Skip to main content

Choosing the Metric: A Simple Model Approach

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 358))

Abstract

One the earliest challenges a practitioner is faced with when using distance-based tools lies in the choice of the distance, for which there often is very few information to rely on. This chapter proposes to find a compromise between an a priori unoptimized choice (e.g. the Euclidean distance) and a fully-optimized, but computationally expensive, choice made by means of some resampling method. The compromise is found by choosing distance definition according to the results obtained with a very simple regression model – that is one which has few or no meta-parameters – and then use that distance in some other, more elaborate regression model. The rationale behind this heuristic is that the similarity measure which best reflects the notion of similarity with respect to the application should be the optimal one whatever model is used for classification or regression. This idea is tested against nine datasets and five prediction models. The results show that this approach is a reasonable compromise between the default choice and a fully-optimized choice of the metric.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  2. Park, J., Sandberg, I.W.: Universal approximation using radial basis function networks. Neural Computations 3, 246–257 (1991)

    Article  Google Scholar 

  3. Aha, D., Kibler, D., Albert, M.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  4. Deza, M.-M., Deza, E.: Dictionary of Distances. Elsevier Science, Amsterdam (2006)

    Google Scholar 

  5. François, D.: High-dimensional data analysis: from optimal metrics to feature selection. VDM Verlag Dr. Muller (2008)

    Google Scholar 

  6. Battiti, R.: Using the mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks 5, 537–550 (1994)

    Article  Google Scholar 

  7. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmarking various learning algorithms. In: Proceedings of the Seventeenth International Conference on Machine Learning, ICML 2000, pp. 743–750. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  8. Navarro, G.: A guided tour to approximate string matching. ACM Computing Surveys 33(1), 31–88 (2001)

    Article  Google Scholar 

  9. Yen, L., Saerens, M., Mantrach, A., Shimbo, M.: A family of dissimilarity measures between nodes generalizing both the shortest-path and the commute-time distances. In: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2008, pp. 785–793. ACM, New York (2008)

    Chapter  Google Scholar 

  10. François, D., Wertz, V., Verleysen, M.: The concentration of fractional distances. IEEE Transactions on Knowledge and Data Engineering 19(7), 873–886 (2007)

    Article  Google Scholar 

  11. Moody, J.E., Darken, C.: Fast learning in networks of locally-tuned processing units. Neural Computation 1, 281–294 (1989)

    Article  Google Scholar 

  12. Orr, M.J.L.: Regularisation in the selection of radial basis function centres. Neural Computation 7(3), 606–623 (1995)

    Article  Google Scholar 

  13. Suykens, J., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  14. Yu, K., Ji, L., Zhang, X.: Kernel nearest-neighbor algorithm. Neural Processing Letters 15(2), 147–156 (2002)

    Article  MATH  Google Scholar 

  15. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 420–434. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997)

    Article  MATH  Google Scholar 

  17. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    Article  MATH  Google Scholar 

  18. Stefánsson, A., Koncar, N., Jones, A.J.: A note on the gamma test. Neural Computing & Applications 5(3), 131–133 (1997)

    Article  Google Scholar 

  19. Reyhani, N., Hao, J., Ji, Y., Lendasse, A.: Mutual information and gamma test for input selection. In: European Symposium on Artificial Neural Networks, ESANN 2005, Bruges, Belgium, April 27-29, pp. 503–508 (2005)

    Google Scholar 

  20. Berchtold, S., Bohm, C., Keim, D.A., Kriegel, H.-P.: A cost model for nearest neighbor search in high-dimensional data space. In: 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), Tucson, Arizona, USA, May 12-14, pp. 78–86. ACM Press, New York (1997)

    Chapter  Google Scholar 

  21. Friedman, J.: Multivariate adaptive regression splines (with discussion). Annals of Statistics 9(1), 1–141 (1991)

    Article  Google Scholar 

  22. Borggaard, C., Thodberg, H.H.: Optimal minimal neural interpretation of spectra. Analytical Chemistry 64, 545–551 (1992)

    Article  Google Scholar 

  23. Asuncion, A., Newman, D.J.: UCI machine learning repository. School of Information and Computer Sciences. University of California, Irvine (2007)

    Google Scholar 

  24. Ong, C.S., Mary, X., Canu, S., Smola, A.J.: Learning with non-positive kernels. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML 2004, p. 81. ACM Press, New York (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

François, D., Wertz, V., Verleysen, M. (2011). Choosing the Metric: A Simple Model Approach. In: Jankowski, N., Duch, W., Gra̧bczewski, K. (eds) Meta-Learning in Computational Intelligence. Studies in Computational Intelligence, vol 358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20980-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20980-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20979-6

  • Online ISBN: 978-3-642-20980-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics