Skip to main content

On Relationship of Computational Diffie-Hellman Problem and Computational Square-Root Exponent Problem

  • Conference paper
Coding and Cryptology (IWCC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6639))

Included in the following conference series:

Abstract

The Computational Square-Root Exponent Problem (CSREP), which is a problem to compute a value whose discrete logarithm is a square root of the discrete logarithm of a given value, was proposed in the literature to show the reduction between the discrete logarithm problem and the factoring problem. The CSREP was also used to construct certain cryptography systems. In this paper, we analyze the complexity of the CSREP, and show that under proper conditions the CSREP is polynomial-time equivalent to the Computational Diffie-Hellman Problem (CDHP). We also demonstrate that in group G with certain prime order p, the DLP, CDHP and CSREP may be polynomial time equivalent with respect to the computational reduction for the first time in the literature.

This work is supported by the National Natural Science Foundation of China (No. 61070168).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bao, F., Deng, R.H., Zhu, H.: Variations of Diffie-Hellman Problem. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Burmester, M., Desmedt, Y.G., Seberry, J.: Equitable key escrow with limited time span (or, how to enforce time expiration cryptographically). In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 380–391. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Diffie, W., Hellman, M.: New Directions in cryptography. IEEE Transactions on Information Theory 22, 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. FIPS 186-2, Digital signature standard, Federal Information Processing Standards Publication 186-2 (February 2000)

    Google Scholar 

  6. Konoma, C., Mambo, M., Shizuya, H.: Complexity analysis of the cryptographic primitive problems through square-root exponent. IEICE Trans. Fundamentals E87-A(5), 1083–1091 (2004)

    Google Scholar 

  7. Konoma, C., Mambo, M., Shizuya, H.: The computational difficulty of solving cryptographic primitive problems related to the discrete logarithm problem. IEICE Trans. Fundamentals E88-A(1), 81–88 (2005)

    Article  Google Scholar 

  8. Maurer, U.M.: Towards the equivalence of breaking the diffie-hellman protocol and computing discrete logarithms. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 271–281. Springer, Heidelberg (1994)

    Google Scholar 

  9. Maurer, U.M., Wolf, S.: Diffie-hellman oracles. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996)

    Google Scholar 

  10. Maurer, U.M., Wolf, S.: The Relationship Between Breaking the Diffie-Hellman Protocol and Computing Discrete Logarithms. SIAM J. Comput. 28(5), 1689–1721 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Maurer, U.M., Wolf, S.: The Diffie-Hellman protocol. Designs Codes and Cryptography 19, 147–171 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. McCurley, K.: The discrete logarithm problem. In: Cryptology and Computational Number Theory. Proceedings of Symposia in Applied Mathematics, vol. 42, pp. 49–74 (1990)

    Google Scholar 

  13. Muzereau, A., Smart, N.P., Vrecauteren, F.: The equivalence between the DHP and DLP for elliptic curves used in practical applications. LMS J. Comput. Math. 7(2004), 50–72 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Peralta, R.: A simple and fast probabilistic algorithm for computing square roots modulo a prime number. IEEE Trans. on Information Theory 32(6), 846–847 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pfitzmann, B., Sadeghi, A.-R.: Anonymous fingerprinting with direct non-repudiation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 401–414. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE-Transactions on Information Theory 24, 106–110 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sadeghi, A.-R., Steiner, M.: Assumptions related to discrete logarithms: Why subtleties make a real difference. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 244–261. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4, 161–174 (1991)

    Article  MATH  Google Scholar 

  19. Zhang, F., Chen, X., Susilo, W., Mu, Y.: A new signature scheme without random oracles from bilinear pairings. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 67–80. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Zhang, F., Chen, X., Wei, B.: Efficient designated confirmer signature from bilinear pairings. In: ASIACCS 2008, pp. 363–368 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, F., Wang, P. (2011). On Relationship of Computational Diffie-Hellman Problem and Computational Square-Root Exponent Problem. In: Chee, Y.M., et al. Coding and Cryptology. IWCC 2011. Lecture Notes in Computer Science, vol 6639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20901-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20901-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20900-0

  • Online ISBN: 978-3-642-20901-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics