Skip to main content

Generalized Learning Graph Quantization

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6658))

Abstract

This contribution extends generalized LVQ, generalized relevance LVQ, and robust soft LVQ to the graph domain. The proposed approaches are based on the basic learning graph quantization (lgq) algorithm using the orbifold framework. Experiments on three data sets show that the proposed approaches outperform lgq and lgq2.1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borzellino, J.E.: Riemannian geometry of orbifolds, PhD thesis, University of California, Los Angelos (1992)

    Google Scholar 

  2. Cour, T., Srinivasan, P., Shi, J.: Balanced graph matching. In: NIPS (2006)

    Google Scholar 

  3. Gold, S., Rangarajan, A.: Graduated Assignment Algorithm for Graph Matching. IEEE Transactions on PAMI 18, 377–388 (1996)

    Article  Google Scholar 

  4. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Network 15, 1059–1068 (2002)

    Article  Google Scholar 

  5. Hammer, B., Strickert, M., Villmann, T.: Supervised neural gas with general similarity measure. Neural Processing Letters 21(1), 21–44 (2005)

    Article  Google Scholar 

  6. Jain, B., Obermayer, K.: Structure Spaces. Journal of Machine Learning Research 10, 2667–2714 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Jain, B.J., Obermayer, K.: Algorithms for the Sample Mean of Graphs. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 351–359. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Jain, B.J., Srinivasan, S.D., Tissen, A., Obermayer, K.: Learning graph quantization. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 109–118. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Jain, B., Obermayer, K.: Extending Bron Kerbosch for Solving the Maximum Weight Clique Problem. arXiv:1101.1266v1 (2011)

    Google Scholar 

  10. Jain, B., Obermayer, K.: Maximum Likelihood for Gaussians on Graphs. In: Jiang, X., Ferrer, M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658, pp. 62–71. Springer, Heidelberg (2011)

    Google Scholar 

  11. Kohonen, T.: Self-organizing maps. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  12. Kohonen, T., Somervuo, P.: Self-organizing maps of symbol strings. Neurocomputing 21(1-3), 19–30 (1998)

    Article  MATH  Google Scholar 

  13. Norkin, V.I.: Stochastic generalized-differentiable functions in the problem of nonconvex nonsmooth stochastic optimization. Cybernetics 22(6), 804–809 (1986)

    Article  MATH  Google Scholar 

  14. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Riesen, K., Bunke, H.: Graph Classification by Means of Lipschitz Embedding. IEEE Transactions on Systems, Man, and Cybernetics 39(6), 1472–1483 (2009)

    Article  Google Scholar 

  16. Sato, A., Yamada, K.: Generalized learning vector quantization. In: NIPS (1996)

    Google Scholar 

  17. Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Computation 15(7), 1589–1604 (2003)

    Article  MATH  Google Scholar 

  18. Sumervuo, P., Kohonen, T.: Self-organizing maps and learning vector quantization for feature sequences. Neural Processing Letters 10(2), 151–159 (1999)

    Article  Google Scholar 

  19. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Transactions on PAMI 10(5), 695–703 (1988)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jain, B.J., Obermayer, K. (2011). Generalized Learning Graph Quantization. In: Jiang, X., Ferrer, M., Torsello, A. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2011. Lecture Notes in Computer Science, vol 6658. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20844-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20844-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20843-0

  • Online ISBN: 978-3-642-20844-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics