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Abstract

This work examines a novel method of developing features to use for machine learning
of sentiment analysis and related tasks. This task is frequently approached using a
Bag of Words representation — one feature for each word encountered in the training
data — which can easily number in the thousands or tens of thousands. This thesis
develops a set of “numeric” features, by learning scores for words, dividing the range of
possible scores into a number of bins, and then generating features based on counting
how many words in each document have scores in each bin. This allows for effective
learning of sentiment and related tasks with 25 features; in fact, performance was very
often slightly better with these features. This reduction in the number of features
allows for the processing of much larger collections of texts than previously attempted.

In addition, we carefully consider the problem of evaluating ordinal problems.

i
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Chapter 1

Introduction

The “Bag of Words” (BOW) representation is commonly used for machine learning
approaches to text classification problems. This representation involves creating a
feature vector for every word seen (perhaps some minimum number of times) in the
training data and learning based on the words that are present in each document,
sentence, or other unit of interest. However, this approach leads to a very large,
sparse feature space, as words are distributed such that there is a small set of very
frequent, not very informative words, and a great deal of individually rarer words that
carry most of the information in a sentence, roughly following Zipf’s Law (Manning
and Schiitze, 1999). Thousands of features are required to adequately represent the
documents for most text classification tasks.

This research proposes a method of condensing such sparse features into a very
compact representation by learning scores for words based on their distribution in
positive and negative training instances, and learning from features created based on
the distribution of these scores. This approach allows for much faster processing of
large data sets.

We focus primarily on the problem of sentiment analysis — identifying and catego-

rizing opinions within text — however, we also briefly consider other text classification
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type problems such as subjectivity analysis and detecting agreement in political dis-

course.

1.1 Applications

There are many applications for sentiment analysis techniques. A number of appli-
cations are mentioned in a recent survey by Bo Pang & Lillian Lee (2008), including
automatically aggregating opinion from blogs and newspapers, improving recommen-
dation and question answering systems by separating fact from opinion or providing
perspectives from different viewpoints, allowing businesses to identify problematic
features or opinions about their products, and various forms of monitoring opinions
of both politicians and voters. Other applications include improving “meta critic”
systems to provide an overall score for the product that is more than just an average
of various reviewers scores, and by providing a summary view of what “reviewers”
(including non-explicit reviewers, such as bloggers) liked and disliked about the prod-
uct. A great deal of labeled data is available for this problem online in the form of

explicitly labeled reviews on various rating scales.

1.2 Motivations

Existing methods for sentiment analysis generally use classifiers trained using BOW
features, the output of a simple scoring method, or use at least some linguistic knowl-
edge such as a manually constructed sentiment lexicon. BOW features are slow to
train with large amounts of data, simple scoring methods do not generally perform
well on their own, and linguistic knowledge is not portable between languages. Even
within the same language, the vocabulary used to express sentiment can vary con-
siderably between domains. We would like to develop a method which requires no

linguistic resources beyond a labeled corpus and which greatly reduces the set of fea-
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tures required over BOW representations in order to process large amounts of text
quickly.

We accomplish this by producing features based on the distribution of automati-
cally learned word scores appearing in a document, and using these features instead of
BOW for machine learning. While this is not the first attempt to combine these two
paradigms, previous approaches have still required the training of a complete BOW
based classifier and combining that in some way with the output of word scoring
methods.

Requiring only a labeled corpus of data allows for easily transferring between
domains or even languages where labeled data is available without carefully recon-
structing more advanced linguistic resources. With the wide availability of reviews
available online, labeled data that is at least somewhat related to the desired task is
often relatively easy to obtain. However, while we will demonstrate language portabil-
ity of the method by training on a French corpus, it is beyond the scope of this thesis
to consider morphologically complex languages or languages where word boundaries
are not clearly defined in text, which may require more advanced linguistic prepro-

cessing.

1.3 Approach

This thesis proposes a novel method of generating features for text classification tasks
that combines word scores with machine learning. First, the system learns word scores
based on how often each word appears in positive documents relative to how often
it appears in negative documents. The range of possible scores is divided into some
number of bins; for example, the range of 0-1 could be divided into 5 bins of [0,0.2),
[0.2,0.4), [0.4,0.6), [0.6,0.8), and [0.8,1]. The system then processes each document
by looking up the score for each word, and counting the number of words whose score

places them in each bin, ignoring words with an unknown score. Finally, the counts
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in each bin are normalized by dividing by the total number of scored words in the
document. This produces a feature set which is markedly smaller and far less sparse
than a BOW representation.

We will look at performance on several kinds of problems. We will look at
binary and ordinal classification of professional and non-professional reviews, binary
classification of snippets from movie reviews and “tweets”, and ordinal classification

of sentences from online product reviews.

1.4 Ewvaluation

This thesis also carefully considers the best approach to evaluate the problems being
studied; too often researchers merely report accuracy despite its many problems de-
scribed in (Provost et al., 1998), among others, for even binary problems. We look
at sentiment analysis as an ordinal classification problem in which not all errors are
equal; for example, it is far worse to give a rating at the opposite end of the spectrum
than it is to give a rating that is off by one point. We perform our own study into the
best methods of evaluating ordinal problems, and carefully consider the evaluation

measures to use for the binary problem.



Chapter 2

Background

The main focus of this work involves the problem of sentiment analysis, however,
we also briefly look into the related fields of text categorization by topic, subjectivity
detection, and detection of political viewpoints. In addition, we consider related work

on evaluating both binary and ordinal problems.

2.1 Sentiment Analysis

Sentiment analysis is an area of Natural Language Processing (NLP) concerned with
identifying and categorizing opinions in text. While much of the research has lever-
aged the availability of labeled data in the form of online reviews, ultimately the goal
is to identify sentiment information in unlabeled, free form sources like blogs, forum
postings, newspaper articles, etc. Sentiment analysis can be carried out on various
levels — we can analyze the sentiment of a document, paragraph, sentence, or phrase,
and we can also analyze the sentiment towards a specific person, organization, or
product feature. We can work with determining sentiment from well written sources
with an average length of hundreds of words, such as professional reviews or opinion

pieces, and we can work with shorter, less well written texts such as online reviews
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of products or social networking sources like Twitter.

On the surface, sentiment analysis appears similar to text categorization by topic,
but it is harder than text categorization for many reasons, as discussed in Pang &
Lee’s survey (2008). First and foremost, with text categorization, it is usually much
easier to extract relevant key words, while sentiment can be expressed in many ways
without using any words that individually convey sentiment. In topic classification
there are undoubtedly red herrings, such as the use of analogies and metaphor, but if
a word associated with a given domain is mentioned frequently, it is usually related
(although not necessarily the most relevant) (Pang and Lee, 2008). However, in

1 and

sentiment analysis there are many examples of “thwarted expectations”
comparison to an entity with opposing sentiment 2 such that a positive review can
easily have many negative words and vice versa.

Broadly speaking, there are 3 major approaches to sentiment analysis systems:
approaches based on manually constructed lexicons, which may include developing
complicated rules, approaches based on automatically generated lexicons and rule

bases, and machine learning approaches based on Bag of Words (BOW) feature sets.

There is also work which has combined two or more of these approaches together.

2.1.1 Lexicon Based Approaches

Many approaches to sentiment analysis consist of manually or automatically clas-
sifying or scoring words or phrases and scoring documents or sentences based on
those scores. Here we divide these into approaches using fully manually constructed
lexicons and/or rule bases, approaches using automatically generated lexicons, and
approaches which go beyond assigning words as simply positive or negative and give
them a score.

Two frequently used tools for lexicon based approaches are the General Inquirer

1«] was expecting this movie to be great, but it was terrible”
241 loved the first movie, but this sequel is terrible”
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(GI) and WordNet. GI is a “a computer-assisted approach for content analysis of
textual data” (Stone et al., 1966), which includes both software for analyzing text as
well as categorized word listings. Most frequently, it is the word listings which are
used in sentiment analysis, as a starting point for a manual or semi-automatic lexi-
con. WordNet is a lexical database of English which groups nouns, verbs, adjectives
and adverbs into “synsets” which reflect groups of synonyms to express a concept
(Fellbaum, 1998). It was created by George A. Miller and colleagues at Princeton.
WordNet does not explicitly encode sentiment data, but it does encode links between
words, allowing researchers to expand small seed lists of words into a larger list of
sentiment words. SentiWordNet is an attempt to tag WordNet synsets with informa-
tion in terms of how positive, negative, or objective they are through semi-supervised

learning of scores (Esuli and Sebastiani, 2006).

Manually Constructed Lexicons and rules

This section looks at approaches that use a manually constructed lexicon, either from
an existing source or that is hand constructed by the authors. Broadly speaking,
these approaches then try to classify documents by comparing the number of positive
and negative features as determined by a pre-determined list of words.

One use of purely manually constructed methods is by Nasukawa and Yi (2003).
This work uses a manually constructed lexicon of part of speech tagged sentiment
words, with some information about what they transfer the sentiment to, e.g. “gVB
admire obj” indicates that admire is a verb that confers favorability on its object;
shallow parsing is used to allow the use of such rules. The system assigns scores of
+1/-1 to items and decides sentiment based on sum of scores. This work examines
the problem of extracting snippets relevant to-particular topics; it strives for high
precision at the expense of recall.

While these approaches are attractive in that they can easily be applied across
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many domains, they suffer from several issues. First and foremost, manual lexicons
can be very limited in size (e.g. 3000 words) which can prevent these sorts of ap-
proaches from being able to score all documents.

In addition, even if there was a perfect sentiment lexicon in existence, a great
deal of sentiment information is carried in words that are context specific — either to
the domain or the surrounding words. “Small” is not in and of itself is a sentiment
term, but it can be a fairly significant positive or negative feature given the context —
both in terms of the domain and the context of the sentence. Consider “The laptop
is small”, “The keyboard is small”, “The trunk is small”, and “The room is small”.
The first sentence would generally be considered as positive, given that it is desirable
for laptops and other portable electronics to be small. However, it is not generally
desirable to have a small keyboard on a laptop, small trunk on a car, or small hotel
room. Words like small can be very important indicators of sentiment but what
sentiment they convey depends a great deal on context. A general purpose lexicon
can not capture context at all, while one tailored to a specific domain can to some
degree.

Finally, people often express sentiment by comparing their opinions of a product
to their expectations or experiences with another similar product, and this can result

in a great deal of positive words in a negative review and vice versa.

Automatically or Semi-Automatically Constructed Lexicons

This section looks at approaches that automatically or semi-automatically generate
lists of positive and negative words. These approaches may start with a manual
lexicon and extend it, or, in other cases, with a small set of seed words. This allows
the easy creation of larger lexicons, however, they tend to be noisier than a manual
lexicon.

One of the first works focused on automatically identifying the polarity of sen-
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timent terms is by Hatzivassiloglou and McKeown (1997), which looks at clustering
adjectives based on the connections between them in a large text corpus. They hy-
pothesize that adjectives connected by and usually have the same polarity, while
adjectives connected by but have opposing polarity. They construct a log-linear re-
gression model to weight the connections between words, represent the links as a
graph, and partition the graph into clusters of positive and negative words. They
were able to achieve greater than 90% accuracy on their test set of manually la-
beled, unambiguous adjectives, and found that the errors were a result of misplacing
adjectives in clusters rather than of misidentifying clusters.

The work by Godbole, Srinivasaiah and Skiena (2007) focuses on identifying
sentiment towards various entities in blogs and news media, in order to track the
sentiment toward the entity over a wide range of sources. Their approach is based on
using WordNet to generate a sentiment lexicon by extending various domain specific
lists of seed terms. Synonyms are given the same sentiment, and antonyms the op-
posite, while the significance decreases as the length of the path from the seed word
increases. The algorithm also takes into account paths that “flip” from positive to
negative sentiment. It only looks at the most common (first) sense and filters out
words whose scores are in the middle of the distribution. The score for an entity
is computed by looking at the number of positive sentiment references relative to
the total number of sentiment references, while also making use of negations and
intensifiers.

A “holistic lexicon based approach” is used in (Ding et al., 2008) to determine
sentiment at the feature level. They build on previous work to extend a lexicon
through WordNet, and devise many rules to transfer sentiment from one term to
another. They also manually annotate many idioms. The focus is on individual
features of products from a previously introduced dataset. The system assigns words
a score of +1/-1, and generates scores on features based on the score of a word divided

by its distance from the feature. The system includes manually constructed rules for
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negation and clauses involving “but” and related expressions. It learns words that are
context dependent based on being in sentences with known positive/negative words
— “This camera takes great pictures and has a long battery life” confers a positive
sentiment to “long” when talking about battery life, while “This camera takes great
pictures, but has a short battery life.” confers a negative sentiment to “short” in the
context of battery life.

In (Li et al., 2008), rules and a belief base are used to tackle the problem of ex-
tracting snippets from reviews that disagree with the overall sentiment of the review.
The system automatically learns a set of rules to identify unexpected clauses using
sequential pattern mining algorithms.

A recent attempt to generate a sentiment lexicon automatically (independent of
attempts to classify longer units of text) is by (Mohammad et al., 2009). They make
use of a Roget-like thesaurus and either manual seed words (from GI), or automat-
ically identified seed words based on the observation that “marked” words are most
often negative. Marked words are words with a suffix or prefix, such as unhappy.
They evaluate their system through comparing the affix system with the GI words
lists, and comparing their word lists with others in terms of performance on a sentence

classification task based around a simple word counting approach.

Automatically Generated Word Scores

This section differs from the previous two in that we look at approaches which main-
tain some form of score reflecting how positive or how negative a word is, rather than
merely dividing words into positive and negative. Note that some of the work in the
previous section generates scores which are thresholded to produce a binary outcome,
but which could have been used for work similar to that in this section; the division
here is between how the authors chose to use the method, not how it could be used.

A well known early work featuring automatically generated word scores to per-



2.1. Sentiment Analyéis 11

form unsupervised sentiment analysis is Peter Turney’s PMI-IR approach (2002). In
this work, the focus is on two word phrases following certain patterns involving at
least one adjective or adverb. Turney uses a search engine to estimate the PMI of
. each phrase with the words “excellent” and “poor”. These two values are then sub-
tracted from each other to find the Semantic Orientation of the phrase; the score
for a document is obtained by averaging the scores for terms, and documents with
a positive average score are deemed positive and vice versa. This approach achieves

between 65% and 84% accuracy over various domains of user reviews.

(2.1.1)

SO(Phrase) = log, (hzts(phraseN EAR“excellent” )hits(“poor ))

hits(phrase N EAR “poor” )hits(“excellent”)

Several other authors extend Turney’s work, including (Gamon and Aue, 2005).
This work extends Turney’s work with more seed words, and an additional assumption
that words with opposing sentiment tend not to co-occur at the sentence level. They
use a set of unlabeled in-domain data rather than the Web to compute PMI.

Various word scoring methods which produce word scores from -1 to 1 are used
in (Dave et al., 2003) to classify documents based on sign of the sum of the scores.
They use their own dataset constructed from reviews of electronics from Amazon.com
and C|net, and test their method in two ways. The first test retains the skews of the
original corpus by training on 6 categories and testing on a 7th, while the second
uses a balanced selection from the 4 largest categories. The results are compared
to machine learning methods using support vector machines (SVM) similar to (Pang
et al., 2002). Their best results on the first test are obtained using trigram features
with their word scoring method, however, the difference between this approach and
the SVM approach using bigrams is small. The best results on Test 2 are obtained
by SVM with bigrams, however many of the scoring methods are close.

The problem of identifying sentiments of specific holders towards specific topics

at the sentence level is explored in (Kim and Hovy, 2004). A small set of words is
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hand labeled and then WordNet is used to compute sentiment scores for a variety
of words, in the range of -1 to 1. The system computes sentiment of a region of a
sentence meant to correspond with the holder’s sentiment (the window from “Holder”
to end of sentence performed best) by averages or counts of words.

An in-domain list of words is automatically mined from the web in (Harb et al.,
2008) to create unsupervised word scores. This work starts with a small seed list
with 7 positive and 7 negative words, and searches the web for documents relevant to
the domain containing one of the positive (negative) words and none of the negative
(positive) words, and keeps adjectives which are highly correlated with the seed words
in the retrieved documents. This technique performs better on the positive class than

the negative class.

2.1.2 Machine Learning Approaches

Machine Learning approaches generally create a feature set in the form of a Bag of
Words (BOW) — that is, the features used as input to the algorithm represent the
presence or frequency of various words seen in the training data.

A major early work on using machine learning techniques for sentiment analy-
sis is by Pang and Lee (2002). This paper introduces a publicly available dataset
of binary movie reviews. They compare performance of Naive Bayes, Support Vec-
tor Machines, and Maximum Entropy classifiers on the task of performing document
level binary sentiment analysis with various bag of words feature sets. They find that
using an SVM classifier with unigram presence information for features works best;
this performs much better than unigram frequency, and trying to add bigrams, part
of speech information, or further restrict the unigrams did not help. Unigrams were
tagged with negation information by adding NOT_ to all words between certain nega-
tion words and the next punctuation mark. They find that sentiment classification is

more difficult than text categorization, and hypothesize that this is partly because of
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“thwarted expectations”, where the author contrasts their expectations of the movie
with their actual opinion. This work is extended in (Pang and Lee, 2004), which
looks at combining document level sentiment analysis with sentence level subjectivity
analysis in order to score the sentiment of only the subjective parts of the document.
They are able to maintain or slightly improve performance while using approximately
60% of the material from the original reviews. Further work in (Pang and Lee, 2005),
examines the ordinal case, and introduces the concept of metric labeling using posi-
tive sentence percentage as a similarity metric in combination with an SVM classifier,
which was able to produce small but significant gains in performance.

The BOW approach is modified in (Martineau and Finin, 2009) to weight the
features by the difference in TF-IDF scores in positive and negative documents, such
that words which appear more frequently in positive documents have a positive value
and words which appear more frequently in negative documents have a negative value,
and a word evenly distributed between positive and negative documents would have

a value of 0. This weighting improves performance over simple BOW features.

2.1.3 Combination Approaches

There is also some work which attempts to combine lexicon based approaches with
machine learning based approaches. While given sufficient in-domain data, machine
learning approaches are generally superior, lexicon approaches have the advantage
that they are not necessarily domain specific.

Work by Mullen and Collier (2004) explores the use of a variety of numeric fea-
tures as input to an SVM classifier, while also using bag of words features. These
features are constructed using “Turney values” as described in section 2.1.1, “Osgood
values”, which are computed based on WordNet path length from seed words repre-
senting different poles of different aspects of sentiment — potency (strong or weak),

activity (active or passive), and evaluative (good or bad). The best results on the
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movie review dataset from (Pang et al., 2002) were obtained by combining the Tur-
ney values and lemmatized unigrams together with a hybrid SVM. The Osgood values
were not found to be particularly useful.

The work in (Kennedy and Inkpen, 2006) considers simple word counting, word
counting with valence shifters (negations, intensifiers, and diminishers), and a hybrid
machine learning approach. For the word counting, they use a combination of data
sources, including GI and other word and synonym lists, which they ultimately extend
using SO-PMI as in (Turney, 2002). Positive words are given a score of 2 if alone,
1 if preceded by a diminisher, and 3 if preceded by an intensifier, and then negated
if preceded by a negation, while negative words have scores of -2 / -1 / -3. For the
Machine Learning approach, words are tagged with the information that they were
found with (any) negation, intensifier, or diminisher. They find that using the valence
shifters, particularly the negations, improves performance over not using them by a
small amount. Their final combined system of a meta classifier combining the results
of the word counting method and the SVM method, using valence shifters, obtains a
small but significant improvement over the basic SVM system.

The General Inquirer lexicon is used in (Ikeda et al., 2008) along with a classifier
which attempts to learn when the polarity of a word is shifted due to context. A linear
discriminative classifier is run on each word to determine if it is shifted, and if it is,
the score is negated. Then all the scores in the document are added together. This
shift detection improves performance over a basic lexicon method. Finally, this shift
detection system is combined with an SVM BOW model by weighting the output of a
score created by SVM with their score created with the lexicon method. The authors
claim their method performs better than others, however, their method cannot score
all sentences while the other methods they compare to may have been able to score
the approximately 10% of sentences that they discarded.

The problem of limited availability of in-domain labeled data is considered by

(Andreevskaia and Bergler, 2008). This approach first creates a general lexicon based
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on WordNet using the adjectives from (Hatzivassiloglou and McKeown, 1997) as seed
terms, and combines the results with a corpus based approach trained on a small
training set of in-domain data with weighted voting. The vote for each classifier
is based on its precision; the corpus based approach is high precision on positive
examples, while the lexicon based approach is high precision on negative examples.
This combination approach was able to substantially increase performance in four

domains with 800-1200 labeled documents.

2.1.4 Domain Adaptation

Sentiment analysis can be highly domain dependent. While there are many words
and expressions that convey a universal sentiment regardless of the domain, many
others are specific to a domain or even a particular context within a domain. Domain
adaptation is the process of adapting a system from domains with plentiful data to
domains with little available labeled data.

One of the early works considering this problem is by (Aue and Gamon, 2005),
which uses a collection of 4 datasets to consider different potential methods of domain
adaptation. These datasets vary considerably in terms of the number of documents
and the length of those documents. The methods used include simply training on 3
datasets and testing on the 4th, limiting the feature set of that basic approach using
only features that appear in the target domain, training a classifier for each dataset
independently and combining the outputs with a meta-classifier trained using a small
amount of in-domain labeled data, and finally, making use of unlabeled data in the
target domain through the Expectation Maximization (EM) algorithm, starting with
a small amount of in-domain labeled data. The best results are obtained by the EM
algorithm, using 200 in-domain labeled instances.

Structural correspondence learning (SCL) is a different approach used in (Blitzer

et al., 2007). SCL involves taking labeled data from a source domain, and unlabeled
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data from both a source and target domain. The algorithm is looking for features
which have high correlations with a set of “pivot features”, in order to attempt to
find features in the target domain that behave similarly to known features from the
source domain. This work uses a combination of unigram and bigram features, and for
classification uses linear predictors trained to minimize the Huber loss with stochastic
gradient descent. This work also introduces a publicly available dataset of reviews
from Amazon.com from 4 different categories which is used in this thesis.

This same dataset is also used by Li and Zong (2008) to perform document level
domain adaptation. First, unigram and bigram features are selected using Bi-Normal
Separation. Next, base classifiers for each of the 4 domains are trained using 70%
of the data, then these are combined using a meta classifier for each domain trained

using 20% of the data, and results are tested on 10%.

2.2 Related Problems

2.2.1 Text Categorization

Text categorization is the general problem of classifying text into various subjective
categories. Text categorization can be single-label, where a document needs to be
assigned to exactly one category, or multi-label, where a document can be assigned to
multiple categories. Frequently, the desired categories are the topic of the document,
such as Sports or Politics, however other distinctions can be considered. For instance,
we could also speak of categorizing text in terms of spam or not spam, or by genre,
as discussed in a survey of text categorization by Sebastiani (2005). However, there
are important differences between topic categorization and other text categorization
problems.

The machine learning techniques of Support Vector Machines (SVM) and boost-

ing have been found to be particularly effective for text categorization (Sebastiani,



2.2. Related Problems 17

2005). The suitability of SVMs for text categorization is discussed in detail by
Joachims (2001), who develops a theoretical model of the text categorization task
based on various properties of the problem, such as the large, sparse feature space,
large number of overlapping terms, the distribution of words, and the high level of re-
dundancy within each document. This model enables the development of theoretical
results for bounds on the generalization error. Joachmis also determines conditions
which make a text categorization problem easier or harder; other parameters being
constant, a problem is easier if the discriminative features are more frequent within
the corpus, the vocabulary of the two classes is more distinct, and there is a higher

level of redundancy within a document.

2.2.2 Subjectivity Analysis

Subjectivity analysis is the process of identifying opinions vs. facts, regardless of the
strength or polarity of the opinion.

The approach by Riloff and Wiebe (2003) focuses on “extraction patterns” to
identify patterns that occur in subjective texts. They use a bootstrapping process
which begins with high precision, low recall classifiers created based on subjectivity
clues from previous work. The subjective classifier classifies sentences as subjective if
it contains at least 2 strong subjectivity clues, while the objective classifier classifies a
sentence as objective if it contains at most one weak subjectivity clue in the current,
previous, and next sentence combined. Their system is also given a listing of syntactic
templates, such as <subj> active-verb dobj, which are then used to find more specific
(but still flexible) extraction patterns, such as <subj>dealt blow. Extraction patterns
that have a high probability of appearing in subjective sentences (and occur frequently
enough) are then added to the initial set of subjectivity clues in order to classify more
sentences.

This work is extended in (Riloff et al., 2006), which looks at a “subsumption
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hierarchy” of features to identify complex features that perform better than simple
ones — essentially, to identify the complex features like extraction patterns that are
worth keeping over simpler patterns or unigrams. For example, line subsumes the
line because every instance of the line includes line. The information gain of the two
features are compared, and the more complex feature is kept only if it sufficiently
improves performance. This work also shows examples of instances where keeping
words that are often filtered out as stop words is useful — the line is much more
subjective than simply line. Their best results were obtained using subsumption,
however, this difference was not very large.

Subjectivity analysis can also be used as a preprocessing step prior to attempting
sentiment analysis, as in (Pang and Lee, 2004), where the authors found that by
removing objective sentences they were able to maintain or slightly improve on the
performance of using the whole reviews. Subjective sentences were identified by
combining output of a bag of words SVM on individual sentences with the heuristic
that nearby sentences should tend to have the same scores to arrive at a problem of

calculating the minimum cost cut of a graph.

2.2.3 Analyzing political discourse

There are various attempts to model different types of political discourse, from ana-
lyzing formal debates to identifying political leanings from online postings.

Congressional speeches are combined with voting records as a source of data in
order to determine if the speech was in support or opposition of a policy in work
by Thomas, Pang, and Lee (2006). In addition to using SVM classifiers on speech
segments, as in previous sentiment analysis work, the authors look at the relationships
between speakers and model agreement between speakers in the same debate.

A more informal domain of political discourse is examined by Mullen and Malouf

(2006), that of online political discussions. Their work attempts to classify users of
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online political forums into categories of “right” or “left”, using the self selected labels
provided by the users. They found even this simple problem to be quite difficult, even
after discarding harder to classify users labeled as centrist, independent, green, and
libertarian. They use a Naive Bayes classifier, and found that the crude spelling
correction they attempted was not helpful, that they were able to obtain slightly
better performance when focusing on the most frequent posters and not including the
people who posted more rarely, and that adding a simple rule that people tend to
quote people whom they disagree with improved performance.

Jiang and Argamon (2008) work on the problem of first classifying blogs into
political or non political, and then classifying the political blogs as “liberal” or “con-
servative”, using an SVM BOW classifier augmented with link information. They also
used various feature selection methods to reduce the dimensionality of their original
dataset considerably, from nearly 400,000 features to under 7,000 without hurting
performance; however, it should be noted that their original set simply used all words
and did not filter out rare words (e.g. those appearing less than 3 times in the training
data) as is often the case. They found that using out-link information in addition to
BOW was helpful, and also found that adjusting the “cost factor” was beneficial to

account for the imbalance in their dataset between liberal and conservative blogs.

2.3 Evaluation

In recent years, there has been much discussion on the flaws of accuracy as a metric for
comparing performance on machine learning tasks (see (Provost et al., 1998), among
others). In addition to the flaws inherent in using accuracy for binary problems, in
the ordinal case accuracy tells us nothing about the severity of the error and in many
applications this is important. We thus feel that we need to carefully consider the

evaluation methods to be used in this research, for both binary and ordinal problems.
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2.3.1 Binary Metrics

There has been extensive examination of performance measures for the binary prob-
lem. Accuracy is the simplest measure, but one measure that has been used increas-
ingly frequently is the Area Under the ROC Curve (AUC). An ROC curve is the plot
of the True Positive vs. False Positive rate, and can be constructed using all possible
thresholds of the classifier output to show the possible trade offs in error. AUC is the
area under this curve, and ranges from 0 to 1.

A comparison of a variety of evaluation metrics for binary classification is per-
formed in (Caruana and Niculescu-Mizil, 2004) by looking at performance over a wide
range of algorithms and datasets, and looking at how the measures relate through
visualization methods and their correlation with each other. They found that root
mean squared error (RMS) was a good all purpose measure that was well correlated
with other metrics; they also propose a new metric called SAR that averages RMS,
AUC, and accuracy, which they found to represent different categories of metrics.
SAR provided very modest improvement over RMS.

Another similar comparison, this time including some multiclass datasets is per-
formed in (Ferri et al., 2009). They compare the correlations of a variety of metrics
on a variety of problems, and then they test the metrics for sensitivity to different
kinds of noise on an artificial binary problem. Their intent is to see if results across
some metrics are comparable; however they find that with the exception of the var-
ious methods for computing multi-class AUC they are not, and that even seemingly
similar metrics are measuring different things.

We chose to present results for AUC and Accuracy for the binary problem, and
focus on AUC, as we feel that the ability to rank the output is an important facet for
many applications of this problem. We include Accuracy as it is an intuitive measure

and is most frequently used in related work.
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2.3.2 Ordinal Metrics

Most papers on ordinal classification that we have found simply use accuracy as an
error measure, without considering whether or not it is an appropriate measure, such
as (Pang and Lee, 2005; Goldberg and Zhu, 2006; Mao and Lebanon, 2006; Frank
and Hall, 2001). A measure called the normalized distance performance measure is
used in (Wu et al., 2003) for work with image retrieval. An AUC type measure for
the ordinal case is introduced in (Waegeman et al., 2008b), representing a volume
under a surface. The authors of (Pang and Lee, 2005) conducted a small test to
determine human performance on the task of which of two reviews is more positive,
and described the results of this in terms of “rating difference”, and were, for instance,
correct for 83% of reviews with a rating difference of 1 star on a 4 or 5 star scale,
however they simply use accuracy for describing the performance of their classifiers.
We feel that this problem has not been adequately studied, and so we will undertake

our own examination of this problem.

2.3.3 Establishing Significance of Results

Another important component of evaluation is determining if the results represent a
significant difference.

Cross validation is a technique whereby the data is split into some number of
folds — commonly 3, 5, or 10 — with the data being trained on all but one fold and
the final fold being used as the test set. This is repeated with each fold appearing
as the test set once, and then the results are combined over all folds. We can then
use the result on each fold to calculate statistics like the standard deviation and
to determine significance between two experiments through methods like a t-test.
However, cross validation results can be greatly affected by the initial data split; for
this reason, (Bouckaert, 2003) suggests repeating the cross validation multiple times,

and performing 10x10 fold cross validation.
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The Student’s t-Test is a very commonly used measure of statistical significance,
however it is not without its problems, as discussed by Drummond (2006). For this
reason, we will supplement use of t-tests by also providing confidence intervals for

our results.

2.4 Tools & Datasets

2.4.1 WEKA

WEKA (Witten and Frank, 2005) is a machine learning framework written in Java.
WEKA implements many machine learning algorithms, as well as modules for prepro-
cessing and evaluation. It provides graphical interfaces as well as an API. We make
extensive use of the WEKA API and use its implementations of machine learning

algorithms.

2.4.2 Datasets

This thesis makes use of a number of datasets that have been collected by other
researchers and made publicly available. Table 2.1 presents some quantitative in-
formation on the datasets, and their distribution for the binary problem. Table 2.2
presents the distributions for the ordinal divisions on the datasets which have them,

while qualitative features are discussed in the following paragraphs.

Amazon Reviews Online user reviews posted to Amazon.com, labeled by the user
from 1 to 5 stars. This data was processed to balance it for the binary problem, and
only contains examples of classes 1, 2, 4, and 5. These reviews vary widely in length

and writing quality. This dataset was introduced in (Blitzer et al., 2007).
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Table 2.1: Overview of Datasets; Related datasets are grouped together

Distribution Number Of Words

Name # Neg Pos Min Max Median Avg

Amazon Reviews

Electronics 2000 50.0% 50.0% 5 1065 79.5 1123
DVD 2000 50.0% 50.0% 7 1510 113 1720
Books 2000 50.0% 50.0% 1 3566 114 1771
Housewares 2000 50.0% 50.0% 8 1002 70 941
Large Amazon
Music 172180 8.0% 92.0% 1 3362 97 144.1
Books 615415 13.2% 86.8% 1 5878 108 164.7
DVD 122438 13.5% 86.5% 1 4303 106 1714
Ordinal Movie Reviews

Rhodes 1770 40.5% 59.5% 66 1136 347 368.9
Renshaw 902 45.5% 54.5% 127 764 462 461.1
Berardinelli 1307 25.2% 74.8% 146 1201 424 440.7
Schwartz 1027 59.5% 40.5% 6 2366 252 294.9
Binary Movie 2000 50.0% 50.0% 16 2366 606 647.6
Reviews

Snippets 10662 50.0% 50.0% 1 51 18 185
Product Reviews 1235 39.9% 60.1% 1 100 15 16.9

Twitter
Train 40000 50.0% 50.0% 1 37 13 142
Test 216 50.0% 50.0% 2 30 12 13.7
Congress

Speaker Train 1174 50.5% 49.5% 4 11690 442 693.1
Speaker Test 410 44.1% 55.9% 4 18824 430 7214
Segment Train 2740 47.6% 52.4% 1 6065 168.5 296.5
Segment Test 860 41.6% 58.4% 1 6880 241.5 3454
Subjective 10000 50.0% 50.0% 5 106 20 21.2
Sentences

French Sentences 702 53.3% 46.7% 5 74 24  26.5
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Table 2.2: Distribution of Ordinal Datasets

Dataset Size Classes Distribution
Amazon Reviews 1 2 4 5
Electronics 2000 4 (5) 33.3% 16.7% 16.0% 34.0%
DVD 2000 4 (5) 26.5% 23.5% 14.3% 35.7%
Books 2000 4(5) 26.9% 23.1% 13.5% 36.6%
Housewares 2000 4 (5) 34.4% 15.7% 12.3% 37.7%

Large Amazon Reviews 1 2 4 5
Music 172180 4(5) 43% 3.7% 214% 70.6%
Books 615415 4(5) 72% 6.0% 22.6% 64.2%

DVD 122438 4(5) 7.6% 6.0% 255% 61.0%

Ordinal Movie Reviews 0 1 2 3

Rhodes 1770 4 10.8% 29.7% 43.3% 16.2%
Renshaw 902 4 12.7% 32.7% 37.0% 17.5%
Berardinelli 1307 4 10.6% 22.3% 45.6% 21.5%
Schwartz 1027 4 16.7% 42.8% 29.4% 11.1%
Product Reviews -3 -2 -1 1 2 3
All 1235 6 93% 222% 8.4% 8.6% 34.6% 16.9%

Large Amazon Reviews A large set from which the previous reviews were ex-
tracted (Blitzer et al., 2007). The entire dataset includes many categories, some with
only a few hundred entries; we use the three which have over 100,000 reviews. This
set is not manually balanced, however, it still only contains examples of classes 1, 2,
4, and 5. Note that there are nearly 1 million reviews available for the Books dataset;

we found that dealing with data of this size is not trivial.

Ordinal Movie Reviews This dataset consists of subjective extracts of movie
reviews from four separate authors. These reviews are professionally written, and
presumably the style does not vary as much between the same author as between

different authors. (Pang and Lee, 2005)

Binary Movie Reviews This dataset was originally created in 2002, and extended

in 2004, and has been widely used since then. It consists of movie reviews taken from
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IMDB.com, and is called the Cornell Polarity Dataset 2.0 by the authors (Pang and
Lee, 2004). This dataset contains the longest documents on average of the sentiment

analysis datasets.

Snippets Snippets from movie reviews mined from RottenTomatoes.com, a website
which aggregates movie reviews, labeling them as “fresh” and “rotten”. Each review
has a snippet of usually a sentence or two associated with it; these were gathered and

assigned the label of their source review (Pang and Lee, 2005).

Product Reviews Reviews from Amazon.com manually labeled with opinions for
particular features within a review. The data used here represented reviews for 5

different products (Hu and Liu, 2004).

