Skip to main content

Generalized Satisfiability for the Description Logic \(\mathcal{ALC}\)

(Extended Abstract)

  • Conference paper
  • 827 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6648))

Abstract

The standard reasoning problem, concept satisfiability, in the basic description logic \(\mathcal{ALC}\) is PSPACE-complete, and it is EXPTIME-complete in the presence of unrestricted axioms. Several fragments of \(\mathcal{ALC}\), notably logics in the \(\mathcal{FL}\), \(\mathcal{EL}\), and DL-Lite families, have an easier satisfiability problem; sometimes it is even tractable. We classify the complexity of the standard satisfiability problems for all possible Boolean and quantifier fragments of \(\mathcal{ALC}\) in the presence of general axioms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: DL-Lite in the light of first-order logic. In: Proc. AAAI, pp. 361–366 (2007)

    Google Scholar 

  2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: Adding weight to DL-Lite. In: Proc. DL (2009), http://CEUR-WS.org

  3. Baader, F.: Using automata theory for characterizing the semantics of terminological cycles. Ann. Math. Artif. Intell. 18(2-4), 175–219 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baader, F.: Terminological cycles in a description logic with existential restrictions. In: Proc. IJCAI, pp. 325–330 (2003)

    Google Scholar 

  5. Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Proc. IJCAI, pp. 364–369 (2005)

    Google Scholar 

  6. Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope further. In: Proc. OWLED DC (2008)

    Google Scholar 

  7. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  8. Bauland, M., Schneider, T., Schnoor, H., Schnoor, I., Vollmer, H.: The complexity of generalized satisfiability for Linear Temporal Logic. LMCS 5(1) (2009)

    Google Scholar 

  9. Beyersdorff, O., Meier, A., Thomas, M., Vollmer, H.: The Complexity of Propositional Implication. IPL 109(18), 1071–1077 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part I: Post’s lattice with applications to complexity theory. ACM-SIGACT Newsletter 34(4), 38–52 (2003)

    Article  Google Scholar 

  11. Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and—what else? In: Proc. ECAI, pp. 298–302 (2004)

    Google Scholar 

  12. Brandt, S.: Reasoning in \(\mathcal{ELH}\) w.r.t. general concept inclusion axioms. LTCS-Report LTCS-04-03, Dresden University of Technology, Germany (2004)

    Google Scholar 

  13. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable description logics for ontologies. In: Proc. AAAI, pp. 602–607 (2005)

    Google Scholar 

  14. Donini, F.M.: Complexity of reasoning. In: Description Logic Handbook [7], pp. 96–136

    Google Scholar 

  15. Donini, F.M., Lenzerini, M., Nardi, D., Hollunder, B., Nutt, W., Marchetti-Spaccamela, A.: The complexity of existential quantification in concept languages. AI 53(2-3), 309–327 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: The complexity of concept languages. Inf. Comput. 134(1), 1–58 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Donini, F.M., Massacci, F.: EXPTIME tableaux for \(\mathcal{ALC}\). AI 124(1), 87–138 (2000)

    MATH  Google Scholar 

  18. Givan, R., McAllester, D., Wittny, C., Kozen, D.: Tarskian set constraints. Information and Computation 174, 105–131 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hemaspaandra, E., Schnoor, H., Schnoor, I.: Generalized modal satisfiability. CoRR, abs/0804.2729 (2008)

    Google Scholar 

  20. Hofmann, M.: Proof-theoretic approach to description-logic. In: Proc. LICS, pp. 229–237 (2005)

    Google Scholar 

  21. Kazakov, Y., de Nivelle, H.: Subsumption of concepts in \(\mathcal{FL}_o\) for (cyclic) terminologies with respect to descriptive semantics is PSPACE-complete. In: Proc. DL (2003), http://www.CEUR-WS.org

  22. Lewis, H.: Satisfiability problems for propositional calculi. Math. Sys. Theory 13, 45–53 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lutz, C.: Complexity of terminological reasoning revisited. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 181–200. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  24. Meier, A., Mundhenk, M., Schneider, T., Thomas, M., Weber, V., Weiss, F.: The complexity of satisfiability for fragments of hybrid logic—part I. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 587–599. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Meier, A., Schneider, T.: The complexity of satisfiability for sub-Boolean fragments of \(\mathcal{ALC}\). In: Proc. of DL 2010. CEUR-WS.org (2010)

    Google Scholar 

  26. Meier, A., Schneider, T.: Generalized satisfiability for the description logic \(\mathcal{ALC}\). CoRR (2011), http://arxiv.org/abs/1103.0853

  27. Nebel, B.: Terminological reasoning is inherently intractable. AI 43(2), 235–249 (1990)

    MathSciNet  MATH  Google Scholar 

  28. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  29. Post, E.: The two-valued iterative systems of mathematical logic. Ann. Math. Studies 5, 1–122 (1941)

    MathSciNet  Google Scholar 

  30. Pratt, V.R.: A practical decision method for propositional dynamic logic: Preliminary report. In: STOC, pp. 326–337. ACM, New York (1978)

    Google Scholar 

  31. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. STOC, pp. 216–226. ACM Press, New York (1978)

    Google Scholar 

  32. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. AI 48(1), 1–26 (1991)

    MathSciNet  MATH  Google Scholar 

  33. Schnoor, H.: Algebraic Techniques for Satisfiability Problems. PhD thesis, Leibniz University of Hannover (2007)

    Google Scholar 

  34. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. JCSS 32(2), 183–221 (1986)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meier, A., Schneider, T. (2011). Generalized Satisfiability for the Description Logic \(\mathcal{ALC}\) . In: Ogihara, M., Tarui, J. (eds) Theory and Applications of Models of Computation. TAMC 2011. Lecture Notes in Computer Science, vol 6648. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20877-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20877-5_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20876-8

  • Online ISBN: 978-3-642-20877-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics