
MIT Open Access Articles

Approximability of the Subset Sum Reconfiguration Problem

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Ito, Takehiro, and Erik D. Demaine. “Approximability of the Subset Sum Reconfiguration
Problem.” Lecture Notes in Computer Science (2011): 58–69.

As Published: http://dx.doi.org/10.1007/978-3-642-20877-5_7

Publisher: Springer-Verlag

Persistent URL: http://hdl.handle.net/1721.1/86057

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/86057
http://creativecommons.org/licenses/by-nc-sa/4.0/

Journal of Combinatorial Optimization manuscript No.
(will be inserted by the editor)

Approximability of the Subset Sum Reconfiguration
Problem

Takehiro Ito · Erik D. Demaine

Received: date / Accepted: date

Abstract The subset sum problem is a well-known NP-complete problem in which

we wish to find a packing (subset) of items (integers) into a knapsack with capacity so

that the sum of the integers in the packing is at most the capacity of the knapsack and

at least a given integer threshold. In this paper, we study the problem of reconfiguring

one packing into another packing by moving only one item at a time, while at all times

maintaining the feasibility of packings. First we show that this decision problem is

strongly NP-hard, and is PSPACE-complete if we are given a conflict graph for the set

of items in which each vertex corresponds to an item and each edge represents a pair of

items that are not allowed to be packed together into the knapsack. We then study an

optimization version of the problem: we wish to maximize the minimum sum among

all packings in a reconfiguration. We show that this maximization problem admits a

polynomial-time approximation scheme (PTAS), while the problem is APX-hard if we

are given a conflict graph.

Keywords approximation algorithm · PTAS · reachability on solution space · subset
sum

1 Introduction

Reconfiguration problems arise when we wish to find a step-by-step transformation

between two feasible solutions of a problem such that all intermediate results are also

feasible. Ito et al. [12] proposed a framework of reconfiguration problems, and gave

complexity and approximability results for reconfiguration problems derived from sev-

eral well-known problems, such as independent set, clique, matching, etc. In this

paper, we study two reconfiguration problems derived from the subset sum problem.

T. Ito
Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai, 980-8579, Japan.
E-mail: takehiro@ecei.tohoku.ac.jp

E. D. Demaine
MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA.
E-mail: edemaine@mit.edu

2

A0

At

A1

At’5, 6, 8

5, 6

6, 8

5, 8

5, 11

8, 11

6, 11 11

Fig. 1 All packings of total size at least k = 10 for A = {5, 6, 8, 11} and c = 20.

The subset sum problem is a well-known NP-complete problem, defined as fol-

lows [17]. Suppose that we are given a knapsack with a nonnegative integer capacity

c, and a set A of n items a1, a2, . . . , an, each of which has a nonnegative integer size

s(ai), 1 ≤ i ≤ n. We call a subset A′ of A a packing if the total size of A′ does

not exceed the capacity c, that is,
∑

a∈A′ s(a) ≤ c. Given an integer threshold k, the

subset sum problem is to find a packing A′ whose total size is at least k, that is,

k ≤ ∑
a∈A′ s(a) ≤ c. For a knapsack with capacity c = 20 and a set A = {5, 6, 8, 11},

there are 8 packings of total size at least k = 10, as illustrated in Fig. 1, where each

packing is surrounded by a box. Our definition of subset sum is known as the decision

version of the maximum subset sum problem in which we wish to find a packing whose

total size is maximum [17].1

Suppose now that we are given two packings A0 and At, both of total size at least

k, and we are asked whether we can transform one into the other via packings by

moving (namely, either adding or removing) a single item to/from the previous one

without ever going through a packing of total size less than k. We call this decision

problem the subset sum reconfiguration problem. For two packings A0 = {5, 6}
and At = {6, 8} in Fig. 1, the answer is “yes” since they can be transformed into each

other via A1 = {5, 6, 8}; in Fig. 1, two packings (boxes) are joined by a line if and only

if one packing can be obtained from the other by moving a single item.

Obviously, we cannot always find such a transformation. For example, there is no

transformation between A0 = {5, 6} and A′
t = {6, 11} in Fig. 1 if we are allowed to use

only packings of total size at least k = 10. On the other hand, the answer is always

“yes” if k = 0: we first remove all items of A0, and obtain the empty packing; and then,

add all items of At to the knapsack. In turn, we can get a natural optimization problem

1 Note that subset sum in [6] is slightly different from our definition: subset sum in [6] is
defined as the problem of finding a packing whose total size is exactly k.

A0

At’
5, 6, 8

5, 6

6, 8

5, 8

5

8

6

5, 11

8, 11

6, 11 11

φ

Fig. 2 All packings for A = {5, 6, 8, 11} and c = 20.

3

if we wish to maximize the minimum total size among all packings in a transformation

between A0 and At. We call this maximization problem the maxmin subset sum

reconfiguration problem. The sequence of packings emphasized by thick lines in

Fig. 2 is an optimal solution for A0 = {5, 6} and A′
t = {6, 11}; its objective value is 8.

