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Abstract. The diverse characteristics of network anomalies and the different 

recovery approaches that can subsequently be employed to remediate their 

effects, constitute static defence mechanisms tuned at responding to specific 

abnormalities suboptimal for providing an overall resilience framework. The 

emerging autonomic network environments in particular, require always-on, 

adaptive, and generic mechanisms that can integrate with the core networking 

infrastructure and provide for a range of self-* capabilities, ranging from self-

protection to self-tuning. In this paper we present the design and 

implementation of an adaptive remediation component built on top of an 

autonomic network node architecture [2]. A set of pluggable modules that 

employ diverse algorithms and explicit cross-layer interaction have been 

engineered to mitigate different classes of anomalous traffic behaviour in 

response to both legitimate and malicious external stimuli. In collaboration with 

an always-on measurement-based anomaly detection component, our prototype 

empowers the properties of self-optimisation and self-healing.  
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1   Introduction 

The design of autonomic architectures requires the incorporation of self-* 

properties that will ensure the optimal network operation in the face of the 

dynamically-changing behaviour of next generation, converged networked 

environments. The merging of heterogeneous systems and networks within such 

environments requires that effective measurement and control mechanisms are 

composed in a multi-dimensional fashion on all three  data, control and management 

planes.  

In this paper, we present the design of resilient systems, which are defined to 

provide and maintain an acceptable level of service in the face of various challenges 

to normal operation [8]. We particularly focus on the area of network traffic 

anomalies since they pose great challenges to infrastructure and their confrontment 

after they are detected is something non-trivial to achieve. This is mainly due to the 



different types of anomalies triggered either from a legitimate or malicious intent, and 

whose overall defence cannot be provided by parsimonious models or mechanisms.  

Within the context of autonomic communications, anomalies span dynamically 

across different systems and networks, and hence the employment of recovery 

mechanisms in order to remedy them encounters hard design and implementation 

decisions. It is necessary for such mechanisms to be foundationally supported by 

infrastructures that facilitate flexible design frameworks. The EU FP6 Autonomic 

Network Architecture (ANA) Project has successfully deployed an Autonomic node 

(ANA node) which –via its available development framework and API– allows the 

design of such complex mechanisms.  

Based upon the resilience requirements we have identified within ANA, we have 

designed an architecture composed by an anomaly detection unit and an anomaly 

remediation engine [9]. Synergistically and by employing cross-layer information 

exchange, both components empower the properties of self-protection, self-learning, 

self-optimisation and self-healing at the onset of anomalous traffic behaviour. The 

first two are provided by the detection unit, whereas our remediation engine 

accommodates the latter two properties, and it is embedded within the resilience 

architecture built on top of the ANA node. Through our algorithmic design, we 

provide an explicit interaction between the application and the network layers which 

can provide performance benefits for each layer with respect to recovery from an 

ongoing anomaly (e.g. Flash Event- FE, DoS). The design complements our previous 

work [13][11], and our implementation has enabled the  instrumentation of diverse 

remediation strategies within a flexible API such as the one provided by the ANA 

architecture.  

The remainder of this paper is structured as follows: section 2 briefly describes our 

resilience architecture that hosts the remediation mechanism, and introduces the ANA 

node infrastructure. Section 3 shows the internal architecture of our remediation 

framework as well as the algorithmic design and evaluation. Section 4 presents the 

prototype implementation, whereas section 5 outlines future work and concludes the 

paper. 

2   Resilience Architecture 

  The resilience architecture is encapsulated as an integral part of an ANA node and is 
composed by two Functional Blocks (FBs); the Detection Engine (DE) and the 
Remediation Engine (RE). FBs compose one of the most primitive abstractions within 
ANA and their operations may reside either on the control or the management planes. 
They can be deployed locally on a single ANA node or be distributed within a 
compartment. A compartment within ANA is the operational service context where 
FBs cooperate to provide a service of any type [14].  

  In practice, an ANA node is a microkernel that provides a message switching broker 
service to Functional Blocks (FBs). It is composed by three core segments: the 
Minimal Infrastructure for Maximal Extensibility (MINMEX), the ANA Playground 
and the ANA hardware abstraction layer. The MINMEX is the means for allowing and 



providing basic low-level functionalities which are required for bootstrapping and 
running ANA. At the same time it facilitates the generic sets of methods (API) that are 
used by its “clients” (e.g.. applications, protocols).  

  The most complex and advanced networking functionalities within an ANA node 
reside in the ANA Playground. This segment of the node hosts both commodity and 
bespoke components (e.g. cryptographic primitives, compression schemes, error 
recovery codes), and it couples a development and execution environment allowing the 
implementation of FBs. 

 

 

Fig. 1: Resilience Architecture within an ANA node. 

 
Fig. 1 shows our resilience framework which is engineered within the ANA 
Playground, and follows the API principles provided by it.  Since it is a measurement-
based framework, the architecture purely depends on the functionality offered by a 
dedicated Adaptive Measurement/monitoring Functional Block (AM FB) that consists 
by 5 FBs   available via the Playground. Data passing and message interaction between 
the measurement framework and the resilience architecture is achieved through certain 
data interfaces which in ANA are referred to as Information Dispatch Points (IDPs).   

IDPs act as generic communication pivots between the various FBs and they offer the 
advantage of re-organizing communication paths between the FBs. IDPs also allow the 
implementation of forwarding tables which are fully decoupled from addresses and 
names. For example, in ANA, the next hop “entity” may reside either locally on the 
system or within a compartment  and is always identified by an IDP. Consequently, 
this allows for the easy addition and usage of new networking protocols and 
technology, as long as their communication services are exported as IDPs.    

There are several IDPs published (e.g. flow reception IDP from the DE; notification 
reception IDP from the RE; sampling and capturing configuration IDP from the 
Adaptive Monitoring Functional Block (AM FB)) as services from both the Resilience 
FBs and the AM’s FBs, albeit not included in Fig.1 for the sake of simplicity. 



However, the main purpose of this section is to explain the main interaction between 
the two frameworks and show how resilience can be accommodated.   

  Initially, the DE receives flow information from the AM FB on a dedicated IDP and 
internally performs entropy estimation on selected flow features (e.g. packet inter-
arrival time, bytecount), in order to provide a prediction about the evolutionary 
behaviour of the traffic, and to detect possible anomalies. Subsequently, the entropy 
results are passed to a Supervised Naïve Bayesian classifier which, based on past 
classified traffic can compare and further categorize a possible anomaly to its correct 
label (e.g. DDoS, alpha flows, Flash Events (FEs)), and decide whether an anomaly 
occurs on a local or a compartment-wide scenario.  According to the vicinity of the 
anomaly, the DE is then responsible for notifying the appropriate RE that may reside 
locally (on the same ANA node) or remotely within the same compartment.  

  The operations undertaken by the DE FB are composed by two main sub-units which, 
based on the ANA terminology, are referred to as bricks. Their complex functionalities 
pose great overall design and implementation challenges which we do not intent to 
describe in this document, since we are focusing on the explanation of the RE. A 
detailed description regarding the internals of the DE can be found at [9], [12] and 
[10].     

3   Remediation Engine Design 

3.1 Remediation Engine Internal Architecture 

The composition of the architecture described below has been a challenging task since 

we initially had to identify and further evaluate algorithms that would be appropriate 

as robust remediation strategies. In parallel, we had to consider whether our design 

was practically feasible to instrument using the ANA API. This subsection mainly 

presents the engineering aspect of our design followed by the algorithmic evaluation.  

Fig. 2 presents the RE internal architecture which is in charge of mitigating the effects 

of a local or compartment-wide traffic anomaly. The RE is composed by two main 

functional modules: the Defender and the Messenger. The former executes node-local 

remediation algorithms, and the latter distributes the instance of an event to remote 

REs within a  network compartment, as required.  Apart from the two core bricks, 

there is also the Configuration Manager (CM) which is an infrastructural unit, and 

provides for the dynamic binding and configuration of the overall RE with a local or 

remote DE. Due to the diversity of network anomalies and the different effective 

remediation strategies that can be deployed according to their nature, we have focused 

on two broad categories, those of Denial of Service (DoS) –including distributed 

DoS–, and Flash Events (FEs). We have therefore considered two families of 

remediation algorithms for our Defender module, namely traffic shaping and dropping 

(in response to an e.g. DDoS attack), and geographic region-aware clustering and 

load-balancing (in response to a FE), respectively. 



 

Fig. 2: Remediation Engine Internal Architecture 

This latter remediation strategy enforces traffic prioritisation to ensure path diversity 

and maximises throughput by propagating popular content to geographically diverse 

areas of the network. It then uses cross-layer information to redirect clients to 

alternative sources of content, and therefore reduces link stress, effectively providing 

for network self-optimization [11]. In addition, due to path diversity increasing in-

network, this algorithm is inherently distributed, since a RE instructs a peer to take a 

clustering action on its behalf. To a lesser extent, the same holds for the (D)DoS 

remediation based on packet dropping, since distribution among multiple REs can be 

exploited as an efficient pushback mechanism that enhances system and network self-

healing, and alleviates the detrimental effects of an attack at the “last mile”. 

3.2 Remediation Strategies 

A core process within our engine’s development lifecycle was the algorithm 

selection and evaluation phase undertaken before the actual prototype 

implementation. As already mentioned, our intention was to accommodate diverse 

remediation strategies that would enable self-optimization and self-healing at the 

onset of two particular types of anomalies: FEs and (D)DoS.  

In parallel with region-clustering and load balancing that are considered beneficial 

for DDoS defense [1], we strongly support that the confrontment of such events is 

required to include a dropping mechanism. Either on a distributed or local attack 

scenario, our dropping methodology is collaboratively accommodated with the 

actions taken by the Functional Composition (FC) framework. The FC as presented in 

[14] is a core infrastructural unit present in any ANA node that leverages self-

management capabilities on the data, control and management planes. One of the 

features of the FC framework is congestion management for which a packet dropping 



utility is provided.  The FC contains the Packet Sink brick which employs the 

traditional Random Early Detection (RED) algorithm [7], and its services are 

publically visible within the same network compartment. Therefore, at the onset of 

(D)DoS attack, our Remediation Engine (RE) sends a notification to the FC 

containing a list of the malicious source addresses. Subsequently, the Packet Sink 

brick is notified by the FC and marks the reported packets as “optimal”, dropping 

them immediately in order to block the attack traffic. Since the Packet Sink brick 

supports RED, we inherit some of its terminology in our scheme stating “optimal” 

packets as those holding a high dropping preference in the system’s queue.    

   In addition to the dropping mechanism offered by the FC, we have evaluated the 
gains of diverse remediation strategies for fast content propagation, applicable to event 
of legitimate, yet adverse requests for content hosted over a single network topology. 
We have simulated P2P file sharing overlays to demonstrate how application-network 
cross layer interaction can alleviate the detrimental effects of flooding phenomena such 
as Flash Events. We have developed two cross-layer services that can be made 
accessible to an ANA network compartment (as well as to conventional ISP networks), 
namely a “distance” and a “region-awareness” services. The “distance” service is a 
facility that simply takes IP addresses as input and returns a distance measurement 
between the source and the requester. Since, distance may be specified in several ways 
in ANA, in our case we have used the Autonomous System (AS) path length that 
returns an AS Proximity (ASP) metric, and then selects the least-AS-distant content 
provider. “Region-awareness” is a service that also takes a set of addresses as input, 
and returns these addresses clustered to several subsets according to the different paths 
traversed between two nodes [13].  

   We have developed a number of augmented and region-aware overlay algorithm 
variants in order to demonstrate how operation can be optimised using explicit cross-
layer interaction. The augmented overlay algorithm uses the “region-awareness” 
service so that providing peers can load-balance their response traffic. When a provider 
reaches its simultaneous serving threshold, it explicitly redirects further clients to the 
subset of peers (providers) it has already served through the same “regional” cluster 
that the incoming request came from. Using this strategy, providers tend to spread the 
overlay traffic load to diverse segments of the underlay infrastructure. In addition, we 
have developed variants of a Region-aware Overlay (RegO) algorithm which, in 
contrast to the augmented algorithm, uses a central tracker facility to provide 
requesters with all currently serving overlay peers [13]. The RegO implements 
Random (Ran) provider selection and region –aware load balancing to requests.  

Within our simulations both algorithms have employed two variants of clustering 

namely, Simple Clustering (SC) and Hierarchical Clustering (HC).  In SC, the server 

clusters requests to segments that are based on the first-hop egress link traversed by 

the response traffic. Simply enough the total simultaneous request threshold defined 

as T  is divided by the servers’ ν  egress links and ντ /Ti =  simultaneous requests 

are served per-cluster. The HC variant accommodates a hierarchical clustering of the 

requests based on the traversed response traffic from both the first and second hops. 

Under the HC scenario the initial threshold T  is divided by the number of first-hop 

egress links ν  to produce i first-hop thresholds ντ /Ti = , each of which is further 

divided by the number of egress links attached to first hop i. 



We have used NS2 [15] and BRITE [4] to construct numerous power-law AS-level 

topologies to include 100, 500, and 1000 AS nodes, each having a minimum degree of 

2, 3 and 4 links per AS leaf [3][5]. The gains of the explicit underlay/overlay 

performance were assessed under the scenario of spreading the so-called first chunk 

(in our case 1MB) of content among participating peers which serve at most 10 

simultaneous transfers each. The performance metrics used were the individual 

transfer throughput in KB/s and the maximum link stress over the complete Internet-

wide topology. Fig. 3 shows the effect of cross-layer algorithms in increasing transfer 

throughput over different AS-size topologies and their respective overlays.  

 

 

Fig. 3: Percentage increase in mean individual transfer throughput for cross-layer 

algorithms. 

 

Fig. 4: Percentage decrease in topology-wide maximum link stress for the cross-layer 

algorithms. 



Variations in throughput increase with respect to the minimum access edge degree 

of the topologies are also shown. The solid lines represent the performance gains of 

the cross layer-algorithms with first-hop SC, and the dashed lines show their second 

hop HC counterparts. 

The decrease of maximum link stress for the same AS-level topologies as for those 

in Fig. 3 is presented in Fig. 4.  Even though there is no clear correlation between 

throughput and link stress, it is evident that on average cross-layer algorithms 

outperform their simple overlay counterpart. It is evident that every algorithm 

employing hierarchical clustering on the requesting peers consistently outperforms 

simple clustering based on network access link. In addition, the augmented algorithm 

with ASP provider selection presents significant gains over the rest of the algorithms 

with a 50% optimisation. A quite appealing general observation is that the length of 

the content providers list (i.e. the number of alternative sources) is not of major 

importance neither for reduced link stress nor for increased throughput transfer.   

4   Remediation Engine Implementation 

The Remediation Engine (RE) is composed of two main entities, the Defender and 

the Messenger. These are both implemented in the form of ANA bricks, the most 

atomic elements of functionality within a FB. Fig. 5 displays a conceptual overview 

of the data communication that takes place once an anomaly has been detected by the 

DE.  

The Defender publishes the rmInfoIDP which is responsible for receiving anomaly 

information by the Detection Engine (DE).  

 

 

 

 

Fig. 5: RE data flow & functionality. 



The information the DE sends a structure containing the result of the Bayesian 

classification along with an indication as to whether the abnormality has a local or 

compartment-wide impact. Subsequently, this information is passed on to the 

Decision Unit (DU) that resides within the Defender. 

The DU is in charge of processing the information received from the DE and 

decides whether the anomaly has been classified as a (D)DoS attack or a FE. 

Subsequently, it forwards the information to the appropriate processing unit. 

Acting as an integral part of the Defender, the Local Action Unit (LAU) is 

responsible for informing the Functional Composition (FC) framework what actions 

to take based on the nature of the attack. This is achieved by constructing a LUA [6] 

message that the FC can use to insert appropriate traffic filters. If the anomaly is a 

DoS attack, the DE information is passed to the Drop Unit whose responsibility is to 

inform the Local Action Unit (LAU) that packets need to be dropped. In cases where 

the attack has been classified as local, the LAU still needs to interact with the local 

FC instance in order to inform it that local dropping is required. In addition, the LAU 

provides a list of the malicious source addresses to the FC which via its Packet Sink 

brick marks them as “optimal” in order for the Random Early Detection (RED) 

mechanism employed to drop them immediately. In parallel with dropping, the FC 

constructs a filter based on the listed source addresses and triggers its congestion 

control utilities with an initial packet inspection. Similarly in the case of a 

compartment-wide attack (i.e. DDoS), it is necessary for the LAU to inform the 

Messenger using its defenderIDP so the Messenger can distribute information about 

the anomaly to all REs within the same network compartment. 

In the scenario of a FE, the anomaly-related information is passed on to the 

Algorithm Selection Unit (ASU). The ASU is the unit in charge for performing 

decisions about which of the algorithms discussed previously in this paper to be 

employed by the Remediation Engine (RE). Once a decision is made, and since the 

FE is a compartment-wide phenomenon, the ASU informs the LAU in order to 

construct an appropriate LUA message and send it over to the local Messenger 

instance.  

The primary purpose of the Messenger is to disseminate information about an 

anomaly to other nodes in a compartment if the anomaly was classified as not just 

affecting the local host. When it receives a message over the defenderID, it checks to 

see what type of anomaly has been detected to enable it to construct an appropriate 

message to send to other Messengers in the same network compartment. Messengers 

also transmit Autonomous System Proximity (ASP) metrics as well as routing 

information (i.e. next hop) between themselves since this information is required to be 

used by the region-aware and load balancing algorithms as deployed by the ASU. 

When next hop load balancing is being performed, the Defender can inform the 

Functional Composition Functional Block (FC FB) where to forward traffic based on 

the next hop and the FC FB can place appropriate filters to route the traffic.  

In a DDoS attack event, the Messenger also constructs a new message containing a 

list of source addresses that have been identified as originating nodes in the attack. A 

parallel process performed by the Messenger is to resolve all Messenger-compatible 

reception data IDPs (i.e. recvDataIDP) that are public and visible within the same 

compartment so it can broadcast this message to other Messenger bricks. When 



another brick of the same type receives this message, it is then eligible to inform its 

local Defender that it is required to remediate the attack. This action is achieved from 

an internally viewed IDP namely the messRecvIDP.  As soon as this information is 

passed to the Defender, the appropriate local action is triggered (i.e. dropping via the 

FC FB) in the same way it does when informed of a local DoS by the DE. 

Similarly, at the onset of a FE, the Messenger interacts with other REs via their 

Messenger bricks and sends a message in the compartment informing it about the FE 

along with a list containing the addresses that are directly related to the phenomenon. 

The Messenger additionally transmits a notification stating the algorithm that the 

ASU decided as appropriate for compartment-wide deployment. For instance, under 

the circumstance where a FE has an impact on next hop nodes within the same 

compartment, the ASU decides and informs the Messenger to notify the next hop 

Messenger instances that the most suitable clustering algorithm for all of them to 

collaboratively perform for confronting the phenomenon is the Region-aware Overlay 

- Simple Clustering variant (RegO SC). Subsequently any Messenger that receives 

this information then pass the algorithm selection request on to its local Defender 

which triggers the requested scheme 

5   Conclusions & Future Work 

   In this paper, we have presented the design and implementation of a traffic anomaly 

remediation component that can be an integral part of next generation autonomic 

network infrastructures.  

  Through our design and implementation, we have demonstrated that the correct 

exploitation of carefully designed infrastructures enables complex issues such as the 

remedy of network anomalies to be effectively resolved. Our remediation framework 

prototype contributes towards the instrumentation of diverse remediation 

methodologies and empowers core autonomic properties such as self-optimization and 

self-healing.  

  After the promising results obtained through large-scale simulation, ongoing work 

focuses on testing our framework under actual operational conditions and traffic 

scenarios. Our intention is to evaluate our remediation mechanisms within 

the overall resilience architecture that we have also presented in this paper. The 

evaluation will be conducted in the autonomic communication testbed (ANA-Lab) 

provided within the ANA project. The ANA-Lab offers the capability of virtual 

topology instrumentation of ANA nodes through distributed monitoring and control 

facilities. Our main objective is to examine the practical system performance of our 

prototype through experiments using live as well as pre-captured operational traffic 

traces 
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