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Abstract. Planarity Testing is the problem of determining whether a given graph is planar while
planar embedding is the corresponding construction problem. The bounded space complexity of these
problems has been determined to be exactly Logspace by Allender and Mahajan [AM00] with the aid
of Reingold’s result [Rei08]. Unfortunately, the algorithm is quite daunting and generalizing it to say,
the bounded genus case seems a tall order.
In this work, we present a simple planar embedding algorithm running in logspace. We hope this
algorithm will be more amenable to generalization. The algorithm is based on the fact that 3-connected
planar graphs have a unique embedding, a variant of Tutte’s criterion on conflict graphs of cycles and
an explicit change of cycle basis.
We also present a logspace algorithm to find obstacles to planarity, viz. a Kuratowski minor, if the
graph is non-planar. To the best of our knowledge this is the first logspace algorithm for this problem.

1 Introduction

Planarity Testing, the problem of determining whether a given graph is planar (i.e. the
vertices and edges can be drawn on a plane with no edge intersections except at their end-
points) is a fundamental problem in algorithmic graph theory. Along with the problem of
actually obtaining a planar embedding, it is a prerequisite for many an algorithm designed
to work specifically for planar graphs.

Our focus is on the bounded space complexity of the planarity embedding problem be-
cause we know that many graph theoretic problems like reachability [BTV09], perfect match-
ing [DKR10,DKT10], and even isomorphism [DLN08,DLN+09] have efficient bounded space
algorithms when provided graphs embedded on the plane.

Almost a decade ago, building on previous work by Ramachandran and Reif [RR94],
Allender and Mahajan [AM00,AM04], proved that Planarity Testing is contained in SL and
is L-hard. With Reingold’s result [Rei08] proving SL = L, this gave a tight complexity
theoretic classification for the problem. This seemed to be the end of the story as far as the
problem of Planarity Testing vis-a-vis the logspace world was concerned.

The only catch was, the algorithm described in the paper was quite complicated - in
fact a simpler SL algorithm was listed as one of the open questions in [AM00]. We would
be satisfied with a complicate algorithm if all we were concerned with was pigeonholing the
complexity of the problem. Planarity testing, however, happens to be a fundamental task
in Topological Graph theory and a first step towards problems like toroidicity testing and
bounded genus testing (also listed as open problems in [AM00]). Therefore, if we are to make
any progress towards a tighter classification of these problems, for which no efficient bounded
space algorithm is known, especially, if making a non-blackbox use of a planarity algorithm,
it is advisable to search for a less daunting algorithm. This work is the result of this search.

ar
X

iv
:1

10
1.

26
37

v1
  [

cs
.C

C
] 

 1
3 

Ja
n 

20
11



In addition to its simplicity, the interplay between the properties of 3-connected planar
graphs lends a certain elegance to the algorithm, at least in our, necessarily, biased eyes.

We also give a logspace algorithm to identify a Kuratowski minor if the graph is non-
planar.

2 Related Work

Here we survey the related work very briefly - see the paper by Allender and Mahajan [AM00]
for a detailed survey. The algorithmic aspects of Planarity Testing have been studied since the
inception of Computer Science. It is clear that as far as sequential computation is concerned,
a linear algorithm is optimal. Such algorithms include the one by Hopcroft and Tarjan
[HT74]. The next result concerns parallel models of computation. Ramachandran and Reif
proposed a very complicated algorithm which worked in logarithmic time and performed
almost linar work and can be interpreted as placing the problem in the complexity class
AC1. The final frontier was bounded space computation and initial sorties had already taken
place in the early eighties. Reif [Rei84] proved that planarity testing for degree 3 graphs is
in the SL-hierarchy while Ja’Ja’ and Simon [JS82a,JS82b] proved that planarity testing is in
the NL-hirerarchy. After Nisan and TaShma’s result [NTS95] and the Immerman-Szelpcsenyi
Theorem [Imm88,Sze88] these bounds become SL and NL respectively. The paper by Allender
and Mahajan completed the campaign when they proved that Planarity Testing was SL-
complete and Reingold’s result [Rei08] set the final seal by proving SL = L.

3 Outline of Algorithms

3.1 Outline of Planar Embedding Algorithm

We now motivate and informally describe Algorithm 1. It is easy to to see that for a planar
graph G and any of its cycles, for the conflict graph w.r.t. the cycle is bipartite - the bipar-
titions being given by the bridges that are placed inside the cycle and those that are placed
outside it, in some planar embedding.

Conversely, Tutte [Tut58] has shown that a graph is planar iff the conflict graph with
respect to every cycle is bipartite. But since a graph potentially has exponentially many
cycles a direct application of this result does not yield even a polynomial time algorithm. Thus
we ought to seek a small set of cycles such that restricting our attention to the bipartiteness
of their conflict graphs suffices to yield a planarity test. The set of fundamental cycles w.r.t.
some spanning tree seems to be a natural candidate. Unfortunately, there are non-planar
graphs which have a spanning tree such that the conflict graph w.r.t. each of the fundamental
cycles is bipartite. e.g. in a K5 with a spanning tree being a star centered at any vertex, the
conflict graph w.r.t. any fundamental cycle has a single bridge.

Suppose, however that we are able to find a deterministic algorithm that constructs a
valid planar embedding whenever its input is planar graph and either fails when supplied with
a non-planar graph or outputs a non-planar embedding. Now, since, its easy to check (via
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verification of Euler’s formula) that an embedding is planar, we can eliminate any non-planar
graphs at this stage.

Thus it suffices to focus on finding an embedding algorithm that works correctly under the
promise that the given graph is planar. We can without much loss of generality, strengthen
the promise and assume that the graph is, in addition to being planar, also 3-connected. This
is because finding the triconnected components is known to be in logspace (see Lemma 1 and
so is patching together the given planar embeddings of triconnected graphs (see Lemma 2).

Concentrating on 3-connected planar graphs we observe that:

– The graph has a unique planar embedding.

– The conflict graphs w.r.t. any cycle is connected (see Section 5.2), which enables us to
bipartition the bridges in a unique way so that bridges in a partition lie on one side of
the cycle in question.

– Ideally we would like to pick a small set of cycles and determine which edges lie inside
them and somehow piece together the combinatorial embedding from this information. A
natural choice for such a set is the set of fundamental cycles w.r.t. an arbitrary spanning
tree. But the following two problems crop up:

• Though we have a bipartition of bridges for each fundamental cycle , it is not clear
which partition is mapped inside and which outside.

• How do we actually piece together a combinatorial embedding once we know this
information?

– The first problem can be solved if we knew at least one face of the unique embedding,
because then we can just think of the face as the external face and stipulate that every
edge (not part of the face) is contained inside it. Thus for every fundamental cycle, the
bridge containing all the edges of the external face would lie outside the cycle - this fixes
which bridges lie inside and which outside. But Corollary 1 tells us that for the graphs in
question there is always a fundamental cycle which is a face. This, combined with Fact 2
ensures that we can find such a face in logspace.

– We solve the second problem in Section 5.4, where we first show that finding a solution
is equivalent to a change of the cycle basis from fundamental cycles to faces. Then we
show an explicit way to perform this inversion in logspace.

– Finally, we know that a 3-connected graph is planar iff every edge lies on exactly two
induced non-separating cycles (see Fact 2). Thus, we can use this criterion to check for
planarity of G.

3.2 Outline of Algorithm to find Kuratowski Minors

In Section 6 we describe an algorithm (Algorithm 2) to find a Kuratowski (i.e. a K5 or K3,3)
minor in a non-planar graph. The algorithm indentifies a cycle with a non-bipartite conflict
graph. It then finds an induced odd cycle in this conflict graph. Finally, it contracts some of
the bridges and vertices of attachment of these bridges to yield a Kuratowski minor.
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4 Definitions and Preliminaries

We assume familiarity with basic complexity theory in general and bounded space classes in
particular, as described in any standard text e.g [AB09]. We will also assume familiarity with
graph theory as described in a text like [Die05,Wes00]. Below, we explicate all non-standard
material we will have occasion to use.

Definition 1. The bridges of a cycle C consist of:

– For every connected component X of G\C, the induced graph G[X ∪AX ] where AX ⊆ C
are the vertices of C adjacent to some vertex of X (the so called points of attachment).

– The chords of C - here the endpoints of C are its points of attachment

Definition 2. Two bridges B1, B2 of a cycle C conflict iff either of the following conditions
hold:

– ai, a
′
i are two points of attachment of Bi w.r.t. C for i ∈ {1, 2} such that they occur in

the order a1, a2, a
′
1, a
′
2 along the cycle C.

– B1, B2 have three common points of attachment w.r.t. cycle C.

We can extend the definition of conflict to sets of bridges B1,B2 by the existence of two sets
of conflicting vertices of attachment in the above sense, belonging to (not necessarily the
same bridge of) B1,B2 respectively. The conflict graph HC(G) of a graph w.r.t. a cycle C
is formed by taking the bridges of C as vertices and joining two vertices by an edge iff they
conflict.

Definition 3. Given a spanning tree T of a biconnected graph G, and an edge e ∈ E(G) \
E(T ), the graph G ∪ e contains a unique cycle C(e) called the fundamental cycle of e. We
say that a face of an embedded planar graph is fundamental if it is a fundamental cycle of
some non-tree edge (with respect to some fixed spanning tree).

The following is an easy consequence of Reingold’s result [Rei08] since we can count the
number of components in (G ∪ e) \ e′. We single it out of a set of similar elementary graph
computations summarized in Section 3.2 of [AM00] which can be done in logspace because
it is of special significance for us.

Fact 1 The list of edges in each fundamental cycle of G w.r.t. a spanning tree T can be
obtained by a logspace transducer.

Fact 2 (Proposition 4.2.10 and Theorem 4.5.2 [Die05]) The faces of a 3-connected planar
graph G are exactly the induced non-separating cycles of G. Further, a 3-connected graph is
planar iff every edge lies on exactly two induced, non-separating cycles.

Proposition 1. Given a the cyclic order of vertices in every face of a biconnected embedded
graph, it is possible to construct in logspace, a combinatorial embedding of the graph.

4



Proof. Call an ordered triplet,T of vertices (u, v, w) an angle of an embedded graph if
(u, v), (v, w) are consecutive edges on some face of the embedding. Call two triplets Ti =
(ui, vi, wi) for i ∈ {1, 2} adjacent if v1 = v2 and either w1 = u2 or u1 = w2. Then it is clear
that the undirected graph with angles as vertices and angle adjacencies as edges, forms a set
of disjoint1 cycles2. The ordering on vertices induced by the angles is exactly the combina-
torial embedding. ut

5 Planarity Testing

5.1 Reduction to the Triconnected case

Lemma 1. (Lemma 3.3 [DNTW09]) The triconnected components of a graph can be ob-
tained in logpace

It is a well known fact that if a graph is non-planar then one of it’s 3-connected components
is non-planar. [Wes00]

Lemma 2. Given a combinatorial planar embedding of the triconnected components of a
graph, it is possible to obtain the biconnected planar embedding of the graph in logspace.

Proof. Consider the tri-connected component , separating pair tree. This tree can be con-
structed in logspace [DNTW09]. We will use the tree as an index to construct the embedding
of the graph, given the embedding of it’s 3 components. Given a vertex in a tri-connected
component,we can obtain the clockwise order of the edges around the vertex using the given
combinatorial embedding.

Given a node in the tree corresponding to separating pair u, v we arrange the tri-connected
components around u in the order they appear in the tree and around v in the opposite
order. This gives us an ordering of edges around each vertex in the graph. We repeat this
procedure for each of the nodes corresponding to a separating-pair in the tree. This gives
us an embedding of the graph. To move from biconnected graphs to general graphs, see
[AM00]. ut

5.2 The Conflict Graph

Lemma 3. Given a 3-connected planar graph G and an arbitrary cycle C in the graph the
conflict graph HC(G) is bipartite and connected.

Proof. It is easy to see that for an embedded planar graph G and any cycle C contained
in it, the conflict graph, HC(G) is bipartite (with the bipartition being given by whether a
bridge is mapped “inside” or “outside” the cycle). We now show that HC(G) is connected.

For every pair of points x, y ∈ C there are two paths from x to y along C. We will call
these paths Px,y and P ′x,y. Let B be a set of bridges that correspond to one of the connected
components of HC(G).

Pick a pair u, v s.t

1 since any angle has a unique middle vertex
2 since every angle is adjacent to exactly two angles on a vertex
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– u and v are attachment points of bridges in B.
– u and v are not adjacent.
– The attachment points of all bridges in B lie in either Pu,v or P ′u,v. (Assume WLOG that

they lie in Pu,v).

We now show that one can always find such a pair u, v. Pick a bridge B′ /∈ B . The attachment
points of B′ divide C into a number of segments .(atleast 3 since every bridge has 3 or more
points of attachment.) Since no bridge in B conflicts with B′ and the vertices corresponding
to B in HC(G) form a connected component, it follows easily that all points of attachments
of B must lie in one of the segments. This implies that there is a point in C(a point of
attachment of B′) that is not a point of attachment of any bridge in B. Therefore we can
find a pair u, v with the properties listed above.

Now, for every point x /∈ {u, v} on Pu,v, ∃ a bridge B ∈ B with points of attachment
b1, b2 s.t b1 precedes x and b2 succeeds x in Pu,v. If not then ∀B ∈ B either all points of
attachment of B lie between u and x or all of them lie between x and v. This implies that in
HC(G) vertices corresponding to bridges in B u as a point of attachment are not connected
to vertices corresponding to bridges with v as a point of attachment. This is a contradiction
since B corresponds to a connected component in HC(G).

Now, if {u, v} is not a separating pair then ∃ a bridge B /∈ B with points of attachment
in both Pu,v \ {u, v} and Pu,v \ {u, v}. From the above it follows that B′ conflicts with a
bridge in B which is not possible. Therefore, {u, v} is a separating pair. ut

5.3 Inside and Outside a Fundamental Cycle

Next we fix which bridges w.r.t. each of the fundamental cycles are mapped inside and which
are mapped outside the concerned cycle. Basically we find one face of the grap and call it
the external face. Thus every bridge containing this face is mapped outside any other cycle.
This completely fixes the 2-coloring.

Proposition 2. Any biconnected embedded planar graph has a fundamental face (i.e. a fun-
damental cycle which is also a face) w.r.t. each of its spanning trees.

Proof. It is well known that the set of dual edges of the non-tree edges of a biconnected
planar graph forms a tree (after reducing all multi-edges to a single edge) - the so called
dual tree. This follows from observing that cycles in the primal correspond to cuts in the
dual (Proposition 4.6.1 [Die05]) and therefore the set of edges dual to the non-tree edges are
connected in the dual graph, the proof being completed by applying Euler’s relation to verify
that the number of such edges is exactly one less than the number of faces. It is easy to see
that the face of the original graph corresponding to a leaf of the dual tree is a fundamental
face. ut

A direct consequence of Fact 1, Proposition 2, Fact 2 is the following (since finding whether
a cycle is induced and non-separating is a logspace predicate given the list of edges in the
cycle on the input tape).
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Corollary 1. Every 3-connected planar graph has at least one fundamental face and this
can be found by a Logspace transducer.

Knowing which edges of the graph map to the region enclosed by each of the fundamental
cycles, we proceed to construct a purported embedding of the given graph. If the graph is
indeed planar we will obtain a valid planar embedding, else we will not be able to do so,
giving an effective planarity test (which produces an embedding as a side-effect).

5.4 Obtaining a Planar Embedding

Here we exhibit a way to identify the edges in each face of the given 3-connected graph.
Fact 2 then gives a way of effectively checking if the graph is plnar.

At the heart of the proof is a change of basis in the cycle space over Z2 Somewhat
msurprisingly the solution to the equations obtained in the previous section tell us which
faces sum up (over Z2) to give a particular fundamental cycle. Notice that we have only an
“implicit” representation of the faces (see below) and while we are seeking for an explicit
representation in terms of which edges constitute a face. Since fundamental cycles and in-
ternal faces both form a basis of the cycle space over Z2, we just need to invert the matrix
that expresses the fundamental cycles as a linear combination of faces. Though seemingly
this would place the problem in ⊕L we give an explicit way to perform this inversion which
yields a L upper bound.

Returning to the “implicit” representation of faces, there is a natural bijection between
non-tree edges and faces viz. one that maps a non-tree edge e to that face f(e) adjacent to
e which lies inside the fundamental cycle C(e) (w.r.t. the external face C(e0)). With faces
labeled in this way, the solution of the preceding section tells us which faces are contained
within the fundamental cycle C(e).

Let us start by fixing some notation. For distinct non-tree edges e1, e2, define e1 ≺ e2
iff in a 2-coloring of the conflict graph HC(e2)(G), the colors of the vertices corresponding
to bridges containing e0, e1 get different colors. Intuitively, this means that (if G is planar)
C(e2) separates e1 from e0 in the unique planar embedding of G.

For each e ∈ E(G) \ {e0}, let P (e) denote:

{e′ ∈ E(G) \ (E(T ) ∪ {e})|e′ ≺ e ∧ @e′′ : e′ ≺ e′′ ≺ e},

Further, let F (e) denote ⊕
e′∈P (e)∪{e}

C(e′)

Notice that for sets A,B the set A⊕B denotes the symmetric difference of the two sets and
the notation above refers to an iteration of this operation.

If the graph is 3-connected planar then in its unique planar embedding with C(e0) as the
external face, P (e) consists of the set of non-tree edges that are enclosed by e but not by
any e′′ which is also enclosed by e. Intuitively, it clear that these are exactly the non-tree
edges occurring on the face f(e) (see description in the preceding paragraph). We will make
this intuition precise and in fact, show the following:
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Lemma 4. For each non-tree edge e 6= e0, the face f(e) consists exactly of the edges in the
set F (e).

Proof. Given a fundamental cycle C let φ(C) represent the number of faces that lie inside
C and ψ(C) represent the number of fundamental cycles that lie inside C including C.
Notice that for fundamental cycles which are also faces, φ(C) = ψ(C) = 1. In fact for every
fundamental cycle C, as an easy consequence of Euler’s formula it follows that φ(C) = ψ(C).

Let e ∈ E(G) \ E(T ). We will first show that F (e) is a face. Since each e′ ∈ P (e) lies
inside C(e) and for every non-tree e′′ 6∈ P (e), such that e′′ ≺ e, there is exactly one e′ ∈ P (e)
such that e′′ ≺ e′. There is one such e′ because we know that every non-tree edge enclosed
by C(e) is either enclosed by some other fundamental cycle C(e1) or otherwise is in P (e).
Thus by induction on the “enclosure depth” of an edge we get an e′ ∈ P (e) which encloses
it. The uniqueness follows from observing that if both e ≺ e′ ∧ e ≺ e′1 then either e′1 ≺ e′ or
e′ ≺ e′1. - this is due to planarity - therefore both e′, e′1 cannot be in P (e). Thus we get,

ψ(C(e)) = 1 +
∑

e′∈P (e)

ψ(C(e′))

therefore:
φ(C(e)) = 1 +

∑
e′∈P (e)

φ(C(e′))

Now since every fundamental cycle can be written as a sum of internal faces of G and F (e)
is a sum of a set of fundamental cycles (where all computation is over Z2), it is also a sum
of some internal faces. Since only faces contained within C(e) figure in this sum, F (e) must
be a disjoint sum of some cycles enclosed by C(e). We can be more specific, the sum:⊕

e′∈P (e)

C(e′)

includes exactly the faces inside C(e) which are also faces inside some C(e′) for e′ ∈ P (e).
Thus F (e) includes exactly the faces contained inside C(e) but not in any C(e′) for e′ ∈ P (e).
Now, it is easy to see from the expression for φ(C(e)) that there is exactly one such face, so
it follows from the linear independence of the faces that this must be f(e). ut

Thus, we can complete the proof of the following:

Theorem 1. Given a graph G, constructing a planar embedding for G if it is planar and
otherwise rejecting it, can be done in logspace.

Proof. Given a graph we obtain its 3-connected components using Lemma 1. If each tri-
connected compoenent is planar, we will successfully obtain a planar embedding for each
component and then obtain the proof with the aid of Lemma 2. If some triconnected com-
ponent is not planar, we will either obtain an F (e) which is not induced or is separating or
we will obtain an edge lying on at least three F (e)’s and therefore reject.
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Input : Graph G
Promise : G is 3-connected
Output : A planar embedding of G if planar and ∅ otherwise

1 Compute a spanning tree T in G;
2 if there is no fundamental face w.r.t. T then return ∅;
3 Let C0 = C(e0) be a fundamental face;
4 foreach fundamental cycle C(e) 6= C0 do
5 Construct conflict graph HC(e)(G);
6 if HC(e)(G) is not bipartite then return ∅;
7 2-color HC(e)(G);
8 foreach non-tree edge e′ 6= e do

// Let Be′,e be the bridge of C(e) containing e′

9 if Be′,e gets color different from Be0,e in HC(e)(G) then let e′ ≺ e;

10 end

11 end
12 foreach fundamental cycle C(e) 6= C0 do
13 Let P (e) = {e′ ∈ E(G) \ (E(T ) ∪ {e})|e′ ≺ e ∧ @e′′ : e′ ≺ e′′ ≺ e};
14 Let F (e) =

⊕
e′∈P (e)∪{e} C(e′);

15 end
16 Let F (e0) = C0;
17 foreach edge e ∈ E(G) do
18 if e doesn’t lie in exactly two F (e′)’s then return ∅;
19 end

// Follow the proof of Proposition 1 to construct an embedding of G
20 return planar embedding of G;

Algorithm 1: Planarity Testing and Embedding Algorithm for 3-connected graphs

6 Finding Kuratowski Subgraphs

We describe an an algorithm to obtain a Kuratowski subgraph given a cycle with a non-
bipartite conflict graph. As a consequence, to obtain a Kuratowski subgraph, it is sufficient
to find such a cycle in a subgraph G′ of G. We do this in a series of lemmas:

Lemma 5. Given a non-planar graph G, we can, in logspace, find a non-planar subgraph G′

and a cycle C ⊆ G′ s.t. HC(G′) is non-bipartite.

Proof. Given access to a routine for planarity checking, and a non-planar graph G, we can
find a minimal non-planar subgraph G′ of g in the following sense. Order the edges of G
arbitrarily as e1, . . . , em. Now consider the smallest i such that the graph G′ formed by the
union of the first i edges e1, . . . , ei is non-planar. Notice that this means that G′ \ ei is
necessarily planar.

Now, we show how one can find a cycle in this graph G′ such that the conflict graph
HC(G′) is non-bipartite. Construct a planar embedding of G′ \ {e}. The endpoints, say x, y,
of ei must lie on different faces of this embedding because G′ is non-planar.

Find a path in the dual graph of the embedding between any two faces Fx, Fy incident
respectively on x, y. (this path must avoid any other faces incident on x or y.) The symmetric
difference of the faces in this path is a cycle C one of whose bridges is ei.

We claim thatHC(G′) is non-bipartite. If it were bipartite then it would be possible to give
an orientation to each of it’s bridges such that conflicting bridges got opposing orientations.
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Input : Graph G
Promise : G is non-planar
Output : A Kuratowski Minor

1 Find a non-planar subgraph G′ and a cycle C ⊆ G′ s.t. HC(G′) is non-planar ;
2 begin
3 Fix an ordering of edges of G ;
4 Find smallest edge ei = (x, y) such that graph G′ on {e1, . . . , ei} is non-planar;
5 Find planar embedding of G′ \ ei;
6 Let Fx, Fy be two faces containing x, y respectively;
7 Find a simple path between Fx, Fy in dual(G′) which avoids all other faces containing x, y;
8 Let C be the symmetric difference of the faces along this path;

// HC(G′) is non-bipartite

9 end
10 Find an induced odd cycle C̄ in HC(G′);
11 begin
12 Find a spanning tree of HC(G′) and 2-color it;
13 Pick a non-tree edge e with both endpoints of same color, so that all the chords of fundamental cycle

C(e) have different colors;
14 Walk on the tree between endpoints of e and “short-circuit” as many tree-paths, by chords, as possible;

15 end
16 Find a cycle with 3 mutually conflicting bridges;
17 Contract the bridges to single vertices (if they originally contained a vertex) or edges;
18 Find a Kuratowski minor of this graph by brute force;
19 Expand back to a Kuratowski minor of the original graph;

Algorithm 2: Algorithm for finding Kuratowski Minors

But since the bridges of C are all planar, this would imply that G′ is planar . Therefore,
HC(G′) is non-bipartite.

Lemma 6. Given a non-planar graph G′ and a cycle C witnessing this via the non-bipartiteness
of HC(G′), we can, in logspace, find an induced odd cycle C̄ in HC(G′).

Proof. Since the conflict graph HC(G′) is non-bipartite, it contains an odd cycle. We aim to
find an induced odd cycle in this graph. For this consider a spanning tree of HC(G′). 2-color
the spanning tree. Notice that there must exist a non-tree edge between two vertices with
the same color (else the graph would have been bipartite). Find a non-tree edge e such that
all the chords of the fundamental cycle C(e) get opposite colors - a simple induction on the
number of chords that a fundamental cycle has, shows that such an edge must exist and
locating it in logspace is easy.

We will construct a chordless cycle from C(e) by replacing some tree paths by chords
of C(e). To do this, let e = (u1, uk) and let the vertices of the tree path from u1 to uk be
u2, . . . , uk−1 in order. Call the point ui of a chord (ui, uj) for i < j as the origin of the chord
and uj the end of the chord. Now start walking from u1 to uk along the tree path, outputting
tree edges till the origin of a chord is encountered. Output the chord and move on to the
end of the chord and repeat. It is easy to see that the edges output by this procedure along
with the non-tree edge (u1, uk) form an induced cycle because either the origin or endpoint
of any other chord of C(e) is not on this cycle. Also, because the endpoints of all edges on
this cycle are oppositely colored except for (u1, uk), this is an odd cycle.
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At this point we have a cycle C in G with a non-bipartite conflict graph HC(G′) and an
induced odd cycle C̄ in HC(G′) witnessing this. Now we prove the following,

Lemma 7. Given an induced odd cycle C̄ in HC(G′), we can, in logspace, find a Kuratowski
subgraph.

Proof. First, suppose that two conflicting bridges B1 and B2 in the odd cycle share 3 points
of attachment a1, a2 and a3. If either of the bridges( B1 say.) has another point of attachment
a4 then, clearly the points of attachment a1, a3 of B2 alternate with the points of attachment
a2, a4 of B1. Therefore, it is sufficient to deal with the case when the case where both B1

and B2 have just 3 points of attachment. In this case it is not difficult to see that any bridge
that conflicts with B1 also conflicts with B2 and vice-versa. Hence C̄ must be a 3-cycle. We
deal with this case in lemma 8.

Next, consider the case where C̄ is an odd cycle of size greater than 3 and the conflict of
a bridge B in the odd cycle with any other bridge in the odd-cycle is witnessed by 2 points
of attachment of B i.e we exclude the possibility that 2 bridges share 3 points of attachment.

It is easy to see that ∃ 2 points of attachment for every bridge that witness both it’s
conflicts. Thus by contracting all bridges (excluding points of attachment) to single points
and removing edges of attachment, one can reduce all bridges to paths while maintaining all
conflicts. This can be done in logspace since for each bridge one only needs to remember the
witnesses of conflict of the bridge with its neighbours (in C̄).(atmost 8 points.)

If we label the vertices of C̄ as vB0 , vB1 , . . . , vB2k
(k > 1) for some positive integer k, and

the points of attachment of bridge Bi as ui, vi then the points occur along C in the order:
u0, v2k, u1, v0, u2, v1, . . . , u2k−1, v2k−2, u2k, v2k−1.

1

23

4

5

6

7 8

9

10

Fig. 1. In the figure, we have a cycle with the 9-cycle as it’s conflict graph . On treating
{6, 8, 10} as a single point and leaving out the edges (6, 7), (7, 8), (8, 9) and (9, 10), we obtain
a subdivision of K5
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Now, consider the cycle u2k, u0, v2k, v0, U
′ (Where U ′ = {{v1, u3}∪B3∪{v3}∪. . .∪{u2k−1})

along with the bridges B2k , B0 the paths connecting u0 and U ′, v2k and U ′ and the path
{v0, u2} ∪B2 . . . {v2k−2, u2k} Clearly, this is a K5 minor.(see Fig.1 for an example.)

Finally we are left with the following case:

Lemma 8. Given a cycle in G′ with three mutually conflicting bridges, it is possible to
extract a Kuratowski minor of G′ in logspace.

Proof. Clearly, it is sufficient to consider 4 points of attachment for each bridge since 4 points
of attachment suffice to witness conflict with two other bridges. We can contract the bridges
(excluding the points of attachment) to single points and reduce the problem of finding a
Kuratowski subgraph in the above graph to that of finding a Kuratowski minor in a non-
planar graph with atmost 15 vertices and 24 edges. Since this is a constant sized graph we
can find a Kuratowski minor by brute-force.
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