
Selecting Machine Learning Algorithms Using
the Ranking Meta-Learning Approach

Ricardo B. C. Prudêncio, Marcilio C. P. de Souto, and Teresa B. Ludermir

Center of Informatics, Federal University of Pernambuco,
Cidade Universitária - CEP 50732-970 - Recife (PE) - Brazil

{rbcp, mcps, tbl}@cin.ufpe.br

Abstract. In this work, we present the use of Ranking Meta-Learning
approaches to ranking and selecting algorithms for problems of time se-
ries forecasting and clustering of gene expression data. Given a problem
(forecasting or clustering), the Meta-Learning approach provides a rank-
ing of the candidate algorithms, according to the characteristics of the
problem’s dataset. The best ranked algorithm can be returned as the
selected one. In order to evaluate the Ranking Meta-Learning proposal,
prototypes were implemented to rank artificial neural networks models
for forecasting financial and economic time series and to rank clustering
algorithms in the context of cancer gene expression microarray datasets.
The case studies regard experiments to measure the correlation between
the suggested rankings of algorithms and the ideal rankings. The results
revealed that Meta-Learning was able to suggest more adequate rankings
in both domains of application considered.

1 Introduction

One of the major challenges in many domains of Computational Intelligence,
Machine Learning, Data Analysis and other fields is to investigate the capabili-
ties and limitations of the existing algorithms in order to identify when one algo-
rithm is more adequate than another to solve particular problems [1]. Traditional
approaches to selecting algorithms involve, in general, costly trial-and-error pro-
cedures, or require expert knowledge, which is not always easy to acquire [2].
Meta-Learning for algorithm selection arises in this context as an effective solu-
tion, capable of automatically predicting algorithm’s performance, thus assisting
users in the choice of the most adequate techniques for dealing with the problems
at hand [2–6].

In Meta-Learning, each meta-example is related to a learning problem and
stores: (1) the features describing the problem, called meta-features; and (2)
the performance information about one or more algorithms when applied to the
problem. By receiving a set of such meta-examples, another learning system (the
meta-learner) is applied to acquire knowledge relating the performance of the
candidate algorithms and the descriptive features of the problems. The acquired
knowledge can then be used to predict algorithm performance for new prob-
lems not seen during the Meta-Learning process and to recommend algorithms.

Different authors in Meta-Learning have developed techniques to suggest either
one single algorithms or a small group of algorithms among the set of candi-
date ones. A more informative and flexible solution for algorithm selection is to
provide a ranking of the candidate algorithms, since alternative algorithms can
be eventually chosen by the users according to particular interests [7]. Rank-
ing Meta-Learning approaches have been investigated in different case studies,
mainly focused on classification and regression problems [1, 6, 7].

In this chapter, based on our previous works, we present the use of Meta-
Learning for ranking algorithms in two different classes of problems: time series
forecasting and clustering of gene expression data. Both domains are charac-
terized by the existence of a variety of algorithms to be applied and a lack of
useful guidelines to support algorithm selection. The Meta-Learning techniques
originally proposed for classification and regression problems were extrapolated
in our previous work to rank time series models and clustering techniques. The
application of Meta-Learning in these domains was not deeply investigated yet.
In a first case study, the Zoomed-Ranking approach was used to rank Artificial
Neural Network models for forecasting financial and economic time series [8]. In
a second case study, a Meta-Regression approach was used to rank clustering
techniques for cancer gene expression [9].

The remaining of this paper is organized as follows. Section 2 presents a
brief introduction on the topic of Meta-Learning. Section 3 presents the general
architecture of our solution as well as some implementation issues. Section 4
brings a case study (implementation and experiments) performed in the domain
of time series forecasting, followed by section 5 which presents a case study in
the domain of clustering gene expression. Finally, section 6 concludes the paper
with some final considerations.

2 Meta-Learning

There are different interpretations of the term Meta-Learning in the literature
[3, 6, 10]. In our work, we focused on the definition of Meta-Learning as the au-
tomatic process of acquiring knowledge that relates the performance of learning
algorithms to the features of the learning problems [2]. The acquired knowl-
edge supports the task of algorithm selection, which has shown to be a difficult
problem in many contexts [11].

The knowledge in Meta-Learning is commonly represented considering meta-
features which describe learning problems. The meta-features are, in general,
statistics describing the training dataset of the problem, such as number of
training examples, number of attributes, correlation between attributes, class
entropy, among others [7, 12, 1]. An alternative strategy to define meta-features
is the Landmarking proposal [13]. This approach tries to relate the performance
of the candidate algorithms to the performance obtained by simpler and faster
designed learners, called landmarkers. Landmarking claims that some widely
used meta-features are very time consuming, and hence, landmarking would be

an economic approach to the characterization of problems and to provide useful
information for the Meta-Learning process.

Regarding the performance information (the target in the Meta-Learning
task), each meta-example may store a class attribute which indicates the best
algorithm for the problem, among a set of candidates [14–18]. In this strict
formulation of Meta-Learning, the class label for each meta-example is defined
by performing a cross-validation experiment using the available dataset. The
meta-learner is simply a classifier which predicts the best algorithm based on
the meta-features of the problem.

In [19], the authors used an alternative approach to defining the performance
information and hence to labeling meta-examples. Initially, 20 algorithms were
evaluated through cross-validation on 22 classification problems. For each algo-
rithm, the authors generated a set of meta-examples, each one associated either
to the class label applicable or to the class label non-applicable. The class label
applicable was assigned when the classification error obtained by the algorithm
fell within a pre-defined confidence interval, and non-applicable was assigned
otherwise. Each problem was described by a set of 16 meta-features and, fi-
nally, a decision tree was induced to predict the applicability of the candidate
algorithms.

In [1], the authors performed the labeling of meta-examples by deploying a
clustering algorithm. Initially, the error rates of 10 algorithms were estimated
for 80 classification problems. From this evaluation, they generated a matrix
of dimension 80 X 10, in which each row stored the ranks obtained by the al-
gorithms in a single problem. The matrix was given as input to a clustering
algorithm, aiming to identify groups (clusters) of problems in which the algo-
rithms obtained specific patterns of performance (e.g. a cluster in which certain
algorithms achieved a considerable advantage relative to the others). The meta-
examples were then associated to the class labels corresponding to the identified
clusters. Hence, instead of only predicting the best algorithm or the applicability
of algorithms, the meta-learner can predict more complex patterns of relative
performance.

Different approaches have been proposed in order to add new functionalities
in the Meta-Learning process, especially to provide rankings of algorithms in-
stead of recommending a single one. In [20, 21], for instance, a combination of
strict meta-learners is used to recommend rankings of algorithms. In this ap-
proach, a strict meta-learner is built for each different pair (X, Y) of algorithms.
Given a new learning problem, the outputs of the meta-learners are collected
and then, points are credited to the algorithms according to the outputs. For
instance, if ’X’ is the output of meta-learner (X, Y) then the algorithm X is
credited with one point. The ranking of algorithms is recommended for the new
problem directly from the number of points assigned to the algorithms.

The Meta-Regression approach [22, 23] tries to directly predict the accuracy
(or alternatively the error) of each candidate algorithm. The meta-learner in
this case may be used either to select the algorithm with the highest predicted
accuracy or to provide a ranking of algorithms based on the order of predicted

accuracies. In [22], for instance, the authors obtained good results when a linear
regression model was used to predict the accuracy of 8 different classification
algorithms.

In the Zoomed-Ranking approach [24], the authors proposed to use instance-
based learning in order to produce rankings of algorithms taking into account
accuracy and execution time. In this approach, each meta-example stores the
meta-features describing a learning problem, as well as the accuracy and exe-
cution time obtained by each candidate algorithm in the problem. Given a new
learning problem, the Zoomed-Ranking retrieves the most similar past prob-
lem based on the similarity of meta-features. The ranking of algorithms is then
recommended for the new problem by deploying a multi-criteria measure that
aggregates the total accuracy and execution time obtained by the algorithms in
the similar problems. More recently, the authors provided a deeper investigation
of these ideas [7].

The concepts and techniques of meta-learning were mainly evaluated to select
the best algorithms for classification and regression problems. In recent years,
Meta-Learning has been extrapolated to other domains of application, such as
in the selection of time series forecasting models [18], design of planning systems
[25], combinatorial optimization [26], software engineering [27] and bioinformat-
ics [9, 28, 29]. In such domains, Meta-Learning can be seen as tool for analysis
of experiments performed by using a number of algorithms on a large set of
problems that can be solved by these algorithms. The knowledge acquired from
this analysis can be used to select algorithms for new problems. As highlighted
in [5], Meta-Learning can be useful to a potentially large number of fields, since
its developments can be extrapolated to learn about the behavior of algorithms
on different classes of problems.

3 System Architecture and Implementation Issues

In this paper we present the use of Ranking Meta-Learning approaches in two
different domains: time series forecasting and clustering of gene expression data
[8, 9]. For each domain, we implemented a specific prototype in order to perform
experiments and evaluate the usefulness of the Meta-Learning solution. In this
section, we introduce a general architecture of Meta-Learning systems, as well as
some implementation issues that guided us in the construction of the prototypes.

3.1 General Architecture

Figure 1 shows the general architecture of systems employed for, given a dataset,
ranking the candidates algorithms. As it is common in Machine Learning, the
system has two phases: training and use. In the training phase, the Meta-Learner
(ML) extracts knowledge from the set of meta-examples stored in the Database
(DB). Such a knowledge relates characteristics of the data to the performance
of the candidate algorithms. In the case studies presented, these algorithms are
either time series models or clustering techniques.

Input
Problem’s
Dataset

- FE -

Meta-
Features

ML

6

DB

Meta-
Examples

- Ranking of
Algorithms

Fig. 1. System’s architecture.

In the phase of use, given a new dataset, the Feature Extractor (FE) pro-
duces the values of the meta-features that describe these data. According to
such values, the Meta-Learner (ML) module outputs a ranking of the available
candidate algorithms. In order to do so, the ML module uses the knowledge
previously provided as a result of the training phase.

The DB stores descriptions of datasets (i.e., meta-examples) used in the
training phase. This set of meta-examples is semi-automatically created: (1)
the choice of datasets and algorithms to be considered is a manual task; (2)
the generation of the meta-features is automatically accomplished by the FE
module; and (3) the performance of the candidate algorithms in each dataset
is empirically obtained by directly applying each algorithm to the data and
assessing the result yielded.

The ML module implements the chosen meta-learning approach to extracting
knowledge (training phase) to be utilized in the choice or ranking of the candidate
algorithms (use phase). As seen in Section 2, the Meta-Learning approaches
implement one or more machine learning algorithms to execute such tasks. In
this context, one could employ a learning technique to recommend one single
algorithm from the set of candidate ones. Although this is a worthwhile approach,
a more informative and flexible solution for algorithm selection is to output a
ranking of the candidate algorithms to each dataset under analysis [7]. In this
context, if enough resources are available, more than one algorithm could be
employed with the data. Furthermore, if the one has some preference for a given
subset of candidate algorithms, one can choose the algorithms that presented
the best rank among the algorithms of interest.

3.2 Implementation Issues

To implement a system according to the architecture introduced in the previous
section, one has to consider some important questions. Since the kind of dataset
to be considered will have an impact on all the other aspects in the system’s
implementation, this is the first question to be addressed. Datasets are often
collected from benchmarking repositories (e.g., the UCI repository in the case of
classification and regression tasks) or artificially generated as performed in [30].

Then, one needs to specify which algorithms will be considered to form the
set of candidate algorithms. The candidate algorithms should be selected in such
a way to provide a wide range of characteristics, as well as to give some generality
to the results.

The third question to be approached is which features will be employed by the
FE module to describe the datasets. This decision depends on the kind of dataset
being analyzed. For instance, in the context of classification problems, one can
find standard sets of meta-features that have been used in the meta-learning
field. This is the case of the Data Characterization Tool, developed within the
METAL project1. In contrast, for time series forecasting and cluster analysis,
since the application of meta-learning to these domains is relatively new, there
is no such standard set of attributes. Nevertheless, one can follow some general
guidelines to define them. For example, one should choose meta-features that can
be reliably identified, preventing subjective analysis, such as visual inspection of
plots. Subjective feature extraction is time consuming, requires expertise, and
has a low degree of reliability [31]. One should also employ a manageable number
of features in order to avoid a time consuming selection process.

4 Ranking Models for Time Series Forecasting

Time series forecasting has been used in several real world problems in order to
eliminate losses resultant from uncertainty, as well as to support the decision-
making process [32]. Several models can be used to forecast a time series. Se-
lecting the most adequate model for a given time series, from a set of available
models, may be a difficult task depending on the candidate models and the time
series characteristics.

A straightforward solution to model selection is to perform an empirical
evaluation (e.g. hold-out, cross-validation,...) using the available time series data,
and compare the estimated performance obtained by the candidate models [33].
Despite its simplicity, this solution is costly for a large amount of series to forecast
or several candidate models to evaluate [34].

A more efficient approach to selecting models is based on the development of
expert systems [31], in which rules are designed to relate time series features (e.g.
length, basic trend, autocorrelations...) and the candidate models performance.
A landmarking work in this approach is the Rule-Based Forecasting system [31],
in which an expert system with 99 rules was used to weight four forecasting
methods. In the experiments performed using the expert system, the improve-
ment in accuracy has shown to be significant. The main limitation of the expert
system approach, however, is the difficulty in acquiring knowledge, since that
good experts in time series forecasting are expensive and not always available
[35]. This limitation may be even more drastic in the case of more complex
models.

In order to minimize the above difficulty, in [18], the authors developed an
original work which treats the model selection problem via Meta-Learning ap-

1 http://www.cs.bris.ac.uk/˜cgc/METAL

proaches. This solution is able not only to select the best model to forecast a
given series, but also to provide more informative results, such as a ranking of the
candidate models according to their performance in forecasting the given series.
The viability of using Meta-Learning in the context of time series forecasting
was confirmed in a number of different experiments [18, 17, 8, 36].

In this section, we reviewed the use of a specific Meta-Learning approach, the
Zoomed-Ranking (ZR), to rank Artificial Neural Networks (ANNs) forecasting
models [8]. The motivation was that, although ANNs represent a powerful ap-
proach to forecasting, there is not much knowledge to guide its usage, compared
to the existing knowledge that supports the use of simpler linear models [34].
Hence, the investigation of ZR for ANN model selection contributes both to the
research on Meta-Learning and to research on ANNs for time series forecasting.

In order to verify the viability of Meta-Learning, a prototype was imple-
mented following the general architecture presented in section 3. The imple-
mented prototype was used to select the following ANN models:

1. TDNN (Time Delay Neural Network) [37]: it corresponds to a feedforward
network with time delays in the connections. The input layer receives a fixed
time window of the series at hand (i.e. a fixed number of past values of the
series), in order to forecast future values of the series. In our work, the time
window size was defined by verifying the number of statistical significant
autocorrelations in the series up to the limit of 3 past values. The number of
hidden neurons was defined by deploying an out-of-sample experiment [33].
In this experiment, we evaluated the TDNN with 1, 2 and 3 hidden neurons
on a series sample left out and depicted the best on in terms of forecasting
accuracy. The network weights were trained using the Levenberg-Marquardt
algorithm [38];

2. Time-Lagged RBF (Radial Basis Function) [39]: it corresponds to a tradi-
tional RBF neural network in which the input layer receives a time window
of the series at hand (as in the TDNN model). The methodology adopted
to define the time window size and the number of hidden neurons was the
same one adopted for the TDNN;

3. SOMTAD (SOM with Temporal Activity Diffusion) [40]: it corresponds to
a SOM network that creates temporally correlated neighborhoods in the
output space. We defined the input layer of the SOM as the past 3 values
of the series. In the SOM training, a 10x10 bi-dimensional map was adopted
with learning rate of 0.3.

The candidate ANN models were used to forecast benchmarking time series
related to financial, micro and macro-economic domains, available in the Time
Series Data Library (TSDL) repository2. In the following sections, we provide
more details of the implemented prototype.

2 http://www-personal.buseco.monash.edu.au/˜hyndman/TSDL

4.1 Feature Extractor

In this case study, we used in the FE module 5 different features to describe the
TSDL series:

1. Length of the time series (L): number of observations of the series;
2. Basic Trend (BT): slope of the linear regression model. As higher this feature

value, higher is the global trend of the series;
3. Test of Turning Points (TP): Zt is a turning point if Zt−1 < Zt > Zt+1 or

Zt−1 > Zt < Zt+1. The presence of a very large number or a very small
number of turning points indicates that the series is not generated by a
purely random process;

4. Average Coefficient of Autocorrelation (AC): average of the first 5 autocor-
relation coefficients. Large values of this feature suggest a strong correlation
between adjacent points in the series;

5. Type of the time series (TYPE): it is represented by 3 categories indicating
the series domain, finances, micro-economy and macro-economy.

The first four features are directly computed using the series data and TYPE
in turn is an information provided by the TSDL repository.

4.2 Database

In the construction of the Database, meta-examples were generated from the
empirical evaluation of the three candidate models on different time series fore-
casting problems. Each meta-example for the ZR is related to a time series and
stores: (1) the descriptive features of the series (as defined in the FE module);
and (2) the forecasting error and the execution time obtained by each candidate
model, when used to forecast the series.

In this case study, the accuracy and execution time of each model were col-
lected by performing a hold-out experiment using the available time series data.
Initially, the time series data is divided in two parts: the fit period and the test
period. The test period in our prototype corresponds to the last observations of
the series and the fit period corresponds to the remaining data. The fit period
is used to train the ANN models. The trained models are then used to generate
its individual forecasts for the test period. Finally, each meta-example is then
composed by: the time series features extracted for describing the fit period, the
mean absolute forecasting error obtained by the models in the test period and
the time execution recorded during the ANN models training.

The process described above was applied to 80 different time series, and
hence, a set of 80 meta-examples was generated. We highlight that such set of
meta-examples actually stores the experience obtained from empirically evalu-
ating the ANN models to forecast a large number of different time series. A
Meta-Learning approach (as the ZR) will be able to use this experience to rec-
ommend rankings of models for new series only based on the time series features,
without the need of performing new empirical evaluations.

4.3 Meta-Learner

The Zoomed-Ranking (ZR) meta-learning approach was used in the Meta-Learner
module in order to rank the three ANN models. This approach is composed
by two distinct phases: the Zooming and the Ranking phases, described here.
Given a new time series to forecast, in the Zooming phase, a number of m meta-
examples are retrieved from the training set according to a distance function
that measures the similarity between time series features. The distance function
implemented in the prototype was the L1-norm defined as:

dist(x, xi) =

p∑
j=1

|xj − xj
i |

maxl(x
j
l)−minl(x

j
l)

(1)

In this equation, x is the description of the input series to be forecasted , xi

is the description of the i-th series in the training set and p is the number of
meta-features. We used in the implemented prototype the L1-norm as originally
proposed in the ZR approach [24].

In the Ranking phase, a ranking of models is suggested, by aggregating the
forecasting error and execution time stored in the m retrieved meta-examples.
This is performed by deploying the Adjust Ratio of Ratios (ARR) measure [7],
as defined in the equation:

ARRi
k,k′ =

Sk′
i

Sk
i

1 +AccD ∗ log(Tk
i

Tk′
i

)
(2)

In the above equation, Sk
i and T k

i are respectively the forecasting error and
execution time obtained by the model k on series i. The metric ARRi

k,k′ combines
forecasting error and execution time, to measure the relative performance of the
models k and k′ in the series i. The parameter AccD is defined by the user and
represents the relative importance between forecasting accuracy and execution
time. AccD assumes values between 0 and 1. The lower is the AccD parameter,
the higher is the importance given to accuracy relative to execution time.

The ratio of forecasting errors Sk′

i /Sk
i can be seen as a measure of advantage

of the model k in relation to model k′, that is, a measure of relative benefit
of model k (the higher is Sk′

i /Sk
i , the lower is the forecasting error of model k

relative to model k′). In turn, the ratio of execution times T k
i /T

k′

i can be seen
as a measure of disadvantage of the model k in relation to model k′, that is, as
measure of relative cost of model k. The ARR measure uses the ratio between
a benefit and a cost measure to compute the overall quality of the candidate
model k related to k′.

An aspect that should be observed regarding the time ratio is the fact that
this measure has a much wider range of possible values than the ratio of accuracy
rate. Therefore, if simple ratios of time were used, it would dominate the ARR
measure. In this way, the effect of this range could be diminished by using the log
of time ratios. We highlight that the use of log of time ratios was also adopted
in [24, 7].

Finally, the ranking of models suggested to the input series is generated by
aggregating the ARR information across the m retrieved meta-examples and K
candidate models, as follows:

ARRk =

∑
k′ ̸=k

m

√∏
i∈Zoom ARRi

k,k′

K − 1
(3)

In the above equation, the Zoom set represents them retrieved meta-examples.
The geometric mean in ARR is computed across the retrieved meta-examples
and then the arithmetic mean across the candidate models. The ranking is sug-
gested directly from ARRk (the higher is the ARRk value, the higher is the
rank of model k). The geometric mean was used in order to satisfy the following
property: ARRk,k′ = 1/ARRk′,k.

4.4 Experiments and Results

In the performed experiments, we collected 80 time series from the TSDL repos-
itory. Hence, a set of 80 meta-examples were generated by applying the proce-
dure described in the section 4.2. This set was divided into 60 meta-examples
for training and 20 meta-examples for testing the ZR approach.

The experiments were performed for different values of: (1) AccD parameter
(0, 0.2, 0.4 and 0.6), which controls the relative importance of accuracy and
time; and (2) the parameter m (1, 3, 5, 7, 9, 11 and 13 neighbors), which defines
the neighborhood size in the Zooming phase.

In order to evaluate the performance of ZR, we deployed the Spearman Rank-
ing Correlation coefficient (SRC). Given a series i, the SRC coefficient measures
the similarity between the recommended ranking of models and the ideal rank-
ing (i.e. the correct ordering of models taking into account the ARR measure
computed in the series). The SRC for a series i is computed as:

SRCi = 1−
6 ∗

∑K
k=1(rrk,i − irk,i)

2

K3 −K
(4)

In the equation, rrk,i and irk,i are respectively the rank of model k in the
recommended ranking and the ideal ranking for the series i and K is the number
of candidate models. SRCi assumes values between -1 and 1. Values near to 1
indicate that the two rankings have many agreement positions and values near to
-1 indicate disagreement between the rankings. In order to evaluate the rankings
generated for the 20 series in the test set, we calculated the average of SRC
across these series.

The ZR approach was compared to a default ranking method [18], in which
the ranking is suggested by aggregating the performance information for all
training meta-examples, instead of using only the most similar ones. Despite its
simplicity, the default method has been used as a basis of comparison in different
case studies in the literature of Meta-Learning [7, 18, 8].

Table 1 shows the average values of SRC across the test series, considering
the ZR approach and the default ranking. As it can be seen, the rankings rec-
ommended by ZR were in average more correlated to the ideal rankings when
compared to the default method. The SRC average values for the default ranking
are near to zero, indicating neutrality related to the ideal rankings. In fact, the
average performance of each candidate model was very similar across the 20 test
series, and then there was no clear preference among the models by default. In
this way, the default ranking had a quality which was similar to a random choice
of models. The ZR in turn obtained SRC values from 0.45 to 0.70, for all different
experimental settings, indicating positive correlation to the ideal rankings.

Table 1. Average SRC coefficient across the 20 series in the test set.

Average SRC

AccD = AccD = AccD = AccD =
0.0 0.2 0.4 0.6

m = 1 0.45 0.47 0.50 0.45

m = 3 0.47 0.50 0.52 0.50

m = 5 0.47 0.50 0.52 0.50

m = 7 0.47 0.50 0.52 0.50

m = 9 0.62 0.50 0.52 0.50

m = 11 0.67 0.70 0.67 0.50

m = 13 0.67 0.65 0.62 0.45

Default 0.02 0.05 0.07 0.05

5 Ranking Clustering Techniques for Gene Expression
Data

As previously mentioned, Meta-Learning had been used mostly for ranking and
selecting supervised learning algorithms. Motivated by this, we extended the use
of Meta-Learning approaches for clustering algorithms. We developed our case
study in the context of clustering algorithms applied to cancer gene expression
data generated by microarray [9].

Cluster analysis of gene expression microarray data is of increasing interest
in the field of functional genomics [41–43]. One of the main reasons for this is
the need for molecular-based refinement of broadly defined biological classes,
with implications in cancer diagnosis, prognosis and treatment. Although the
selection of the clustering algorithm for the analysis of microarray datasets is a
very important question, there are in the literature few guidelines or standard
procedures on how these data should be analyzed [44, 45].

The selection of algorithms is basically driven by the familiarity of biological
experts to the algorithm rather than the features of the algorithms themselves

and of the data [44]. For instance, the broad utilization of hierarchical clustering
techniques is mostly a consequence of its similarity to phylogenetic methods,
which biologists are often used to. Hence, in this context, by employing a Meta-
Learning approach, our aim was to provide a framework to support non-expert
users in the algorithm selection task [9].

In this section, we present a case study originally proposed in [9] in which a
Meta-Regression approach was used to rank seven different candidate clustering
methods: single linkage (SL), complete linkage (CL), average linkage (AL), k-
means (KM), mixture model clustering (M), spectral clustering (SP), and Shared
Nearest Neighbors algorithm (SNN) [46–48]. As it will be seen, meta-examples
were generated from the evaluation of these clustering methods on 32 microar-
ray datasets of cancer gene expression. the next sections provide the details of
implementation for this case study, as well as the performed experiments.

5.1 Feature Extractor

In this case study, we used a set of eight descriptive attributes (meta-features).
Some of them were first proposed for the case of supervised learning tasks.

1. LgE: log10 of the number of examples. A raw indication of the available
amount of training data.

2. LgREA: log10 of the ratio of the number of examples by the number of
attributes. A rough indicator of the number of examples available to the
number of attributes.

3. PMV: percentage of missing values. An indication of the quality of the data.
4. MN: multivariate normality, which is the proportion of T 2 [49](examples

transformed via T 2) that are within 50% of a Chi-squared distribution (de-
gree of freedom equals to the number of attributes describing the example).
A rough indicator on the approximation of the data distribution to a normal
distribution.

5. SK: skewness of the T 2 vector. Same as the previous item.
6. Chip: type of microarray technology used (either cDNA or Affymetrix).
7. PFA: percentage of the attributes that were kept after the application of the

attribute selection filter.
8. PO: percentage of outliers. In this case, the value stands for the proportion

of T 2 distant more than two standard deviations from the mean. Another
indicator of the quality of the data.

5.2 Database

Meta-examples in this case study are related to cancer gene expression microar-
ray datasets. Each meta-example has two parts: (1) the meta-features describing
a gene expression dataset; and (2) a vector with the ranking of the clustering al-
gorithms for that dataset. A meta-regressor will use a set of such meta-examples
to predict the algorithms’ ranks for new datasets.

In order to assign this ranking for a dataset, we executed each of the seven
clustering algorithms with a given dataset to produce the respective partitions.
The number of clusters was set to be equal to the true number of the classes in
the data. The known class labels was not used in any way during the clustering.
As in other works, the original class labels constitute the gold standard against
which we evaluate the clustering results [41, 46, 50].

For all non-deterministic algorithms, we ran the algorithm 30 times and
picked the best partition. More specifically, in terms of the index to assess the
success of the algorithm in recovering the gold standard partition of the dataset
and building the ranking, we employed the corrected Rand index (cR) [46, 50].
The maximum value of the cR is 1, indicating a perfect agreement between the
partitions. A value near 0 corresponds to a partition agreement found by chance.
A negative value indicates that the degree of similarity between the gold stan-
dard partition and the partition yielded by the clustering algorithm is inferior
to the one found by chance.

The cluster evaluation we adopt is mainly aimed at assessing how good the
investigated clustering method is at recovering known clusters from gene expres-
sion microarray data. Formally, let U = {u1, . . . , ur, . . . , uR} be the partition
given by the clustering solution, and V = {v1, . . . , vc, . . . , vC} be the partition
formed by an a priori information independent of partition U (the gold stan-
dard). The corrected Rand is defined as:

cR =

∑R
i

∑C
j

(
nij

2

)
−

(
n
2

)−1 ∑R
i

(
ni·
2

)∑C
j

(
n·j
2

)
1
2 [
∑R

i

(
ni·
2

)
+
∑C

j

(
n·j
2

)
]−

(
n
2

)−1 ∑R
i

(
ni·
2

)∑C
j

(
n·j
2

)
where (1) nij represents the number of objects in clusters ui and vj ; (2) ni· indi-
cates the number of objects in cluster ui; (3) n·j indicates the number of objects
in cluster vj ; (4) n is the total number of objects; and (5)

(
a
b

)
is the binomial

coefficient a!
b!(a−b)! .

Based on the values of the cR, the ranking for the algorithms is generated
as follows. The clustering algorithm that presents the highest cR come higher
in the ranking (i.e., the ranking value is equal to 1). Algorithms that generate
partition with the same cR receive the same ranking number, which is the mean
of what they would have under ordinal rankings.

5.3 Meta-Learner

Our system generates a ranking of algorithms for each dataset given as input.
In order to create a ranking of K candidates (clustering algorithms), we use K
regressors, each one responsible for predicting the ranking of a specific algorithm
for the dataset given as input.

For building the regressor associated to a given algorithm k, we adopt the fol-
lowing procedure. First, we defined a set of meta-examples. Each meta-example
corresponded to a dataset, described by a set of meta-features, with one of them

representing the desired output. The value of the meta-attribute representing
the desired output is assigned according to the ranking of the algorithm among
all the seven ones employed to cluster the dataset. Next, we applied a super-
vised learning algorithm to each of the K regressors, which will be responsible
for associating a dataset to a ranking.

As previously mentioned, we took into account seven clustering algorithms:
SL, AL, CL, KM, M, SP and SNN. This led to construction seven regressors,
R1, . . . , R7, associated to, respectively, SL, AL, CL, KM, M, SP and SNN. For
example, suppose that the outputs of the seven regressors for a new dataset
are, respectively, 7, 5, 6, 1, 2, 4 and 3. Such an output means that model SL is
expected to be the worst model (it is the last one in the ranking), AL is fifth
best model model, CL the fourth one, KM is supposed to be better than all the
others, as it is placed as first one in the ranking.

In our implementation, we employed the regression Support Vector Machine
(SVM) algorithm, implemented in LIBSVM: a library for support vector ma-
chines [51]. A reason for this choice is that, in our preliminary results, SVMs
showed a better accuracy than models such as artificial neural networks and
k-NN.

5.4 Experiments and Results

We describe here the experiments that we developed in order to evaluate the
performance of our prototype. Thirty two microarray datasets3 (see Table 2).
They are a set of benchmark microarray data presented in [52]. These datasets
present different values for characteristics such as type of microarray chip (second
column), number of patterns (third column), number of classes (fourth column),
distribution of patterns within the classes (fifth column), dimensionality (sixth
column), and dimensionality after feature selection (last column).

In terms of the datasets, it is worthwhile to point out that microarray tech-
nology is in general available in two different platforms, cDNA and Affymetrix
[41–43]. Measurements of Affymetrix arrays are estimates on the number of RNA
copies found in the cell sample, whereas cDNA microarrays values are ratios of
the number of copies in relation to a control cell sample.

In order to remove uninformative genes for the case of Affymetrix arrays, we
applied the following procedure. For each gene j (attribute), we computed the
mean mj . But before doing so, in order to get rid of extreme values, we discarded
the 10% largest and smallest values. Based on this mean, we transform every
value x∗

ij of example i and attribute j to:

yij = log2(x
∗
ij/mj)

After the previous transformation, we chose for further analysis genes whose
expression level differed by at least l-fold, in at least c samples, from their mean
expression level across samples. With few exceptions, the parameters l and c

3 http://algorithmics.molgen.mpg.de/Supplements/CompCancer/ are included in this
analysis

Table 2. Dataset description

Dataset Chip n Nr Dist. Classes d Filtered
Classes d

Alizadeh-V1 cDNA 42 2 21,21 4022 1095

Alizadeh-V2 cDNA 62 3 42,9,11 4022 2093

Armstrong-V1 Affy 72 2 24,48 12582 1081

Armstrong-V2 Affy 72 3 24,20,28 12582 2194

Bhattacharjee Affy 203 5 139,17,6,21,20 12600 1543

Bittner cDNA 38 2 19, 9 8067 2201

Bredel cDNA 50 3 31,14,5 41472 1739

Chen cDNA 180 2 104,76 22699 85

Chowdary Affy 104 2 62,42 22283 182

Dyrskjot Affy 40 3 9,20,11 7129 1203

Garber cDNA 66 4 17,40,4,5 24192 4553

Golub-V1 Affy 72 2 47,25 7129 1877

Gordon Affy 181 2 31,150 12533 1626

Khan cDNA 83 4 29,11,18,25 6567 1069

Laiho Affy 37 2 8,29 22883 2202

Lapoint-V1 cDNA 69 3 11,39,19 42640 1625

Lapoint-V2 cDNA 110 4 11,39,19,41 42640 2496

Liang cDNA 37 3 28,6,3 24192 1411

Nutt-V1 Affy 50 4 14,7,14,15 12625 1377

Nutt-V2 Affy 28 2 14,14 12625 1070

Nutt-V3 Affy 22 2 7,15 12625 1152

Pomeroy-V1 Affy 34 2 25,9 7129 857

Pomeroy-V2 Affy 42 5 10,10,10,4,8 7129 1379

Ramaswamy Affy 190 14 11,10,11,11,22,10,11 16063 1363
10,30,11,11,11,11,20

Risinger cDNA 42 4 13,3,19,7 8872 1771

Shipp Affy 77 2 58,19 7129 798

Singh Affy 102 2 58,19 12600 339

Su Affy 174 10 26,8,26,23,12,11,7,27,6,28 12533 1571

Tomlins-V1 cDNA 104 5 27,20,32,13,12 20000 2315

Tomlins-V2 cDNA 92 4 27,20,32,13 20000 1288

West Affy 49 2 25,24 7129 1198

Yeoh-V1 Affy 248 2 43,205 12625 2526

were selected in such a way as to produce a filtered dataset with around at least
10% of the original number of genes (features). It is important to point out that
the data transformed with the previous equation is only used in the filtering
step.

A similar filter procedure was applied for the case of cDNA microarray, but
without the need to transform the data. In the case of cDNAmicroarray datasets,
whose attributes (genes) could present missing values, we discarded the ones with
more than 10% of missing values. The attributes that are kept and still present
missing values have the values replaced for the respective mean value of the
attribute.

For a given dataset, in order to generate the ranking, we took into account
the configuration that obtained the best corrected Rand (see the second and
third paragraphs in Section 5.2). We ran the algorithms with Euclidean distance,
Pearson correlation and Cosine, but always with the number of clusters equal to
the real number of classes in the dataset.

We assessed the performance of the meta-learners using the leave-one-out
procedure. At each step, 31 examples are employed as the training set, and the
remaining example is used to test the SVMs created. This step is repeated 32
times, utilizing at each time a different test example. The quality of a suggested
ranking for a given dataset is evaluated by employing the average SRC, as de-
scribed in equation 4, to measure the similarity between the suggested and the
ideal rankings.

The result of our approach was compared to a default ranking method, in
which the average ranking is suggested for all datasets. In our case, the de-
fault ranking was: SL=6.41, AL=4.60, CL=3.84, KM=2.31, M=3.40, SP=3.07,
SNN=4.36. In Table 3, we illustrate the mean and standard deviation for the
Spearman coefficient for the rankings generated by our approach and for the
default ranking.

Table 3. Mean of the Spearman coefficient

Method SRC

Default 0.59± 0.37

Meta-Leaner 0.75± 0.21

As it can be seen, the rankings generated by our method were more correlated
to the ideal ranking. In fact, according to a hypothesis test, at a significance level
of 0.05, the mean of the correlation value found with our method was significantly
higher than that obtained with the default ranking.

6 Conclusion

In this paper, we present the results of using Ranking Meta-Learning approaches
in two different domains of application: time series forecasting and clustering of

gene expression. In the performed experiments, we observed that the rankings
suggested by Meta-Learning were similar to the ideal rankings of algorithms
observed in the available problems.

We can point out specific contributions of our work in the fields of time series
forecasting and clustering of gene expression, which are domains of particular
interest of many researchers. Different improvements can be considered in fu-
ture work, such as increasing the number of meta-features (including the use of
landmarking), investigating the viability of using artificial datasets in order to
generate a larger database of meta-examples and performing experiments with
other Meta-Learning approaches.

Finally, we highlight that Meta-Learning brings opportunities to researchers
in different fields by providing general techniques that can be extrapolated to
other algorithm selection tasks. Although the use of Meta-Learning in different
domains has been increasing in recent years, there is still a large number of
contexts in which it has not yet been investigated.

Acknowledgments: The authors would like to thank CNPq, CAPES and FACEPE
(Brazilian Agencies) for their financial support.

References

1. Kalousis, A., Gama, J., Hilario, M.: On data and algorithms - understanding
inductive performance. Machine Learning 54(3) (2004) 275–312

2. Giraud-Carrier, C., Vilalta, R., Brazdil, P.: Introduction to the special issue on
meta-learning. Machine Learning 54(3) (2004) 187–193

3. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Journal of
Artificial Intelligence Review 18(2) (2002) 77–95

4. Koepf, C.: Meta-Learning: Strategies, Implementations, and Evaluations for Algo-
rithm Selection. Infix (2006)

5. Smith-Miles, K.: Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Computing Surveys 41(1) (2008) 1–25

6. Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Applications
to Data Mining. Cognitive Technologies. Springer (2009)

7. Brazdil, P., Soares, C., da Costa, J.: Ranking learning algorithms: Using IBL
and meta-learning on accuracy and time results. Machine Learning 50(3) (2003)
251–277

8. dos Santos, P., Ludermir, T.B., Prudêncio, R.B.C.: Selection of time series fore-
casting models based on performance information. In: 4th International Conference
on Hybrid Intelligent Systems. (2004) 366–371

9. de Souto, M.C.P., Prudencio, R.B.C., Soares, R.G.F., Araujo, D.A.S., Costa, I.G.,
Ludermir, T.B., Schliep, A.: Ranking and selecting clustering algorithms using a
meta-learning approach. In: Proceedings of the International Joint Conference on
Neural Networks, IEEE Computer Society (2008)

10. Jankowski, N., Grabczewski, K.: Building meta-learning algorithms basing on
search controlled by machine complexity. In: IJCNN. (2008) 3601–3608

11. Duch, W.: What is computational intelligence and where is it going? In Duch, W.,
Mandziuk, J., eds.: Challenges for Computational Intelligence. Springer Studies in
Computational Intelligence. Volume 63. Springer (2007) 1–13

12. Engels, R., Theusinger, C.: Using a data metric for preprocessing advice for data
mining applications. In Prade, H., ed.: Proceedings of the 13th European Confer-
ence on Artificial Intelligence (ECAI-98), John Wiley & Sons (1998) 430–434

13. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmarking
various learning algorithms. In: Proceedings of the 17th International Conference
on Machine Learning, ICML’2000, San Francisco, California, Morgan Kaufmann
(2000) 743–750

14. Aha, D.: Generalizing from case studies: A case study. In: Proceedings of the 9th
International Workshop on Machine Learning, Morgan Kaufmann (1992) 1–10

15. Kalousis, A., Hilario, M.: Representational issues in meta-learning. In: Proceedings
of the 20th International Conferente on Machine Learning. (2003) 313–320

16. Leite, R., Brazdil, P.: Predicting relative performance of classifiers from samples.
In: 22nd Inter. Conf. on Machine Learning. (2005)

17. Prudêncio, R.B.C., Ludermir, T.B., de Carvalho, F.A.T.: A modal symbolic classi-
fier to select time series models. Pattern Recognition Letters 25(8) (2004) 911–921

18. Prudêncio, R.B.C., Ludermir, T.B.: Meta-learning approaches to selecting time
series models. Neurocomputing 61 (2004) 121–137

19. D. Michie, D.J.S., Taylor, C.C., eds.: Machine Learning, Neural and Statistical
Classification. Ellis Horwood, New York (1994)

20. Kalousis, A., Theoharis, T.: Noemon: Design, implementation and performance
results of an intelligent assistant for classifier selection. Intelligent Data Analysis
3(5) (1999) 319–337

21. Kalousis, A., Hilario, M.: Feature selection for meta-learning. Lecture Notes in
Computer Science 2035 (2001) 222–233

22. Bensusan, H., Alexandros, K.: Estimating the predictive accuracy of a classifier.
In: 12th European Conf. on Machine Learning. (2001) 25–36

23. Koepf, C., Taylor, C.C., Keller, J.: Meta-analysis: Data characterisation for clas-
sification and regression on a meta-level. In: Proceedings of the International
Symposium on Data Mining and Statistics. (2000)

24. Soares, C., Brazdil, P.: Zoomed ranking - selection of classification algorithms
based on relevant performance information. Lecture Notes in Computer Science
1910 (2000) 126–135

25. Tsoumakas, G., Vrakas, D., Bassiliades, N., Vlahavas, I.: Lazy adaptive multi-
criteria planning. In: Proceedings of the 16th European Conference on Artificial
Intelligence, ECAI04. (2004) 693–697

26. Smith-Miles, K.: Towards insightful algorithm selection for optimisation using
meta-learning concepts. In: Proceedings of the IEEE International Joint Confer-
ence on Neural Networks 2008. (2008) 4118–4124

27. Caiuta, R., Pozo, A.: Selecting software reliability models with a neural network
meta classifier. In: Proceedings of the Joint International Conference on Neural
Networks. (2008)

28. Nascimento, A.C.A., Prudêncio, R.B.C., Souto, M.C.P., Costa, I.G.: Mining rules
for the automatic selection process of clustering methods applied to cancer gene
expression data. Lecture Notes in Computer Science 5769 (2009) 20–29

29. Souza, B., Soares, C., Carvalho, A.: Meta-learning approach to gene expression
data classification. International Journal of Intelligent Computing and Cybernetics
2(2) (2000) 285–303

30. Soares, C.: Uci++, improved support for algorithm selection using datasetoids.
Lecture Notes in Computer Science 5476 (2009) 499–506

31. Adya, M., Collopy, F., Armstrong, J., Kennedy, M.: Automatic identification of
time series features for rule-based forecasting. International Journal of Forecasting
17(2) (2001) 143–157

32. Montgomery, D.C., Johnson, L.A., Gardiner, J.S.: Forecasting and Time Series
Analysis. MacGraw Hill, New York (1990)

33. Tashman, L.J.: Out-of-sample tests of forecasting accuracy: An analysis and re-
view. International Journal of Forecasting 16 (2000) 437–450

34. Prudêncio, R.B.C., Ludermir, T.B.: Selection of models for time series prediction
via meta-learning. In: Proceedings of the Second International Conference on
Hybrid Systems, IOS Press (2002) 74–83

35. Arinze, B.: Selecting appropriate forecasting models using rule induction. Omega-
International Journal of Management Science 22(6) (1994) 647–658

36. Prudêncio, R.B.C., Ludermir, T.B.: A machine learning approach to define weights
for linear combination of forecasts. In: 16th International Conference on Artificial
Neural Networks. (2006) 274–283

37. Lang, K.J., Hinton, G.E.: A time-delay neural network architecture for speech
recognition. Technical Report CMU-DS-88-152, Dept. of Computer Science,
Carnegie Mellon University, Pittsburgh, PA (1988)

38. Levenberg, K.: A method for the solution of certain non-linear problems in least
squares. Quarterly Journal of Applied Mathmatics II(2) (1944) 164–168

39. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan College
Publishing Company, New York (1994)

40. Principe, J., Euliano, N., Garania, S.: Principles and networks for self-organization
in space-time. Neural Networks 15 (2002) 1069–1083

41. Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus clustering: a resampling-
based method for class discovery and visualization of gene expression microarray
data. Machine Learning 52 (2003) 91–118

42. Quackenbush, J.: Computational analysis of cDNA microarray data. Nature Re-
views 6(2) (2001) 418–428

43. Slonim, D.: From patterns to pathways: gene expression data analysis comes of
age. Nature Genetics 32 (2002) 502–508

44. D’haeseleer, P.: How does gene expression clustering work? NATURE BIOTECH-
NOLOGY 23(12) (2005) 1499–1501

45. de Souto, M.C., Costa, I.G., de Araujo, D.S., Ludermir, T.B., Schliep, A.: Clus-
tering cancer gene expression data: a comparative study. BMC Bioinformatics 9
(2008) 497+

46. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice Hall. (1988)
47. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Transactions on Neural

Networks 16(3) (2005) 645–678
48. Ertoz, L., Steinbach, M., Kumar, V.: A new shared nearest neighbor clustering

algorithm and its applications. In: Workshop on Clustering High Dimensional Data
and its Applications. (2002) 105–115

49. Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis. Fifth
edition edn. Prentice Hall (2002)

50. Milligan, G.W., Cooper, M.C.: A study of standardization of variables in cluster
analysis. Journal of Classification 5 (1988) 181–204

51. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. (2001)
Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

52. de Souto, M.C.P., Costa, I.G., Araujo, D.S.A., Ludermir, T.B., Schliep, A.: Clus-
tering cancer gene expression data - a comparative study. BMC Bioinformatics 9
(2008) 497–520