Reconfiguration problems have been studied extensively in recent literature, such as

SAT reconfiguration [7,18,19], independent set reconfiguration [9,10,12,16],

shortest path reconfiguration [3,15], vertex-coloring reconfiguration [2,4],

list edge-coloring reconfiguration [13,14], etc. However, reconfiguration prob-

lems for subset sum have not been studied yet. One can easily imagine a variety of

practical scenarios, where a packing (e.g., representing a feasible display of electronic

advertisements on a Web browser) needs to be changed (to show other advertisements)

by individual changes (appealing to the user by showing one by one) while maintain-

ing both threshold and capacity of the allowed area on the Web browser (in order

to maintain both advertiser and user satisfactions during the transformation). Similar

situations can be found when moving products in automated warehouse, changing dis-

plays at a supermarket, etc. Reconfiguration problems are also interesting in general

because they provide a new perspective and deeper understanding of the solution space

and of heuristics that navigate that space.

Several variants have been studied for (ordinary) subset sum and maximum sub-

set sum [17]. In particular, maximum subset sum with “conflict graph” [21] is an

important variant, because this variant has been studied for several other problems,

such as bin packing [5] and scheduling under makespan minimization [1]. In the

variant, we are given a conflict graph for a set A of items in which each vertex cor-

responds to an item in A, and each edge represents a pair of items in A that are not

allowed to be packed together into the knapsack.

In this paper, we first show that subset sum reconfiguration is strongly NP-

hard, and is PSPACE-complete for the variant with conflict graph. We then show

that maxmin subset sum reconfiguration with conflict graph is APX-hard, and

hence there is no polynomial-time approximation scheme (PTAS) for this variant unless

P = NP. (Remember that, for any ε, 0 < ε < 1, a PTAS for a maximization problem

finds a solution with objective value APX such that APX ≥ (1− ε)OPT in polynomial

time when ε is regarded as a fixed constant, where OPT is the optimal objective

value.) In contrast, we give a PTAS for the original version of maxmin subset sum

reconfiguration. Note that, since this maximization problem is strongly NP-hard,

the problem does not admit a fully polynomial-time approximation scheme (FPTAS)

unless P = NP; in this sense, a PTAS is the best approximation algorithm we can

expect for the problem [20,23]. (Remember that an FPTAS is a PTAS which runs in

time polynomial in both the input size and 1/ε.) We also remark that, as far as we

know, this is the first PTAS obtained for this kind of reconfiguration problems. An

early version of the paper has been presented in [11].

Our main result of this paper is a PTAS for maxmin subset sum reconfigura-

tion. The strategy of our PTAS is the following: we divide a set A of items into two

groups, one is the set of items having “large” sizes, and the other consists of items

having “small” sizes; and we deal with the two groups separately. Because such an

approximation technique is fairly standard, especially for maximum subset sum and

bin packing [17,23], one might think that our PTAS could be obtained directly by

extending several known FPTASs or PTASs [17,23]. However, this is not the case,

because the focus of reconfiguration problems is different from the ordinary problems:

we seek the reachability between two feasible solutions, and hence the placement of

4

items is the central matter. For example, two packings {5, 6} and {11} in Fig. 1 have

the same total size 11, and hence we can regard them as an “equivalent” packing in

the ordinary subset sum problem. However, we must identify these two packings in

the reconfiguration problems; for example, {11} can be transformed into {6, 11}, but
{5, 6} cannot, when k = 10. (See Fig. 1.) We thus introduce a “configuration graph”

which represents the placements of items and their connectivity. (A formal definition

will be given in Section 3, but an example is already shown in Fig. 2.) Our main idea

is to approximate the configuration graph appropriately.

2 Complexity and Inapproximability

Before showing our results, we introduce some terms and define the problems more

formally. In Introduction, we have defined a packing Ai as a subset of items in a set

A such that the total size of Ai is at most the capacity c of a knapsack; the total

size of a packing Ai is denoted simply by s(Ai), that is, s(Ai) =
∑

a∈Ai
s(a). Note

that a packing does not necessarily satisfy a threshold k. We say that two packings

Ai and Aj of A are adjacent if their symmetric difference is of cardinality 1, that

is, |Ai � Aj | =
∣∣(Ai \ Aj) ∪ (Aj \ Ai)

∣∣ = 1; the item a in Ai � Aj is said to be

moved between Ai and Aj . A reconfiguration sequence between two packings A0 and

At is a sequence of packings A0, A1, . . . , At such that Ai−1 and Ai are adjacent for

i = 1, 2, . . . , t. For a reconfiguration sequence P , we denote by f(P) the minimum

total size among all packings in P , that is, f(P) = min{s(Ai) : Ai ∈ P}. Then, for two
packings A0 and At, let

OPT(A0, At) = max{f(P) : P is a reconfiguration sequence between A0 and At}.

Given an integer threshold k and two packings A0 and At, the subset sum reconfig-

uration problem is to determine whether OPT(A0, At) ≥ k. On the other hand, its

optimization version is defined as follows: Given two packings A0 and At, the maxmin

subset sum reconfiguration problem is to compute OPT(A0, At). Note that we are

asked simply to compute the optimal value OPT(A0, At), and hence we need not to

find an actual reconfiguration sequence.

We first have the following theorem.

Theorem 1 Subset sum reconfiguration is strongly NP-hard.

Proof We give a polynomial-time reduction from the 3-partition problem [6] to our

problem. In 3-partition, we are given a positive integer bound b, and a set U of 3m

elements u1, u2, . . . , u3m; each element ui ∈ U has a positive integer size s(ui) such that

b/4 < s(ui) < b/2 and such that
∑

u∈U s(u) = mb. Then, the 3-partition problem is

to determine whether U can be partitioned into m disjoint subsets U1, U2, . . . , Um such

that
∑

u∈Uj
s(u) = b for each j, 1 ≤ j ≤ m. It is known that 3-partition is strongly

NP-complete [6].

Given an instance of 3-partition, we construct the corresponding instance of sub-

set sum reconfiguration. The set A consists of 4m items a1, a2, . . . , a3m, b1, b2, . . . ,

bm: let s(ai) = s(ui) for each i, 1 ≤ i ≤ 3m, and let s(bj) = b for each j, 1 ≤ j ≤ m.

Then, each item ai corresponds to the element ui in U . The knapsack is of capacity

c = mb, and set the threshold k = (m − 1)b. Finally, the two packings A0 and At are

5

defined as follows: A0 = {b1, b2, . . . , bm} and At = U , and hence both A0 and At are

of total size mb (> k).

Since k = (m− 1)b and s(bj) = b for all j, 1 ≤ j ≤ m, it is easy to see that there

exists a desired partition {U1, U2, . . . , Um} if and only if there exists a reconfiguration

sequence P between A0 and At with f(P) = k = (m− 1)b and hence OPT(A0, At) =

(m− 1)b ≥ k. ��

Theorem 1 immediately implies the following corollary.

Corollary 1 Maxmin subset sum reconfiguration is strongly NP-hard.

We then consider the variant with conflict graph. Notice that every feasible packing

of A induces an independent set in the conflict graph. We have the following theorem.

Theorem 2 Subset sum reconfiguration with conflict graph is PSPACE-complete.

Proof We first show that the problem is in PSPACE. Since PSPACE = NPSPACE [22],

it suffices to show that the problem can be solved in nondeterministic polynomial space.

Clearly, a packing can be described in linear number of bits, simply by specifying

whether each item in A is contained in the packing or not. Furthermore, since we can

move only a single item from the current packing, the number of packings adjacent to

the current one is at most n, and hence all the adjacent packings can be enumerated in

polynomial time. Therefore, we can traverse the packings, at each step nondetermin-

istically choosing an adjacent packing, and maintaining the current packing together

with checking whether or not the packing is equal to the target packing At. Thus, the

problem is in NPSPACE, and hence in PSPACE.

We then show that subset sum reconfiguration with conflict graph is PSPACE-

hard by giving a polynomial-time reduction from the independent set reconfigu-

ration problem [12]. Given a graph G of n nodes, an integer threshold k′, and two

independent sets I0 and It of G, both of cardinality at least k′, the independent set

reconfiguration problem asks whether we can transform I0 into It via independent

sets of G, each of which results from the previous one by either adding or removing

a single node of G, without ever going through an independent set of cardinality less

than k′ − 1. This problem is known to be PSPACE-complete [12].

We now construct the corresponding instance of subset sum reconfiguration

with conflict graph. The set A contains n items, and let s(a) = 1 for all items a in A.

Each item in A corresponds to a node of G, and the conflict graph for A is connected

as G. The knapsack is of capacity c = n, and let the threshold k = k′ − 1. Finally, the

two packings A0 and At consist of the items which correspond to the nodes in I0 and

It, respectively; and hence both A0 and At are of total size at least k′ = k + 1.

Since every feasible packing of total size at least k induces an independent set in

G of cardinality at least k = k′ − 1, it is obvious that there is a desired transformation

between I0 and It if and only if OPT(A0, At) ≥ k. ��

We note in passing that subset sum reconfiguration with conflict graph is

strongly NP-hard even if a conflict graph is either empty or a star: if a conflict graph is

empty, then the problem is the original version of subset sum reconfiguration; and

we can easily obtain a star from an empty conflict graph, with keeping the feasibility,

6

by adding a dummy item of size equal to the capacity c and joining it with each of the

vertices in the empty conflict graph.

We finally have the following inapproximability result.

Theorem 3 Maxmin subset sum reconfiguration with conflict graph is APX-

hard, and cannot be approximated within any constant factor unless P = NP.

Proof We give a polynomial-time reduction in an approximation-preserving manner

from the (ordinary) independent set problem to our problem. In independent set,

we are given a graph G with n nodes, and we are asked to compute the maximum

cardinality OPTI(G) of independent sets in G. It is known that independent set

is APX-complete [20] and cannot be approximated within any constant factor unless

P = NP [8].

Given an instance of independent set, we now construct the corresponding in-

stance of maxmin subset sum reconfiguration with conflict graph. The set A con-

sists of n+ 2 items a1, a2, . . . , an, b1, b2: we set s(ai) = 1 for each i, 1 ≤ i ≤ n, and set

s(b1) = s(b2) = n+1; each item ai corresponds to a node in G. In the conflict graph, the

n nodes corresponding to a1, a2, . . . , an are connected as G; the conflict graph consists

of three components G, {b1} and {b2}. (If required, we can easily obtain a connected

conflict graph by adding a dummy item of size equal to the capacity c and joining it

with each vertex in the conflict graph.) The knapsack is of capacity c = 2n + 1, and

the two packings A0 and At are defined as follows: A0 = {b1} and At = {b2}.
We now show that the reduction above preserves approximability. Consider any

reconfiguration sequence P between A0 and At. Let Amin be the packing in P having

the minimum total size, and hence f(P) = s(Amin). Since s(b1) + s(b2) = 2n + 2 >

c, there must exist a packing in P which contains neither b1 nor b2. Since s(b1) =

s(b2) = n+ 1, we thus know that neither b1 nor b2 are contained in Amin. Therefore,

Amin induces an independent set in G of cardinality s(Amin). Conversely, for every

independent set I of G, there exists a reconfiguration sequence PI from A0 to At via

the packing AI corresponding to I : add to the packing A0 the items corresponding

to the nodes in I one by one (then, we obtain A0 ∪ AI), remove b1 (then, obtain

the packing AI), add b2, and remove the items in AI one by one (then, obtain At).

Since s(b1) = s(b2) = n + 1, we clearly have f(PI) = s(AI). Therefore, solving (or,

approximating) this instance of maxmin subset sum reconfiguration with conflict

graph is equivalent to solving (respectively, approximating) independent set for G.

Thus, the results follow. ��

3 Polynomial-Time Approximation Scheme

Since maxmin subset sum reconfiguration with conflict graph is APX-hard, this

variant does not admit a PTAS unless P = NP. In this section, we give a PTAS for

the original version, as in the following theorem.

Theorem 4 There is a polynomial-time approximation scheme for maxmin subset

sum reconfiguration.

In the remainder of this section, as a proof of Theorem 4, we give an algorithm

which actually finds a reconfiguration sequence P between two given packings A0 and

At such that f(P) ≥ (1− ε′)OPT(A0, At) in time polynomial in n (but, exponential in

7

1/ε′) for any fixed constant ε′, 0 < ε′ < 1, where n is the number of items in the set A.

Therefore, our approximate objective value APX(A0, At) is f(P), and hence the error

is bounded by ε′OPT(A0, At), that is,

OPT(A0, At)− APX(A0, At) = OPT(A0, At)− f(P) ≤ ε′OPT(A0, At).

As we have mentioned in Introduction, the placement of items is the central matter

in the reconfiguration problem. Therefore, we construct an edge-weighted graph, called

a configuration graph, which represents all (feasible) packings together with their adja-

cency. For a set A of items and a knapsack of capacity c, a configuration graph C = (V, E)
is defined as follows: each vertex in V corresponds to a packing Ai, and two vertices are

joined by an edge e in E if and only if the corresponding two packings Ai and Aj are

adjacent; the weight ω(e) of e is defined as follows: ω(e) = min{s(Ai), s(Aj)}. Notice

that the weight ω(e) of an edge e corresponds to the objective value f(Pi,j) for the

reconfiguration sequence Pi,j = 〈Ai, Aj〉 along e. Figure 2 illustrates the configuration

graph for a set A = {5, 6, 8, 11} and a knapsack of capacity c = 20, where each vertex

is drawn as a box and each edge as a line. From now on, we may call a packing simply

a vertex of a configuration graph if it is clear from the context. Since there is a vertex

corresponding to the empty packing, a configuration graph is always connected. Then,

maxmin subset sum reconfiguration can be seen as the problem of maximizing the

minimum edge-weight in a path between A0 and At in C. It is easy to see that the

problem can be solved in time polynomial in |V|+ |E|, by the following naive algorithm:

delete all edges having the smallest weight from C, and check whether the two vertices

A0 and At remain in the same connected component of the resulting graph; if so, let

C be the resulting graph and repeat. Note that, however, the size |V|+ |E| of C can be

exponential in n.

We now briefly explain our PTAS together with the organization of this section.

For a fixed constant ε′, 0 < ε′ < 1, let

ε =
1

2
ε′. (1)

(The reason why the coefficient above is 1/2 will be explained in Section 3.4.) Given

a set A of items and the fixed constant ε, we divide the items of A into two groups:

an item a is called a large item if s(a) ≥ εc/2; otherwise the item is called a small

item. We show in Section 3.1 that the problem can be optimally solved in polynomial

time if A contains only large items; in this case, the number of packings (and hence

the number of vertices in the configuration graph) can be bounded by a polynomial

in n. In Section 3.2 we then explain that small items can be moved greedily with only

small error. In Section 3.3 we finally deal with a general instance by combining the

techniques above, without losing the reachability and with keeping the small error.

Section 3.4 gives the analysis of our algorithm.

3.1 Large items

In this subsection, we show that maxmin subset sum reconfiguration can be opti-

mally solved in polynomial time if the given set A contains only large items. It suffices

to show that we can construct the corresponding configuration graph C = (V, E) in

polynomial time for such an instance, and that the size |V| + |E| of C is a polynomial

in n. Formally, we have the following lemma.

8

Lemma 1 For a fixed constant ε > 0, suppose that every item in the set A is of size

at least εc/2, where c is the capacity of the knapsack. Then, maxmin subset sum

reconfiguration can be optimally solved in polynomial time.

Proof Since s(a) ≥ εc/2 for all items a ∈ A, the number of items in any (feasible)

packing is bounded by
2/ε�. Let γ =
2/ε�, then γ is a fixed constant. Since A

contains n items, it is easy to see that the number of all packings for A and c can be

bounded by
(n+γ

γ

)
. Therefore, |V| is a polynomial in n, and hence we can construct C

in time polynomial in n. Since the size |V|+ |E| of C is a polynomial in n, we can solve

the problem optimally in polynomial time. ��

3.2 Small items

Suppose in this subsection that the given set A may contain small items. Then, the

number of items in a packing cannot be bounded by a constant, and hence the number

|V| of vertices in the configuration graph C = (V, E) cannot be always bounded by

a polynomial in n; more specifically, |V| can be O(2n). Therefore, we will later (in

Section 3.3) construct an “approximate configuration graph CA,” whose size is bounded

by a polynomial in n.

We now explain how to find a reconfiguration sequence greedily when A0 � At

contains only small items for two given packings A0 and At. Let Lε be the set of large

items in A, that is, Lε = {a ∈ A | s(a) ≥ εc/2}, and let Sε = A \ Lε. We have the

following lemma.

Lemma 2 Let A0 and At be an arbitrary pair of packings such that A0 � At ⊆ Sε.

Then, there exists a reconfiguration sequence Ps between A0 and At such that

(a) no item in Lε is moved in Ps; and

(b) f(Ps) ≥ (1− ε)min{s(A0), s(At)}.
Moreover, such a reconfiguration sequence Ps can be found in linear time.

Proof We give an O(n)-time algorithm which finds a reconfiguration sequence Ps be-

tween A0 and At satisfying (a) and (b), as follows.

Case (i): s(A0 ∪ At) ≤ c.

In this case, we first add all items in At \ A0 one by one, and obtain the packing

A0 ∪ At; and then, delete all items in A0 \ At one by one, and obtain At. Note that

At \ A0 ⊆ A0 � At ⊆ Sε and A0 \ At ⊆ A0 � At ⊆ Sε, and hence no item in Lε is

moved in this reconfiguration sequence Ps. We clearly have

f(Ps) = min{s(A0), s(At)} > (1− ε)min{s(A0), s(At)}.

Therefore, Ps satisfies both (a) and (b). Moreover, Ps can be found in linear time since

we move each item in A0 � At only once.

Case (ii): s(A0 ∪At) > c.

In this case, we first add items in At \ A0 one by one in arbitrary order as long

as the total size is at most c; let Aj be the current packing. Then, s(Aj) > (1− ε
2)c;

otherwise we can add more items to Aj since s(a) < εc/2 for all items a ∈ At \A0. We

9

then delete items in A0 \ At one by one in arbitrary order until we obtain a packing

A′
j such that

(1− ε)c < s(A′
j) ≤

(
1− ε

2

)
c. (2)

Since s(a) < εc/2 for all items a ∈ A0 \ At, we can always find such a packing A′
j .

If s(A′
j ∪ At) ≤ c, then go to Case (i) above; otherwise, repeat Case (ii). Note that,

in this reconfiguration sequence Ps, every addition is executed for an item in At \ A0(⊆ Sε
)
and every deletion is done for an item in A0 \ At

(⊆ Sε
)
. Thus, Ps satisfies

(a). Furthermore, since each item in A0 � At is moved exactly once, Ps can be found

in linear time. We now show that (b) holds for Ps. By Eq. (2) we have

f(Ps) ≥ min
{
(1− ε)c,min{s(A0), s(At)}

}
.

Since c ≥ min{s(A0), s(At)}, we have f(Ps) ≥ (1− ε)min{s(A0), s(At)}. ��

3.3 General instance

We finally deal with a general instance, that is, a set A may contain small items and

two packings A0 and At do not necessarily satisfy A0 � At ⊆ Sε. Our idea is to

construct an approximate configuration graph CA, as follows.

Step 1: Configuration graph for Lε

We first construct a configuration graph CLε
= (VLε

, ELε
) for the large item set

Lε of A and the capacity c. Then, as in Lemma 1, CLε
can be constructed in time

polynomial in n, and the size |VLε
|+ |ELε

| of CLε
can be bounded by a polynomial in

n. Figure 3(a) illustrates the configuration graph for Lε of A, where each box corre-

sponds to a packing consisting only of large items. Note that CLε
contains the vertex

corresponding to the empty packing, and hence CLε
is connected.

Step 2: Small items

We then expand CLε
into the approximate configuration graph CA = (VA, EA), as

illustrated in Fig. 3(b). For each edge in CLε
joining two vertices AL

i and AL
j (that

consist only of large items), we replace it with an edge e that joins two new vertices

Ai,x and Aj,y, called gate vertices or gate packings, defined as follows. Assume without

loss of generality that AL
j = AL

i ∪ {a} for some large item a in Lε, and hence AL
j can

be obtained by adding one large item a to AL
i . To extend AL

j to the gate packing Aj,y

containing small items, we find a packing AS
j ⊆ Sε of small items for the remaining

space c − s(AL
j) of the knapsack; we employ an FPTAS for the ordinary maximum

subset sum problem [17] for the fixed constant ε. Then, let Aj,y = AL
j ∪ AS

j and let

Ai,x = Aj,y \ {a}. Note that Ai,x � Aj,y = {a} and hence Ai,x and Aj,y are adjacent.

We call the edge e = (Ai,x, Aj,y) an external edge, and the weight ω(e) is defined as

follows:

ω(e) = min{s(Ai,x), s(Aj,y)} = s(Ai,x).

In Fig. 3(b), each gate packing is represented by a circle, triangle, square, pentagon,

or hexagon, colored with white; all gate packings represented by the same symbol have

the same placement of large items; and each external edge is drawn as a (non-dotted)

line.

10

A0At
(a) (b)

Ai Aj Ai, x Aj, y
L L

e

Fig. 3 (a) Configuration graph CLε for the large item set Lε of A, and (b) approximate
configuration graph CA for A.

For each vertex AL
i in CLε

, we have thus created the number d(AL
i) of new gate

vertices Ai,1, Ai,2, . . . , Ai,d(AL
i), where d(AL

i) is the degree of AL
i in CLε

. Note that

these gate packings Ai,1, Ai,2, . . . , Ai,d(AL
i) are not necessarily distinct, and Ai,x∩Lε =

AL
i holds for each index x, 1 ≤ x ≤ d(AL

i). The original vertex AL
i is deleted, and we

connect the d(AL
i) gate vertices so that they form a clique. For each pair of vertices Ai,x

and Ai,z, the edge joining them is called an internal edge; in Fig. 3(b), each internal

edge is drawn as a dotted line. It should be noted that Ai,x and Ai,z are not necessarily

adjacent in C although they are joined by an internal edge. However, using Lemma 2

we can regard such an internal edge as a reconfiguration sequence Ps between Ai,x and

Ai,z such that f(Ps) ≥ (1 − ε)min{s(Ai,x), s(Ai,z)}. Therefore, the weight ω(e) of e

is defined as follows:

ω(e) =

{
min{s(Ai,x), s(Ai,z)} if Ai,x = Ai,z, or Ai,x and Ai,z are adjacent;

(1− ε)min{s(Ai,x), s(Ai,z)} otherwise.
(3)

Step 3: A0 and At

The current graph above does not always contain the vertices corresponding to

given packings A0 and At. If the graph does not contain A0, then we add a new vertex

A0 to the graph, and join it with each gate vertex having the same placement A0 ∩Lε

of large items by an internal edge. (The case for At is similar.) This completes the

construction of the approximate configuration graph CA = (VA, EA).

Clearly, a path between the two vertices A0 and At in CA corresponds to a re-

configuration sequence between the two packings A0 and At. Since |VA| ≤ 2|ELε
| + 2

and |ELε
| is bounded by a polynomial in n, the size |VA| + |EA| of CA is bounded

by a polynomial in n. Therefore, we can find in polynomial time a path between A0

and At whose minimum edge-weight is maximum in CA; we take the corresponding

reconfiguration sequence P as our approximate solution.

3.4 Analysis of the algorithm

We have shown in Section 3.3 that our algorithm finds a reconfiguration sequence P
between A0 and At in time polynomial in n (but, exponential in 1/ε). In this subsection,

11

(a) P *

(b) P

A1,0

A1,0
*

Ps,1 Ps,2 Ps,l

A1,t

*

A2,0

*

A2,t

*

Al,0

*

Al,t

A1,t A2,0 A2,t Al,0 Al,t*

Fig. 4 (a) Optimal reconfiguration sequence P∗, and (b) reconfiguration sequence P ′ such
that CA contains the path corresponding to P ′.

we show that P satisfies f(P) ≥ (1−ε′)OPT(A0, At) for a fixed constant ε′, 0 < ε′ < 1,

as required.

Let P∗ = 〈A∗
0, A

∗
1, . . . , A

∗
t 〉 be an arbitrary optimal reconfiguration sequence be-

tween A0 and At, where A∗
0 = A0 and A∗

t = At. Figure 4(a) illustrates the optimal

reconfiguration sequence P∗, where each black symbol corresponds to a packing A∗
i

in P∗ and all packings represented by the same symbol have the same placement of

large items. Let A∗
min be a packing in P∗ whose total size is minimum, and hence

f(P∗) = s(A∗
min). Then, we have

s(A∗
min) = OPT(A0, At), (4)

and

s(A∗
i) ≥ s(A∗

min) (5)

for each packing A∗
i , 0 ≤ i ≤ t.

From now on, we transform P∗ into another reconfiguration sequence P ′ between
A0 and At so that CA contains the path corresponding to P ′. Remember that our

algorithm finds a reconfiguration sequence P between A0 and At which is optimal in

CA, and hence we have

APX(A0, At) = f(P) ≥ f(P ′). (6)

We first find the “last” packing in P∗ for each large-item placement. This can be

done by the following algorithm: let A∗
1,0 = A∗

0; at the i-th step, i ≥ 1, find the last

packing A∗
x in P∗ such that A∗

x∩Lε = A∗
i,0∩Lε; set A

∗
i,t = A∗

x and A∗
i+1,0 = A∗

x+1, and

repeat. Let � be the number of iterations of the algorithm, and hence A∗
�,t = A∗

t = At.

(See Fig. 4(a).)

For each i, 1 ≤ i ≤ � − 1, we then find the gate packings Ai,t and Ai+1,0 in CA
which correspond to A∗

i,t and A∗
i+1,0, respectively. Note that A∗

1,0 = A0 and A∗
�,t = At,

and hence both A∗
1,0 and A∗

�,t are contained in CA. Remember that the two packings

A∗
i,t and A∗

i+1,0 are adjacent; moreover, the item moved between them is a large item

a ∈ Lε. Therefore, CA contains the external edge e = (Ai,t, Ai+1,0) which corresponds

to moving the item a from the large-item placement A∗
i,t ∩Lε to A∗

i+1,0 ∩Lε. We may

regard that the two endpoints (gate packings) Ai,t and Ai+1,0 of e correspond to A∗
i,t

and A∗
i+1,0, respectively. Of course, the gate packings Ai,t and Ai+1,0 are not always

the same as A∗
i,t and A∗

i+1,0, respectively, and hence they are depicted by (non-dotted)

white symbols in Fig. 4(b). However, it should be noted that A∗
i,t ∩Lε = Ai,t ∩Lε and

A∗
i+1,0 ∩Lε = Ai+1,0 ∩Lε, and hence Ai,t and Ai+1,0 in Fig. 4(b) are depicted by the

same symbols as A∗
i,t and A∗

i+1,0, respectively. For the sake of notational convenience,

let A1,0 = A∗
1,0 = A0 and A�,t = A∗

�,t = At.

