Skip to main content

Countable Version of Omega-Rule

  • Conference paper
Logic, Language, Information and Computation (WoLLIC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6642))

Abstract

Omega-rule used by W. Buchholz to give an ordinal-free proof-theoretic analysis of \(\it \Pi^1_1\)-comprehension axiom has uncountable set of premises. We show how to make this set countable preserving the results and ideas of cut-elimination proof by Buchholz. The price is introduction of non-well founded derivation-like figures and use of continuous cut-elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beklemishev, L.: Reflection principles and provability algebras in formal arithmetic. Usp. Matem. Nauk 60(2), 3–78 (2005); (in Russian. English translation: Russian Math. Surv. 60(2), 197–268 (2005))

    Article  MATH  Google Scholar 

  2. Buchholz, W.: The Ω μ + 1-rule. In: Buchholz, W., Feferman, S., Pohlers, W., Sieg, W. (eds.) LNM, vol. 897, pp. 188–233. Springer, Heidelberg (1981)

    Google Scholar 

  3. Buchholz, W.: Notation Systems for infinitary Derivations. Arch. Math. Log. 30, 277–296 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buchholz, W.: Explaining the Gentzen-Takeuti Reduction Steps. Arch. Math. Log. 40, 255–272 (2001)

    Article  MATH  Google Scholar 

  5. Buchholz, W.: Relating ordinals to proofs in a perspicious way. In: Lecture Notes in Logic, vol. 15, pp. 37–59 (2002)

    Google Scholar 

  6. Kreisel, G., Mints, G., Simpson, S.: The Use of Abstract Language in Elementary Metamathematics. In: LNM, vol. 253, pp. 38–131. Springer, Heidelberg (1975)

    Google Scholar 

  7. Mints, G.: The Universality of the Canonical Tree. Soviet Math. Dokl. 14, 527–532 (1976)

    Google Scholar 

  8. Mints, G.: Finite Investigations of Transfinite Derivations. In: [9], pp. 17–72 ; (Russian original, 1974)

    Google Scholar 

  9. Mints, G.: Selected Papers in Proof Theory. Studies in Proof Theory, Monographs 3. Bibliopolis, Napoli (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mints, G. (2011). Countable Version of Omega-Rule. In: Beklemishev, L.D., de Queiroz, R. (eds) Logic, Language, Information and Computation. WoLLIC 2011. Lecture Notes in Computer Science(), vol 6642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20920-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20920-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20919-2

  • Online ISBN: 978-3-642-20920-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics