the current position is terminal
goal(R,N) player R gets goal value N

Table 1. The pre-defined keywords of GDL.

– init does not depend 1 on any of true, legal, does, next, terminal,
or goal;

– true and does only appear in the body of clauses; and
– neither of legal, terminal, or goal depends on does.

Example 1 Figure 1 depicts a game description of standard Tic-Tac-Toe,
where two players, respectively called xplayer and oplayer , take turn in mark-
ing the cells of a 3×3-board. (For the sake of simplicity, the straightforward
definitions of termination and winning criteria are omitted.) Of particular in-
terest from the viewpoint of action logics is the encoding of position updates.
The first clause with head next specifies the direct positive effect of marking
a cell. The second clause serves as an action-independent frame axiom for state
feature cell . The third and fourth clause for next describe how the argument
of control alters between consecutive moves. It is especially noteworthy that
the clauses together entail the implicit negative effect that control(xplayer) will
become false (after any joint move) unless control(oplayer) holds in the current
position, and vice versa. This is a consequence of the negation-as-failure prin-
ciple built into the semantics of GDL, which we will briefly recapitulate below.
The reader should also note the clausal definition of the predicate taken . This
clause acts as a state constraint, giving rise to the indirect effect that a cell will
be taken after a player has marked it.

GDL imposes some general restrictions on a set of clauses as a whole. Specif-
ically, it must be stratified [2], allowed [13], and comply with a recursion restric-
tion that guarantees that the entire set of clauses is equivalent to a finite set of
ground clauses (we refer to [14] for details). Stratified logic programs are known
to admit a specific standard model [17], which coincides with its unique stable
model (also called its answer set) [8, 7].

Based on the concept of this standard model, a GDL description is under-
stood as a state transition system as follows [20]. To begin with, any valid game
description G contains a finite set of function symbols, including constants,

1 A predicate p is said to depend on a predicate q if q occurs in the body of a clause
for p, or if some predicate in a clause for p depends on q .



role(xplayer).

role(oplayer).

init(control(xplayer)).

legal(P,mark(M,N)) :- true(control(P)),

index(M), index(N), ¬taken(M,N)
legal(xplayer,noop) :- ¬true(control(xplayer))
legal(oplayer,noop) :- ¬true(control(oplayer))

next(cell(M,N,Z)) :- marking(M,N,Z)

next(cell(M,N,Z)) :- true(cell(M,N,Z))

next(control(oplayer)) :- true(control(xplayer))

next(control(xplayer)) :- true(control(oplayer))

marking(M,N,x) :- does(xplayer,mark(M,N))

marking(M,N,o) :- does(oplayer,mark(M,N))

taken(M,N) :- marker(Z), true(cell(M,N,Z))

index(1).

index(2).

index(3).

marker(x).

marker(o).

terminal :- ...

goal(xplayer,100) :- ...

Fig. 1. A GDL description of Tic-Tac-Toe. Game positions are encoded using two
features: control(P ), where P ∈ {xplayer , oplayer}, and cell(M,N,Z), where M,N ∈
{1, 2, 3} and Z ∈ {x, o} (the markers).

which implicitly determines a set of ground terms Σ . This set constitutes the
symbol base Σ in the formal semantics for G.

The players R ⊆ Σ and the initial position of a game can be directly deter-
mined from the clauses for role and init, respectively. In order to determine
the legal moves, update, termination, and goal values (if any) for a given posi-
tion, this position has to be encoded first, using the keyword true. To this end,
for any finite subset S = {f1, . . . , fn} ⊆ Σ of ground terms, the following set
of logic program facts encodes S as the current position:

Strue def
= {true(f1)., . . . , true(fn).}

Furthermore, for any function A : ({r1, . . . , rk} 7→ Σ) that assigns a move to
each player r1, . . . , rk ∈ R, the following set of facts encodes A as a joint move:

Adoes def
= {does(r1, A(r1))., . . . , does(rk, A(rk)).} (1)



Adding the unary clauses Strue ∪ Adoes allows to infer the position that re-
sults from taking moves A in state S . All this is summarised in the following
definition.

Definition 2. Let G be a GDL specification whose signature determines the
set of ground terms Σ. Let 2Σ be the set of finite subsets of Σ. The semantics
of G is the state transition system (R,S0, T, l, u, g) where 2

– R = {r ∈ Σ : G |= role(r)} (the players);
– S0 = {f ∈ Σ : G |= init(f)} (the initial position);
– T = {S ∈ 2Σ : G ∪ Strue |= terminal} (the terminal positions);
– l = {(r, a, S) : G ∪ Strue |= legal(r, a)}, where r ∈ R, a ∈ Σ, and S ∈ 2Σ

(the legality relation);
– u(A,S) = {f ∈ Σ : G ∪ Strue ∪Adoes |= next(f)}, for all A : (R 7→ Σ) and
S ∈ 2Σ (the update function);

– g = {(r, v, S) : G ∪ Strue |= goal(r, v)}, where r ∈ R, v ∈ N, and S ∈ 2Σ

(the goal relation).

For S, S′ ∈ 2Σ we write S A→ S′ if A : (R 7→ Σ) is such that (r,A(r), S) ∈ l
for each r ∈ R and S′ = u(A,S) (and S /∈ T ). We call

S0
A0→ S1

A1→ . . . An−1→ Sn

a development (where n ≥ 0).

Example 1 (Continued) The clauses in Figure 1 obviously entail the ini-
tial state S0 = {control(xplayer)}. Suppose, therefore, Strue

0 is added to the
program:

true(control(xplayer)).

Since all instances of taken(m,n) are false in the standard model of the program
thus obtained, it follows that xplayer has nine legal moves, viz. mark(m,n) for
each pair of arguments (m,n) ∈ {1, 2, 3} × {1, 2, 3}. The only derivable legal
move for oplayer is the constant noop . In order to determine the outcome of
a particular joint move, say A = {xplayer 7→ mark(2, 2), oplayer 7→ noop}, we
have to further add Adoes to the program:

does(xplayer,mark(2,2)).

does(oplayer,noop).

The resulting position is determined as the derivable arguments of keyword
next, which in this case are

{cell(2, 2, x), control(oplayer)}

2 Below, entailment |= is via the aforementioned standard model for a stratified set
of clauses.



Definition 2 provides the basis for interpreting a GDL description as an ab-
stract k-player game as follows. In every position S , starting with S0 , each
player r chooses a move a that satisfies l(r, a, S). As a consequence the game
state changes to u(A,S), where A is the joint move. The game ends if a position
in T is reached, and then the goal relation, g, determines the outcome. The
restrictions in GDL ensure that entailment wrt. the standard model is decid-
able and that only finitely many instances of each predicate are entailed. This
guarantees that the definition of the semantics is effective.

2.2 Action Languages

Michael Gelfond and Vladimir Lifschitz in the early 1990s developed a basic
language called A to describe action domains in a simple and intuitive way but
with a precise, formal semantics [9]. The purpose of this language was to facilitate
the assessment and comparison of existing AI formalisms and implementations
for reasoning about actions. Over the years, A has been extended in various
ways, and today there exists a whole family of action languages, including one
called C+ [11], along with several implementations.

Unlike GDL, all action languages use a sorted signature which distinguishes
between actions and fluents. In C+, there is the further distinction between sim-
ple fluents and statically determined ones. For example, a description of Tic-Tac-
Toe as action domain may use the simple fluents control(P ) and cell(M,N,Z)
(for all instances P ∈ {xplayer , oplayer}, M,N ∈ {1, 2, 3}, and Z ∈ {x, o});
the statically determined fluent legal(xplayer ,noop); and, with the same domain
for M,N,Z , the actions marking(M,N,Z) and does(xplayer ,mark(M,N)).

Given a sorted domain signature, a fluent formula in the action language
C+ is a formula with only fluents as atoms, while an action formula is a for-
mula with at least one action as atom. A general formula can have both actions
and fluents as atoms. For instance, with the fluents and actions just introduced,
¬control(xplayer) is a fluent formula while any instance of the (reverse) impli-
cation marking(M,N,Z)⊂does(xplayer ,mark(M,N)) is an action formula.

A domain description in C+ is composed of so-called causal laws, of which
there are three types.

1. A static law is of the form caused F if G, where F and G are fluent
formulas. Intuitively, it means that there is a cause for F to be true in
every state in which G holds. An example is

caused legal(xplayer ,noop) if ¬control(xplayer)

2. An action dynamic law is of the same form, caused F if G, but with F an
action formula and G a general formula. An example is

caused marking(M,N,Z)⊂does(xplayer ,mark(M,N)) if >

where symbol > denotes the unconditional truth.



3. A fluent dynamic law is of the form G causes F , where G is a general
formula and F is a fluent formula without statically determined fluents.
Intuitively, it means that there is a cause for F to be true in the next state
if G is true in the current one.3 An example is

marking(M,N,Z) causes cell(M,N,Z)

The formal semantics for causal laws will be introduced in Section 4 as part of
the main correctness proof in this paper.

3 Translating GDL into Action Language C+

In this section we construct, step by step, a complete embedding of GDL into the
action language C+. For this we assume given an arbitrary game description G.
By grd(G) we denote the (finite) set of ground instances of the clauses in G.

Since action languages use a sorted signature, the first step of translating
GDL into action language C+ is to assign a unique sort to the various syntactic
elements of a given game description. This is easily done as follows.

Definition 3. Let G be a GDL game description with roles R.

1. The simple fluents are the ground terms f that occur as arguments in
init(f), true(f), or next(f) in some clause in grd(G).

2. The statically determined fluents are

– the instances of the three pre-defined predicates legal, terminal, and
goal; and

– the instances of the atoms other than the pre-defined GDL predicates
(cf. Table 1) that occur in some clause in grd(G) and do not depend
on does.

3. The actions are

– all terms of the form does(r, a) such that r ∈ R and “a” is a ground
term with does( , a) or legal( , a) appearing in a clause in grd(G);
and

– the instances of the atoms other than the pre-defined GDL predicates that
occur as a head of some clause in grd(G) and that depend on does.

This assignment of sorts is straightforward with the exception of the domain-
dependent predicates whose definition depends on the GDL keyword does (an
example is the predicate marking(M,N,Z) in Figure 1). These predicates need
to be formally treated as actions for purely syntactic reasons, as will become
clear in Section 4 when we prove the correctness of the translation.

3 Full C+ uses a slightly more general definition of fluent dynamic laws, but the
restricted version suffices as a target language for translating GDL.



Example 1 (Continued) Recall the Tic-Tac-Toe clauses in Figure 1. They
determine the simple fluents4

control(xplayer), control(oplayer), cell(1, 1, x), . . . , cell(3, 3, o)

along with the statically determined fluents

legal(xplayer ,mark(1, 1)), . . . , legal(oplayer ,noop),
terminal , goal(xplayer , 100), . . . ,
taken(1, 1), . . . , taken(3, 3), index (1), . . . , marker(o)

and the actions

does(xplayer ,noop), does(oplayer ,noop), does(xplayer ,mark(1, 1)), . . .
marking(1, 1, x), . . . , marking(3, 3, o)

Next we present the main result of this paper, which provides a fully au-
tomatic translation for any given GDL description into a set of causal laws in
action language C+.

Definition 4. Consider a GDL description G in which each occurrence of
true(f) has been substituted by f . The translation of G into C+ is obtained
as follows.

1. For every clause f :-B in grd(G) where f is a statically determined fluent
(or a user-defined action predicate, respectively) introduce the law

caused (f ⊂B+) if B− (2)

where B+ (respectively, B−) is the conjunction of all atoms that occur
positively (respectively, negatively) in B.

2. For every statically determined fluent f (and every user-defined action pred-
icate, respectively) add the law

caused ¬f if ¬f (3)

3. For every clause next(f) :-B in grd(G) introduce the fluent dynamic law

B causes f (4)

4. For every simple fluent f add the fluent dynamic law∧
j

¬Bj causes ¬f (5)

where the conjunction ranges over the bodies (taken as conjunctions) of all
clauses next(f) :-Bj ∈ grd(G).5

4 For the sake of clarity, we only mention some of the instances of the fluents and
actions in this domain; the actual sets are larger and include irrelevant instances
such as cell(xplayer , xplayer , xplayer). When deploying our translation in practice,
such instances should be detected with the help of a pre-processor, which can be
built using a method described in [18] to compute the domains of the predicates in
a GDL description.

5 As usual, an empty body of a clause is equivalent to >, and an empty conjunction
is equivalent to ⊥, which stands for the unconditional falsity.



5. For every action does(r, a) introduce the action dynamic law

caused does(r, a) if does(r, a) ∧ legal(r, a) (6)

6. For every pair of actions does(r, a) and does(r, a′) such that a 6= a′ add
the fluent dynamic law

does(r, a) ∧ does(r, a′) causes ⊥ (7)

7. Add the fluent dynamic law∨
r

∧
a

¬does(r, a) causes ⊥ (8)

This construction deserves some explanation. According to law (2), if there is a
clause for a statically determined fluent or user-defined action f , then there is a
cause for f being implied by the positive atoms in the body of this clause if the
negative atoms in the body hold.6 Law (3) says that no such cause is needed for
f to be false (more precisely, ¬f suffices as cause for itself); this corresponds
to the negation-as-failure principle used in GDL when a user-defined predicate
is false in a situation where none of the clauses for this predicate applies. Note
that (2) and (3) are static laws if f is a fluent, but action dynamic laws if f is
an action.

Laws (4) and (5) say that for a fluent f to hold as a result of a move, there
must be an applicable clause with head next(f), otherwise there is a cause for
this fluent to be false. This is analogous to the negation-as-failure principle in
GDL for negative effects of moves.

Law (6) is the formal way to express that action occurrences do not require
a cause as long as they are legal. This corresponds to the treatment of moves
as exogenous when they are added to a GDL program via (1) as outlined in
Section 2.1. Finally, laws (7) and (8) together say that each player has to choose
exactly one move in each step.

It is easy to see that the translation is modular. If we assume that the number
of players, fluents, and actions is small in comparison to the number of game
rules, then the resulting action theory is linear in the size of the GDL description.
As an example, the translation of our Tic-Tac-Toe game is shown in Figure 2.7

4 Correctness

4.1 Syntactic Correctness

We begin by showing that our translation always results in a syntactically correct
C+ domain theory.

6 For a subtle reason, which will be revealed in Section 4, the more straightforward
translation of the corresponding GDL clause into caused f if B+∧B− is, in general,
incorrect.

7 Again we refrain from depicting the specifications of termination and goal values, for
the sake of simplicity. Also not shown are the generic executability laws according
to items 5–7 of Definition 4.



marking(M,N,Z) causes cell(M,N,Z)
cell(M,N,Z) causes cell(M,N,Z)

¬marking(M,N,Z) ∧ ¬cell(M,N,Z) causes ¬cell(M,N,Z)
control(xplayer) causes control(oplayer)
¬control(xplayer) causes ¬control(oplayer)

control(oplayer) causes control(xplayer)
¬control(oplayer) causes ¬control(xplayer)

caused legal(P,mark(M,N)) ⊂ control(P ) ∧ index (M) ∧ index (N)
if ¬taken(M,N)

caused legal(xplayer ,noop) if ¬control(xplayer)
caused legal(oplayer ,noop) if ¬control(oplayer)
caused ¬legal(P,A) if ¬legal(P,A)

caused marking(M,N, x) ⊂ does(xplayer ,mark(M,N))
if >

caused marking(M,N, o) ⊂ does(oplayer ,mark(M,N))
if >

caused ¬marking(M,N,Z) if ¬marking(M,N,Z)

caused taken(M,N) ⊂ marker(Z) ∧ cell(M,N,Z)
if >

caused ¬taken(M,N) if ¬taken(M,N)

caused index (1) if >
. . .
caused marker(o) if >

Fig. 2. Beginning with the fluent dynamic laws, these are the C+ laws that result
from translating the game rules for Tic-Tac-Toe in Section 2.1. Laws with variables
represent the collection of their ground instances.

Proposition 1. Let G be a valid GDL description. Given the signature of Def-
inition 3, all laws constructed from G by Definition 4 are syntactically correct.

Proof:

– By Definition 1, neither of the pre-defined predicates legal, terminal, or
goal depends on does in G. Also, no other statically determined fluent
depends on does according to Definition 3. Hence, in case f is statically
determined fluent, (2) and (3) are syntactically correct static laws since f ,
B , ¬f , and

∧
j Bj are all fluent formulas. In case f is an action formula,

both (2) and (3) are syntactically correct action dynamic laws.
– By Definition 3, if f occurs as argument in next(f) in some clause then f

is a simple fluent. Hence, (4) and (5) are syntactically correct fluent dynamic
laws since both f and ¬f are fluent formulas without statically determined
fluents.

– By Definition 3, does(r, a) is an action formula. Hence, (6) is a syntactically
correct action dynamic law.



– Laws (7) and (8) are syntactically correct fluent dynamic laws since ⊥ is a
fluent formula without statically determined fluents.

�

4.2 From C+ to Causal Theories

In order to prove that our translation from GDL results in a correct C+ domain
description, we need to recapitulate the precise meaning of the resulting set of
causal laws. Following [11], the semantics is obtained in two steps. First, any C+
domain D along with any non-negative integer m, which indicates the number
of time steps to be considered, defines a set Dm of so-called causal rules as
follows.

1. The signature of Dm consists in the pairs i : c for all i ∈ {0, . . . ,m} and
fluents c, and the pairs i : c for all i ∈ {0, . . . ,m − 1} and actions c. The
intuitive meaning of i :c is that c holds at time step i.

2. For every static law caused F if G, Dm contains the causal rule

i :F ⇐ i :G

for every i ∈ {0, . . . ,m} .8

3. For every action dynamic law caused F if G, Dm contains the causal rule

i :F ⇐ i :G

for every i ∈ {0, . . . ,m− 1} .
4. For every fluent dynamic law G causes F , Dm contains the causal rule

i+ 1:F ⇐ i :G

for every i ∈ {0, . . . ,m− 1} .
5. For every simple fluent f , Dm contains the two causal rules

0 :f ⇐ 0:f
¬0:f ⇐ ¬0:f

Intuitively, a causal rule p ⇐ q means that there is a cause for p if q is true.
The purpose of these rules is to allow the application of the principle of universal
causation, according to which everything that holds must have a cause. This is
made precise in the second step of defining the semantics for C+. Let I be an
interpretation, that is, a set of atoms from the signature for Dm as given above.
The reduct DI

m is the set of all heads of causal rules in Dm whose bodies are
satisfied by I . A model of Dm is an interpretation I which is the unique model
of DI

m .

8 If F is a formula, then i : F denotes the result of placing “i :” in front of every
action or fluent occurrence in F .



Example 1 (Continued) Consider the following small—and simplified—
extract of the causal theory corresponding to the C+ translation of Tic-Tac-Toe
(cf. Figure 2):

0 : legal(xplayer ,mark(1, 1)) ⊂ 0:control(xplayer)
⇐ ¬0: taken(1, 1)

0: legal(xplayer ,noop) ⇐ ¬0:control(xplayer)
¬0: legal(xplayer ,mark(1, 1)) ⇐ ¬0: legal(xplayer ,mark(1, 1))

¬0: legal(xplayer ,noop) ⇐ ¬0: legal(xplayer ,noop)

0 : taken(1, 1) ⊂ 0:cell(1, 1, x) ⇐ >
¬0: taken(1, 1) ⇐ ¬0: taken(1, 1)

0:control(xplayer) ⇐ 0:control(xplayer)
¬0:control(xplayer) ⇐ ¬0:control(xplayer)

0 :cell(1, 1, x) ⇐ 0:cell(1, 1, x)
¬0:cell(1, 1, x) ⇐ ¬0:cell(1, 1, x)

Let these rules be denoted by D0. Consider, then, the interpretation

I = {0:control(xplayer), 0: legal(xplayer ,mark(1, 1))}

The reduct DI
0 is

0 : legal(xplayer ,mark(1, 1)) ⊂ 0:control(xplayer)
¬0: legal(xplayer ,noop)
0 : taken(1, 1) ⊂ 0:cell(1, 1, x)
¬0: taken(1, 1)
0:control(xplayer)
¬0:cell(1, 1, x)

Obviously, I is the unique model for this reduct, hence it is a model for D0. The
reader may verify that the following two are also models for this causal theory:

I ′ = {0: legal(xplayer ,noop)}
I ′′ = {0:cell(1, 1, x), 0: taken(1, 1), 0: legal(xplayer ,noop)}

4.3 Game Developments and Causal Models Coincide

For the following we adopt from [11] a layered representation of interpretations
for causal theories Dm . To this end, let i :si denote the set of all fluent atoms
of the form i : f that are true in a given interpretations, and let i : ei denote
the set of all action atoms of the form i :a that are true. Any interpretation can
then be represented in the form

(0:s0) ∪ (0 :e0) ∪ (1 :s1) ∪ (1 :e1) ∪ . . . ∪ (m− 1:em−1) ∪ (m :sm) (9)

This enables us to define a formal correspondence between models of a causal
theory and game developments.



Definition 5. Consider a game with terminal positions T and goal relation g.

A game development S0
A0→ S1

A1→ . . . An−1→ Sn coincides with a model (9) if,
and only if,

1. m = n;
2. Si and si agree on all simple fluents, for all i = 0, . . . , n;
3. Ai and ei agree on all actions does(r, a), for all i = 0, . . . , n− 1;
4. Si 6∈ T and i : terminal 6∈ si, for all i = 0, . . . , n− 1;
5. Sn ∈ T iff i : terminal ∈ sn; and
6. (r, v, Si) ∈ g iff i :goal(r, v) ∈ si, for all i = 0, . . . , n.

We are now prepared to state—and prove—our main result on the correctness
of the mapping developed in Section 3 from GDL to C+.

Theorem 1. Consider a valid GDL game G with initial state S0. For a given
non-negative number n ≥ 0 let Dn be the causal theory determined by the
translation of G into C+ with horizon n. With the addition of causal rules for
the initial game state,

0:f ⇐ for all f ∈ S0

¬0:f ⇐ for all simple fluents f 6∈ S0
(10)

every game development S0
A0→ S1

A1→ . . . An−1→ Sn for G coincides with some
causal model for Dn ∪ (10) and vice versa.

Proof: By induction on n.
For the base case n = 0, items 2, 5, and 6 of Definition 5 are the only relevant

ones. In a lemma used in the proof for their Proposition 3, Giunchiglia et al. [11]
show that the answer sets for a logic program are equivalent to the models of
the causal theory that is obtained by

– identifying each clause f :-B with the rule (f ⊂B+) ⇐ B− and
– adding ¬f ⇐ ¬f for every atom.

This observation can be directly applied to prove our base case: the construction
in (10) ensures that the initial game state, S0, agrees with the (unique) causal
model for D0 ∪ (10) on all simple fluents; furthermore, the construction of the
static laws (2) and (3) from the respective clauses in G ensures that the game
model coincides with the causal model on all statically determined fluents, in
particular terminal and goal .9

For the induction step, consider a game development S0
A0→ . . . An−1→ Sn

and a causal model (0 : s0) ∪ (0 : e0) ∪ . . . ∪ (n : sn) for Dn so that the two
coincide and both Sn and sn are non-terminal states. From the aforementioned

9 At this point it becomes clear why we have to map clauses f :-B onto causal laws
caused f ⊂B+ if B− (cf. Footnote 6). The aforementioned observation in [11]
would not hold if a clause f :-B were identified with the causal rule f ⇐ B . For
example, the standard model for the program {p :- p} is {}, whereas the causal
theory {p ⇐ p,¬p ⇐ ¬p} admits two causal models, viz. {} and {p}.



lemma in [11] it follows that the game model and the causal model coincide
on the interpretation of the statically determined fluent legal . With this, the
construction of the dynamic laws (6), (7), and (8) ensures that for every joint
legal action An in state Sn there is a model (0 :s0)∪ (0 :e0)∪ . . .∪ (n :sn)∪ (n :
en) ∪ (n + 1 : sn+1) for Dn+1—and vice versa—so that An and en agree on
all actions does(r, a). Moreover, the construction of the action dynamic laws (2)
and (3) along with the fluent dynamic laws (4) and (5) ensure that the updated
states Sn+1 and sn+1 agree on all simple fluents. Items 5 and 6 of Definition 5
again follow from the aforementioned lemma in [11]. �

5 Conclusion

The game description language GDL has been developed to provide a basis
for the new, grand AI challenge of general game playing [10]. Although GDL
can be viewed as a special-purpose action language, as yet it had not been
formally related to any of the existing formalisms for reasoning about actions.
In this paper, we have presented the first formal result in this regard, by giving
a complete embedding of GDL into the action language C+.

Our result paves the way for applying results from reasoning about actions to
various aspects of general game playing, and conversely to use this AI challenge
as an interesting and ambitious testbed for existing methods in reasoning about
actions. Specifically, the embedding of GDL into C+ allows to directly deploy
an existing implementation, the Causal Calculator [11, 1], to reason about game
descriptions in GDL. Further interesting directions for future work are, first,
to investigate the formal relation between GDL and other existing action for-
malisms, possibly with C+ as intermediary language on the basis of our result;
and second, to investigate how the extension of GDL to imperfect information
games [22] can be related to an existing action language suitable for representing
both incomplete knowledge and sensing actions.
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