We finally define the reconfiguration sequence P ′ between A0 and At. Since both

Ai,0 and Ai,t, 1 ≤ i ≤ �, have the same large-item placement and are contained in CA,

12

there is the internal edge es,i joining them; let P ′
s,i be the reconfiguration sequence

between Ai,0 and Ai,t corresponding to es,i. Let P ′ = P ′
s,1 ∪ P ′

s,2 ∪ · · · ∪ P ′
s,�, as

illustrated in Fig. 4(b). Note that the intermediate packings in P ′
s,i are not necessarily

contained in P∗, and hence they are represented by dotted white symbols in Fig. 4(b).

Furthermore, by Lemma 2(a) all packings in P ′
s,i have the same placement of large

items, and hence they are depicted by the same symbol in Fig. 4(b). By Eq. (3) we

have

f(P ′
s,i) = ω(es,i) ≥ (1− ε)min{s(Ai,0), s(Ai,t)} (7)

for each i, 1 ≤ i ≤ �. Note that f(P ′) = min{f(P ′
s,i) : 1 ≤ i ≤ �}.

This completes the construction of P ′.

We now show the following lemma.

Lemma 3 s(Ai,0) > (1− ε)s(A∗
i,0) and s(Ai,t) > (1− ε)s(A∗

i,t) for each i, 1 ≤ i ≤ �.

Proof Since A1,0 = A∗
1,0 = A0 and A�,t = A∗

�,t = At (see also Fig. 4), the lemma

clearly holds for A1,0 and A�,t. Therefore, we prove the lemma for packings Ai,t and

Ai+1,0, 1 ≤ i ≤ � − 1. Then, since they are gate packings, CA has the corresponding

external edge (Ai,t, Ai+1,0). Assume without loss of generality that Ai+1,0 = Ai,t∪{a}
for some large item a ∈ Lε, that is, Ai+1,0 can be obtained by adding the large item

a to Ai,t.

We first consider Ai+1,0. Let AL
i+1,0 = Ai+1,0 ∩ Lε and AS

i+1,0 = Ai+1,0 ∩ Sε.

Remember that AS
i+1,0 was obtained by using an FPTAS for the set Sε, the remaining

capacity c − s(AL
i+1,0) and the fixed constant ε. Let OPTS

i+1,0 be the optimal value

for the ordinary maximum subset sum problem for the set Sε and the capacity c −
s(AL

i+1,0). Then,

s(AS
i+1,0) ≥ (1− ε)OPTS

i+1,0, (8)

and hence

s(Ai+1,0) = s(AL
i+1,0) + s(AS

i+1,0)

≥ s(AL
i+1,0) + (1− ε)OPTS

i+1,0

> (1− ε)
(
s(AL

i+1,0) + OPTS
i+1,0

)
. (9)

Note that OPTS
i+1,0 is the maximum total size of small-item placements under the

constraint that the knapsack has the large-item placement AL
i+1,0. Since A

∗
i+1,0∩Lε =

AL
i+1,0, we thus have s(A

L
i+1,0)+OPTS

i+1,0 ≥ s(A∗
i+1,0). Therefore, by Eq. (9) we have

s(Ai+1,0) > (1− ε)s(A∗
i+1,0), as required.

We then consider Ai,t. Let AL
i,t = Ai,t ∩ Lε and AS

i,t = Ai,t ∩ Sε. Since Ai,t =

Ai+1,0 \ {a}, we have AL
i,t = AL

i+1,0 \ {a} and AS
i,t = AS

i+1,0. By Eq. (8) we have

s(Ai,t) = s(AL
i,t) + s(AS

i,t)

= s(AL
i,t) + s(AS

i+1,0)

≥ s(AL
i,t) + (1− ε)OPTS

i+1,0

> (1− ε)
(
s(AL

i,t) + OPTS
i+1,0

)
. (10)

13

Since A∗
i,t ∩ Lε = AL

i,t and we will add the large item a to A∗
i,t to obtain A∗

i+1,0, we

have

s(A∗
i,t ∩ Sε) ≤ c− (

s(AL
i,t) + s(a)

)
= c− s(AL

i+1,0).

Remember that OPTS
i+1,0 is the maximum total size of small-item placements for the

remaining capacity c− s(AL
i+1,0). Therefore, we have

s(AL
i,t) + OPTS

i+1,0 ≥ s(AL
i,t) + s(A∗

i,t ∩ Sε) = s(A∗
i,t).

By Eq. (10) we thus have s(Ai,t) > (1− ε)s(A∗
i,t), as required. ��

Assume that P ′
s,k contains the packing whose total size is minimum in P ′. Then,

by Eq. (7) we have

f(P ′) = f(P ′
s,k)

≥ (1− ε)min{s(Ak,0), s(Ak,t)}.
Therefore, by Lemma 3 and Eqs. (4) and (5) we have

f(P ′) > (1− ε)2 min{s(A∗
k,0), s(A

∗
k,t)}

≥ (1− ε)2s(A∗
min)

> (1− 2ε)s(A∗
min)

= (1− 2ε)OPT(A0, At). (11)

By Eqs. (1), (6) and (11) we have

APX(A0, At) ≥ f(P ′) > (1− 2ε)OPT(A0, At) = (1− ε′)OPT(A0, At).

This completes the proof of Theorem 4. ��

4 Concluding Remarks

In this paper, we showed that both subset sum reconfiguration and maxmin sub-

set sum reconfiguration are strongly NP-hard. However, we do not know whether

they are PSPACE-complete, or belong to NP. In particular, it is not clear whether the

diameter of the configuration graph C can be bounded by a polynomial in the input

size n.

In the ordinary knapsack problem [6,17], each item is assigned not only a size

but also a profit, and we wish to find a packing whose total profit is at least a given

threshold. Consider the two reconfiguration problems for knapsack, called knapsack

reconfiguration and maxmin knapsack reconfiguration, which are defined sim-

ilarly as subset sum reconfiguration and maxmin subset sum reconfiguration,

respectively. Because they are generalizations of our reconfiguration problems for sub-

set sum, the complexity and inapproximability results in Section 2 hold also for them.

It remains open to obtain a PTAS for maxmin knapsack reconfiguration.

Acknowledgments We thank the referees for their helpful comments and suggestions. The
first author’s work is partially supported by JSPS KAKENHI Grant Number 22700001. The
second author’s work is supported in part by NSF grant CCF-1161626 and DARPA/AFOSR
grant FA9550-12-1-0423.

14

References

1. H. L. Bodlaender and K. Jansen, On the complexity of scheduling incompatible jobs with
unit-times, Proc. of MFCS 1993, LNCS 711 (1993) 291–300.

2. M. Bonamy, M. Johnson, I. Lignos, V. Patel and D. Paulusma, On the diameter of
reconfiguration graphs for vertex colourings, Electronic Notes in Discrete Mathematics 38
(2011) 161–166.

3. P. Bonsma, The complexity of rerouting shortest paths, Proc. of MFCS 2012, LNCS 7464
(2012) 222–233.

4. P. Bonsma and L. Cereceda, Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances, Theoretical Computer Science 410 (2009)
5215–5226.

5. L. Epstein and A. Levin, On bin packing with conflicts, Proc. of WAOA 2006, LNCS 4368
(2006) 160–173.

6. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, CA, 1979.

7. P. Gopalan, P. G. Kolaitis, E. N. Maneva and C. H. Papadimitriou, The connectivity of
Boolean satisfiability: computational and structural dichotomies. SIAM J. Computing 38
(2009) 2330–2355

8. J. H̊astad, Clique is hard to approximate within n1−ε, Acta Math. 182 (1999) 105–142.
9. R. A. Hearn and E. D. Demaine, PSPACE-completeness of sliding-block puzzles and other

problems through the nondeterministic constraint logic model of computation, Theoretical
Computer Science 343 (2005) 72–96.

10. R. A. Hearn and E. D. Demaine, Games, Puzzles, and Computation, A K Peters (2009)
11. T. Ito and E. D. Demaine, Approximability of the subset sum reconfiguration problem,

Proc. of TAMC 2011, LNCS 6648 (2011) 58–69.
12. T. Ito, E. D. Demaine, N. J. A. Harvey, C. H. Papadimitriou, M. Sideri, R. Uehara and

Y. Uno, On the complexity of reconfiguration problems, Theoretical Computer Science
412 (2011) 1054–1065.

13. T. Ito, M. Kamiński and E. D. Demaine, Reconfiguration of list edge-colorings in a graph,
Discrete Applied Mathematics 160 (2012) 2199–2207.

14. T. Ito, K. Kawamura and X. Zhou, An improved sufficient condition for reconfiguration
of list edge-colorings in a tree, IEICE Trans. on Information and Systems E95-D (2012)
737–745.

15. M. Kamiński, P. Medvedev and M. Milanič, Shortest paths between shortest paths, The-
oretical Computer Science 412 (2011) 5205–5210.

16. M. Kamiński, P. Medvedev and M. Milanič, Complexity of independent set reconfigura-
bility problems, Theoretical Computer Science 439 (2012) 9–15.

17. H. Kellerer, U. Pferschy and D. Pisinger, Knapsack Problems, Springer-Verlag, 2004.
18. K. Makino, S. Tamaki and M. Yamamoto, On the Boolean connectivity problem for Horn

relations, Discrete Applied Mathematics 158 (2010) 2024–2030.
19. K. Makino, S. Tamaki and M. Yamamoto, An exact algorithm for the Boolean connectivity

problem for k-CNF, Theoretical Computer Science 412 (2011) 4613–4618.
20. C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
21. U. Pferschy and J. Schauer, The knapsack problem with conflict graphs, J. Graph Algo-

rithms and Applications 13 (2009) 233–249.
22. W. J. Savitch, Relationships between nondeterministic and deterministic tape complexi-

ties, J. Computer and System Sciences 4 (1970) 177–192.
23. V. V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin, 2001.

