Skip to main content

Characterizing a Brain-Based Value-Function Approximator

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6657))

Included in the following conference series:

Abstract

The field of Reinforcement Learning (RL) in machine learning relates significantly to the domains of classical and instrumental conditioning in psychology, which give an understanding of biology’s approach to RL. In recent years, there has been a thrust to correlate some machine learning RL algorithms with brain structure and function, a benefit to both fields. Our focus has been on one such structure, the striatum, from which we have built a general model. In machine learning terms, this model is equivalent to a value-function approximator (VFA) that learns according to Temporal Difference error. In keeping with a biological approach to RL, the present work seeks to evaluate the robustness of this striatum-based VFA using biological criteria. We selected five classical conditioning tests to expose the learning accuracy and efficiency of the VFA for simple state-value associations. Manually setting the VFA’s many parameters to reasonable values, we characterize it by varying each parameter independently and repeatedly running the tests. The results show that this VFA is both capable of performing the selected tests and is quite robust to changes in parameters. Test results also reveal aspects of how this VFA encodes reward value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schultz, W.: Predictive Reward Signal of Dopamine Neurons. J. Neurophysiol. 80(1), 1–27 (1998)

    Google Scholar 

  2. Lubow, R.E.: Latent inhibition. Psychological Bulletin 79, 398–407 (1973)

    Article  Google Scholar 

  3. Matzel, L.D., Schachtman, T.R., Miller, R.R.: Recovery of an overshadowed association achieved by extinction of the overshadowing stimulus. Learning and Motivation 16(4), 398–412 (1985)

    Article  Google Scholar 

  4. Connor, P.C., Trappenberg, T.: Classical conditioning through a lateral inhibitory model of the striatum (2011) (in preparation)

    Google Scholar 

  5. Wilson, C.J.: Basal Ganglia, 5th edn., pp. 361–413. Oxford University Press, Inc., Oxford (2004)

    Google Scholar 

  6. Wickens, J.R., Begg, A.J., Arbuthnott, G.W.: Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex in vitro. Neuroscience 70, 1–5 (1996)

    Article  Google Scholar 

  7. Hori, Y., Minamimoto, T., Kimura, M.: Neuronal encoding of reward value and direction of actions in the primate putamen. Journal of Neurophysiology 102(6), 3530–3543 (2009)

    Article  Google Scholar 

  8. Lau, B., Glimcher, P.W.: Value representations in the primate striatum during matching behavior. Neuron 58(3), 451–463 (2008)

    Article  Google Scholar 

  9. Samejima, K.: Representation of Action-Specific reward values in the striatum. Science 310(5752), 1337–1340 (2005)

    Article  Google Scholar 

  10. Bromberg-Martin, E.S., Hikosaka, O., Nakamura, K.: Coding of task reward value in the dorsal raphe nucleus. Journal of Neuroscience 30(18), 6262–6272 (2010)

    Article  Google Scholar 

  11. Gottfried, J.A.: Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301(5636), 1104–1107 (2003)

    Article  Google Scholar 

  12. Roesch, M.R.: Neuronal activity related to reward value and motivation in primate frontal cortex. Science 304(5668), 307–310 (2004)

    Article  Google Scholar 

  13. Wickens, J.R., Arbuthnott, G.W., Shindou, T.: Simulation of GABA function in the basal ganglia: computational models of GABAergic mechanisms in basal ganglia function. In: Progress in Brain Research, vol. 160, pp. 313–329. Elsevier, Amsterdam (2007)

    Google Scholar 

  14. Rescorla, R.A., Wagner, A.R.: A theory of pavlovian conditioning: Variations in the effectiveness of reinforcement and non-reinforcement. In: Black, A.H., Prokasy, W.F. (eds.) Classical Conditioning II. Appleton-Century-Crofts, New York (1972)

    Google Scholar 

  15. Rabinovich, M.I., Huerta, R., Volkovskii, A., Abarbanel, H.D.I., Stopfer, M., Laurent, G.: Dynamical coding of sensory information with competitive networks. J. Physiol. (Paris) 94, 465–471 (2000)

    Article  Google Scholar 

  16. Sutton, R.S.: Generalization in reinforcement learning: Successful examples using sparse coarse coding. In: Advances in Neural Information Processing Systems, vol. 8, pp. 1038–1044. MIT Press, Cambridge (1996)

    Google Scholar 

  17. Houk, J., Adams, J., Barto, A.: A Model of How the Basal Ganglia Generate and Use Neural Signals that Predict Reinforcement, pp. 249–270. The MIT Press, Cambridge (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Connor, P., Trappenberg, T. (2011). Characterizing a Brain-Based Value-Function Approximator. In: Butz, C., Lingras, P. (eds) Advances in Artificial Intelligence. Canadian AI 2011. Lecture Notes in Computer Science(), vol 6657. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21043-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21043-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21042-6

  • Online ISBN: 978-3-642-21043-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics