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Abstract. Chemoinformatics is a well established research field con-
cerned with the discovery of molecule’s properties through informational
techniques. Computer science’s research fields mainly concerned by the
chemoinformatics field are machine learning and graph theory. From this
point of view, graph kernels provide a nice framework combining ma-
chine learning techniques with graph theory. Such kernels prove their
efficiency on several chemoinformatics problems. This paper presents
two new graph kernels applied to regression and classification problems
within the chemoinformatics field. The first kernel is based on the no-
tion of edit distance while the second is based on sub trees enumeration.
Several experiments show the complementary of both approaches.

Keywords: edit-distance, graph kernel, chemoinformatics

1 Introduction

Chemoinformatics aims to predict or analyse molecule’s properties through in-
formational techniques. One of the major principle in this research field is the
simalarity principle, which states that two structurally similar molecules should
have similar activities and properties. The structure of a molecule is naturally
encoded by a labeled graph G = (V, E, u,v), where the unlabeled graph (V, E)
encodes the structure of the molecule while p maps each vertex to an atom’s la-
bel and v characterizes a type of bond between two atoms (single, double, triple
or aromatic).

A first family of methods introduced within the Quantitative Structure-
Activity Relationship (QSAR) field is based on the correlation between molecule’s
descriptors such as the number of atoms and molecule’s properties (e.g. molecule’s
boiling point). Vectors of descriptors may be defined from structural informa-
tion [2], physical properties or biological activities and may be used within any
statistical machine learning algorithm to predict molecule’s properties. Such a
scheme allows to benefit from the large set of tools available within the statis-
tical machine learning framework. However, the definition of a vector from a
molecule, ie. a graph, induces a loss of information. Moreover, for each applica-
tion, the definition of a vectorial description of each molecule remains heuristic.
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A second family of methods, based on graph theory may be decomposed in
two sub families. The first sub family [8], related to the data mining field, aims
to discover sub graphs with a large difference of frequencies in a set of positive
and negative examples. The second sub family [1], more related to the machine
learning field, builds a structural description of each class of molecule so that
the classification is conducted by mean of a structural matching between each
prototype and a graph representation of an input molecule. Both sub families
are however mainly restricted to the classification field.

Graph kernels can be understood as symmetric graph similarity measures.
Using a semidefinite positive kernel, the value k(G, G’) where G, G’ encode two
input graphs corresponds to a scalar product between two vectors ¢ (G) and
¥(G’) in an Hilbert space (this space is only a Krein space if the kernel is non
definite). Graph kernels provide thus a natural connection between structural
pattern recognition and graph theory on one hand and statistical pattern recog-
nition on the other hand. A large family of kernels is based on the definition of a
bag of patterns for each graph and deduces graph similarity from the similarity
between bags. Kashima [5] defines graph kernels based on the comparison of sets
of walks extracted from each graph. Ramon and Gértner [9] and Mahé [6] define
kernels using an infinite set of tree patterns instead of walks. These methods
improve the limited expressiveness of linear features such as walks hence pro-
viding a priori a more meaningful similarity measure. Instead of decomposing
graphs into an infinite set of substructures (ie walks or trees), Shervashidze and
Borgwardt[12] compute the kernel from the distribution of a predefined set of
subgraphs, called graphlets. An other approach to the definition of graph kernels
is proposed by Neuhaus and Bunke [7]. This approach aims to define definite
positive kernels from the notion of edit distance. The main challenge of this ap-
proach is that the edit distance does not fulfill all requirements of a metric and
hence does not readily lead to a definite positive kernel.

This paper presents two new kernels: A first kernel, presented in Section 2,
combines graph edit distance and graph Laplacian kernel notions in order to
obtain a definite positive graph kernel. A method to update efficiently this ker-
nel is also proposed. Our second kernel, presented in Section 3, uses a different
approach based on an explicit enumeration of subtrees within an acyclic unla-
beled graph. The efficiency and complementarity of these two kernels is finally
demonstrated in Section 4 through experiments.

2 Kernel from Edit Distance

An edit path between two graphs G and G’ is defined as a sequence of operations
transforming G into G’. Such a sequence may include vertex or edge addition,
removal and relabeling. Given a cost function ¢(.), associated to each operation,
the cost of an edit path is defined as the sum of its elementary operation’s costs.
The minimal cost among all edit paths transforming G into G’ is defined as the
edit distance between both graphs. A high edit distance indicates a low similarity
between two graphs while a small one indicates a strong similarity.
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According to Bunke and Neuhaus[7], the computational cost of the exact
edit distance grows exponentially with the size of the graphs. Such a property
limits the computation of exact edit distance to small graphs. To overcome this
problem, Bunke and Riesen[11] defined a method to compute a sub optimal edit
distance. This method computes an approximate edit distance in O(nv?) where
n and v are respectively equal to the number of nodes and to the maximal degree
of both graph.

Unfortunately, edit distance doesn’t define a metric and trivial kernels based
on edit distance are not definite positive. Neuhaus and Bunke [7] proposed sev-
eral method to overcome this important drawback, however the proposed kernels
are not explicitly based on the minimization problem addressed by kernel meth-
ods. Such a minimization problem may be stated as follows: Given a kernel k
and a dataset of graphs D = {Gy,...,G,}, the Gram matrix K associated to
D is an n x n matrix defined by K;; = k(G;,G;). Within the kernel frame-
work, a classification or regression problem based on K may be stated as the
minimization of the following formula on the set of real vectors of dimension n:

f* = argminsegnCLoss(f,y, K)+ f'K~'f (1)

where C'Loss(., ., .) denotes a given loss function encoding the distance between
vector f and the vector of known values y.

As denoted by Steinke [14], the term f!K ~!f in equation 1 may be considered
as a regularization term which counter balance the fit to data term encoded by
the function C'Loss(.,.). Therefore, the inverse of K (or its pseudo inverse if K
is not invertible) may be considered as a regularization operator on the set of
vectors of dimension n. Such vectors may be considered as functions mapping
each graph of the database to a real value. Conversely, the inverse (or pseudo
inverse) of any semi definite positive regularization operator may be considered
as a kernel. We thus follow a kernel construction scheme recently introduced [1]
which first builds a semi definite positive regularization operator on the set of
functions mapping each graph {Gi,...,G,} to a real value. The inverse, or
pseudo inverse of this operator defines a kernel on the set {G1,...,Gy}.

In order to construct this regularization operator, let us define a n x n ad-
4(G;,Gj)

jacency matrix W defined by Wi; = e = . where d(.,.) denotes the edit
distance and o is a tuning variable. The Laplacian of W is defined as l = A—W
where A is a diagonal matrix defined by: A;; = Z;;l W; j. Classical results
from spectral graph theory [3] establish that [ is a symmetric semi definite pos-
itive matrix whose minimal eigenvalue is equal to 0. Such a matrix is thus not
invertible. To overcome this problem, Smola [13] defines the regularized Lapla-
cian | of W as [ = I + Al where X is a regularization coefficient. The minimal
eigen value of [is equal to 1 and the matrix [ is thus definite positive. Moreover,
given any vector f, we have :

P =P+ 2D Wil = 1) (2)

i,7=1
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Intuitively, minimising equation 2, leads to build a vector f with a small norm
which maps graphs with a small edit distance (and thus a strong weight) to
close values. Such a constraint corresponds to the regularization term required
by equation 1 in order to smoothly interpolate the test values y over the set of
graphs {G1,...,G,}. Our un normalized kernel, is thus defined as: K, = -t

Note that a regularized normalized Laplac1an kernel may alternatively be
considered by introducing the matrix L = A~ 3]A~2. We have in this case, for
any vector f:

z - fj)2

fiLf = Z A

The matrix L is definite positive and its associated kernel is defined as
Kporm = L™t Note that, our regularized normalized Laplacian kernel is not de-
fined as the inverse of the regularized normalized Laplacian I+ AA~2IA~% . This
new formulation is consistent with the regularization constraint which should be
added to equation 1 and provides significant advantages in the context of incom-
ing data (Section 2.1).

A”AJJ

2.1 Incoming Data

Let us first consider a kernel defined from the un normalized Laplacian. Given
our learning set D = {G1,..., Gy}, the test of a new graph G within a regression
or classification scheme requires to update the un normalized Laplacian | with
this new graph and to compute the updated kernel defined as the inverse of the
regularized and un normalized Laplacian K = (I + Al)~!. This direct method
has a complexity equal to O((n + 1)), where n is the size of our data set. Such
a method is thus computationally costly, especially for large datasets. In this
section, we propose a method to reduce the complexity of this operation.
Given the regularized and un normalized Laplacian I, = (I, + A4, —W,))
defined on the dataset D, its updated version I, defined on D U {G} may be

expressed as follows:
P l,—0, B
T\ BN 1-Y,B;s

where B = (— Aemp(M))lz{l ,,,,, ny is deduced from the weights between
the new input graph G and each graph (G;)i—{1,....n} of our dataset and 0, is a
diagonal matrix with (d,,);; = B;.

The minimal eigen value of I,, ;1 is equal to 1 (Section 2). This matrix is thus
invertible, and its inverse may be expressed using a block inversion scheme:

I'=E"'+®E'BB'E™!
= rey . ©=-E"'B®
Kyp = (lns1)"' = (A QS) with ¢ 0 o (3)
®=(1-3,B;—B'E'B)"!
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where E = 1,, — 8,,. Note that & corresponds to a scalar.

The computation of our new kernel, using equation 3, relies on the com-
putation of the inverse of the matrix £ = l, + &, which may be efficiently
approximated using a development to the order K of (I — l~; 15,) 1

K
e e e e D D S (4)
k=0

[I=16, ]2 < 1, for A < 1. Indeed:

Such a sum converges since

—d(G’,Gi))

17 80ll> < Tz 12 18all> < 1502 < A max cap

The last term of this equation is strictly lower than one for any A lower than
one. Moreover, basic matrix calculus show that the approximation error is lower
than e for any K greater than:

log(2¢)

log(max;—1,», exp(

_d(iaGi) )) (5)

Equation 4 allows to approximate the inverse of (Zn — 0,) by a sum of pre
computed matrices [’ k=1 multiplied by diagonal matrices. Using such pre cal-
culus, the inverse of (I, — d,,) and hence the computation of our new kernel may
be achieved in K N2.

If we now consider the regularized normalized Laplacian (Section 2) L =

A~3[A~Z, its inverse is defined as: L=! = A2[~'Az and we have:
Knorm = A%KunA% (6)

The update of the regularized and normalized Laplacian kernel may thus be
deduced from the one of the regularized un normalized Laplacian kernel.

3 Treelet Kernel

Kernels based on edit distance rely on a direct comparison of each pair of graph.
An alternative strategy consists to represent each graph by a bag of patterns and
to deduce the similarity between two graphs from the similarity of their bags.
This strategy may provide semi definite kernels hereby avoiding the necessity
to regularize the whole gram matrix for each incoming data (Section 2.1). As
mentioned in Section 1, most of kernels of this family are based on linear patterns
(bags of paths, trails or walks). Shervashidze et al. [12] describe a method to
enumerate for any input unlabelled graph, all its connected subgraphs composed
of up to 5 nodes. This efficient method provides up to 2048 patterns composed
of connected subgraphs (called graphlets) of size lower or equal to 5. We propose
here to adapt this method to the enumeration of sub-trees of acyclic unlabeled
graphs up to size 6. The resulting patterns are called treelets (Fig. 1).
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Fig. 1. Acyclic and unlabeled graphlets of maximum size equals to 6. Centers of 3-star
and 4-star are surrounded

3.1 Computing Embedded Distribution

Following [12], our enumeration of all treelets starts by an enumeration of all
paths with a length lower or equal to 6. A recursive depth first search with a
max depth equals to 6 from each node of the graph is thus performed. Note that
using such an enumeration each path is retrieved from its two extremities and
is thus counted twice. In order to prevent this problem, each path composed of
at least two nodes is counted times. With this first step, the distribution of
treelets G, G1, G2, G3, G5 and Gs is computed (Fig. 1).

To compute the distribution of the remaining treelets, our method is based
on the detection of nodes of degree 3 and 4. These nodes are respectively called
R3_siar and R4_ g4 and are the center of the 3-star and 4-star treelets. Note
that a 4-star treelet (G7) contains four 3-star treelets (Fig. 2). This first degree
analysis allows to compute the distribution of treelets G4 and G7. Treelets Gg,
Gog, G1p and G12 are enumerated from the neighbourhood of 3-star treelets. For
example, treelet G requires a 3-star with at least one neighbour of R3_ 4t With
a degree greater or equal to 2. Treelet (G1; is the only sub tree derived from
a 4-star. Properties characterizing treelets with a 3 or 4 star are summarized

et de aiaate

) G4 decompositions of G7

Fig. 2. G7 contains 4 G4.
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Table 1. Conditions characterizing treelets derived from 3-star and 4-star. N(v) and
d(v) denote respectively the set of neighbours and the degree of vertex v.

Treelet|Source treelet Condition
Gs 3-star {v;v € N(R3—star);d(v) > 2} > 1
Gy 3-star {v;v € N(Ra—star);d(v) > 2} > 2
Jug € N(RB—star)§ d(UO) >2 and
Gio 3-star {v;v € N(vo) — {R3—star };d(v) > 2} > 1
G11 4-star {v;v € N(Ra—star);d(v) > 2} > 1
G2 3-star {v;v € N(Rs—star);d(v) > 3} >1

Fig. 3. Three permutations of Gg sharing the same core.

in Table 1. Note that treelet GG12 is symmetric since it contains two centers of
3-star. Such a treelet will thus be counted twice (once from each of its 3-star)
and must be counted for %

Note that conditions summarized in Table 1 define necessary conditions for
the existence of a given treelet centered around a 3 or 4 star. However, such
conditions does not guarantee the uniqueness of such a treelet. Fig. 3 shows
such an example: the rightest node of Gg has a degree equals to 4 within the
input graph whereas a degree greater or equal to 2 is required to define treelet
Gg. Three different treelet Gg9 may thus be built from the same five nodes. This
configuration thus induces to count Gy three times from the graph represented
in Fig. 3(a) One may easily check that no isomorphism exists between treelets
depicted in Fig. 1. Moreover, has shown by Read [10], the number of different
alkanes composed of up to 6 carbons is equal to 13. Within our context, an
alkane may be considered as an unlabeled acyclic graph whose vertex degree is
bounded by 4. Therefore, treelet G13 which is the only treelet with a vertex of
degree greater than 4 does not corresponds to a feasible alkane. The remaining 13
treelets in Fig. 1 represents, up to isomorphisms, all the unlabeled acyclic graphs
whose size is lower than 6 and whose vertex degree is bounded by 4. Adding G113
to this set provides all unlabeled acyclic graphs with a size lower than 6.When
all treelets from a graph G have been enumerated, a vector representing treelet
distribution is computed. Each component of this vector, denoted the spectrum
of G, is equal to the frequency of a given treelet in G:

filG) = (Gi C @) (7)
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Table 2. Comparison of addition methods.

Method “Classiﬁcation Accuracyl
KMean [15] 80% (55/68)
KWMean [4] 88% (60/68)
Trivial Similarity Kernel from Edit Distance [7] 90% (61,/68)
Normalized Standard Graph Laplacian Kernel (Eq. 6) 90% (61,/68)
Normalized Fast Graph Laplacian Kernel (Eq. 6) 90% (61,/68)
Random Walk Kernel [16] 82% (56/68)

3.2 Definition of Treelet Kernel

A first idea to define a kernel from treelets consists to perform the inner product
of vectors encoding the spectrum of graphs. Unfortunately, the inner product
doesn’t highlight spectrum similarities. For example, two graphs with nearly
equal spectrum but with a low number of occurrences for each treelet are con-
sidered as less similar than two graphs having a same high number of treelet G
(ie same size) but a distribution of others treelets highly dissimilar. We thus use
RBF kernels in order to better highlight differences between two spectra:

N (fr(G)— f (<
Mep\&) = T\™ ))
kTreelet G G E e (8)
k=0

where o is a tuning variable used to weight the differences between treelet dis-
tribution and N is the number of enumerated treelets. Our kernel may thus
be considered as a basic RBF kernel between two vectors and is hence definite
positive.

4 Experiments

Our first experiment evaluates the graph Laplacian kernel on a classification
problem. This problem is defined on the monoamine oxidase dataset(MAQ)*
which is composed of 68 molecules divided into two classes: 38 molecules inhibits
the monoamine oxidase (antidepressant drugs) and 30 does not. These molecules
are composed of different types of atoms with simple bonds and are thus encoded
as labeled graphs. Classification accuracy is measured for each method using a
leave one out procedure with a two-class SVM. This classification scheme is made
for each of the 68 molecules of the dataset.

Table 2 shows results obtained by graph Laplacian kernel using approximate
graph edit distance [11] with node substitution and edge deletion costs set to 1
and edge substitution cost set to the sum of incident node substitution costs.
Graph Laplacian kernel methods obtain a classification accuracy of 90% which

L' All databases in this section are available on the TC15 Web page:
http://www.greyc.ensicaen.fr/iapr-tc15/links.html#chemistry
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corresponds to the highest score. Note that the other method obtaining 90% of
classification accuracy is also based on the edit distance. This last kernel may
however be non definite positive.

We may additionally notice that the use of our fast inversion method (Sec-
tion 2.1) does not modify graph Laplacian kernel’s classification accuracy (Ta-
ble 2, lines 4 and 5). The number of iterations required by this fast inversion
method is determined by equation 5. Our experiments performed on the MAO
database show that a value of € equal to 10~* induces a maximum of 9 iterations
hence allowing to update the gram matrix in O(9N?) instead of O(N?) using a
standard matrix inversion method. The low value of N on this dataset (N = 68)
does not induce an important gain on execution time since the average time to
update a Gram matrix using method described in Section 2.1 is 0.273ms on the
MAO database while this time is equal to 0.498ms using a direct inverse matrix
computation. The ratio between both execution times is nevertheless about 1.8
hence showing a significant gain. Our treelet kernel is not tested against this
database since this kernel is devoted to unlabeled graphs.

Our second experiment is based on a database of alkanes [2]. An alkane is an
acyclic molecule solely composed of carbons and hydrogens. A common encoding
consists to implicitly encode hydrogen atoms using the valency of carbon atoms.
Such an encoding scheme allows to represent alkanes as acyclic unlabeled graphs.
The alkane dataset described in [2] is composed of 150 molecules, associated to
their respective boiling points. Using the same protocol than [2], we evaluate
the boiling point of each alkane using several test sets composed of 10% of the
database, the remaining 90% being used as training set.

Table 3 shows results obtained by different methods. Poor results obtained
by graph Laplacian kernel can be explained by the lack of information when
dealing with unlabeled graphs. Indeed, using such graphs, the heuristic used to
approximate graph edit distance [11] maps the set of vertices of both graphs using
uniquely the degree of vertices. Such a method thus consider several mappings as
equivalent if several vertices with a same degree exist in both graphs. In this case,
the sub optimal graph edit distance induces a poor graph discrimination. This
lack of local information within unlabeled graphs also explains the poor results
obtained by Kmean and random walk kernels. Indeed, these kernels are based on
linear structures which are only discriminated by their lengths within unlabeled
graphs. On the other hand, treelet kernel (with o = 0, 25) outperforms previous
results of [2] based on neural networks combined with chemical descriptors.

Table 3. Boiling point prediction on alkane dataset.

l Method “Average error (C’)[Standard deviation (C)[Correlation‘
Neural Network [2] 3.11453 3.69993 0.9827
KMean [15] 4.65536 6.20788 0.9918
Random Walk Kernel [16] 10.6084 16.2799 0.9057
Graph Laplacian Kernel 10.7948 16.4484 0.9412
Treelet Kernel 1.40663 1.91695 0.9992
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Conclusion

In this paper we proposed a graph Laplacian kernel based on a sub optimal graph
edit distance combined with an efficient update of the kernel in order to predict
relevant properties of incoming data. Our experiments show the efficiency of this
kernel on databases composed of complex molecules with several hetero atoms.
However, this kernel performs poorly on unlabeled graphs. We thus propose
a new kernel based on treelet enumeration for unlabeled acyclic graphs. This
kernel outperforms results obtained by state of the art methods on this dataset
but remains restricted to unlabeled graphs. Our future work will be devoted to
overcome this last limitation by extending treelet kernel to labeled graphs.
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