Twitter Entries from Twitter, a social networking website which allows users to
post “tweets” which are limited to 140 characters. The training data is manually
labeled based on the presence of :) (positive) and :( (negative), while the test data
is hand labeled (Go et al., 2009). This dataset contains the shortest documents,
and there is also a tendency for them to be poorly written with spelling errors and

abbreviations.

Congress This dataset consists of transcripts of US Congressional debates, matched
with the vote of the speaker on the issue being debated (Thomas et al., 2006). These
documents are divided into a separate training and test set which use different debates.
“Speaker” groups all segments by the same speaker in the same debate together;
material is labeled through using the vote of the speaker on the issue. These speeches

range from single words to the longest documents in all of the datasets we look at.

Subjective Sentences Sentences taken from movie reviews (subjective) and movie

plot summaries (objective) (Pang and Lee, 2004).
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French Sentences Sentences from the Belgian French newspaper Le Soir, scored
by several raters from -3 to 3 in terms of being unpleasant, neutral, or pleasant

(Bestgen et al., 2004).

2.5 Situating this Research Among Previous Work

We see two major groups of approaches to sentiment analysis: those approaches that
use scores for words or phrases to score larger textual units, and those approaches that
use machine learning algorithms based on bag of words type feature sets for machine
learning algorithms. We have found that in general, BOW based classifiers appear to
perform better than purely lexical methods when sufficient training data is available.
In particular, word scoring based methods report accuracies below 80% on the Pang
& Lee movie review dataset (Li et al., 2008; Gamon and Aue, 2005; Harb et al., 2008),
while BOW based methods easily exceed 80%, with the best results exceeding 90%
accuracy. In addition, there is work in combining the results of a BOW classifier with
the output of a lexical system, which is often able to produce results that are better
than either classifier independently.

This method combines machine learning methods with automated scoring meth-
ods, but in a different way from previous combinations. Previous combinations re-
quired training a complete BOW based classifier, and combining that with some word
score based features. Our work uses scoring methods to help produce novel inputs
to a machine learning classifier in order to condense the feature set, which has the
advantage of being much faster to learn.

We examine our method in comparison to BOW, not because simple BOW is the
best system, but because it forms a key component to the best systems, and could
easily be replaced by our method in such combination systems.

We found the work by Martineau and Finin (2009), weighting the inputs to an
SVM BOW classifier by TF-IDF scores, to be most related to our method. However,
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while both methods modify the features based on word scores, they are still very
different — the TF-IDF weighting does not decrease the size of the feature set, while our
method condenses the input to the classifier into a much more compact representation

that can be learned quickly by a machine learning algorithm.



Chapter 3

Reducing the Feature Space
through Word Scores

The Bag of Words (BOW) approach to features for machine learning of sentiment
analysis and other similar tasks involves a very large, sparse set of features. This
feature set is slow to train, and the sparsity may make it more difficult to learn from
rarer but still important words. A different approach to learning sentiment involves
automatically learning word scores, and then determining scores for documents based
on the sum or average of those scores. This scoring approach can be very quick
to learn, but is not generally as effective at learning sentiment as machine learning
approaches. This chapter describes a method of using word scores to develop a
“numeric” feature set for machine learning based on the distribution of word scores
in a document across a number of ‘bins’. This feature set is much smaller than a BOW
feature set, while providing more information than a single overall score produced by

a word scoring method.

28
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3.1 Generating Numeric Features from Scored Words

The approach to reducing the feature space involves 3 basic steps, illustrated in Figure
3.1: computing a score for each word representing the strength and polarity of its
sentiment, counting the number of words in each document in each “bin” of scores,
and learning from these counts using a machine learning algorithm. This greatly

condenses the feature set, making it much less sparse.

Score

Generate word scores

NS

g

Count & Bin

Count the number of scores in each "bin" in each document to
generate features

NS

Learn

Run a machine learning algorithm.

Figure 3.1: The basic process

The documents used to compute the word scores may or may not be the same

as the documents used to train the machine learning algorithm. In addition, these
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Table 3.1: Binning the words

Bin range Words in range Feature

[0.0,0.2) 1 001
[0.2,0.4) 5 005
[0.4,0.6) 70 0.70
[0.6,0.8) 20 0.20
0.8,1.0] 4 0.04

Total: 100 1

documents do not have to be scored on the same scale — the scoring methods presented
here only require that the word scores can be split into a binary problem. This
could potentially allow for the combination of diverse sources of data for the word
scoring step. For example, if the ultimate goal is to produce a 5 class classifier,
it is straightforward to make use of a combination of sources of data labeled with
2 classes or 10 classes in addition to data labeled with 5 classes to produce word
scores. Combining datasets of different granularities at the machine learning step is
more difficult, particularly if trying to map a less fine grained labeling to a more fine
grained one. While a number of papers feature attempts to score words (or use a
manually created lexicon) and then classify documents by summing or averaging the
scores of words in a document, to the best of our knowledge, using the scores in this
way as features for a machine learning algorithm is novel.

Once we have learned scores for words, we generate features by going through
each document and counting the number of words whose scores place them in each
bin. The counts in each bin are normalized by the number of scored words in each
document, so that each feature represents the proportion of words with scores in that

range. This is demonstrated in Table 3.1.
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3.1.1 Simple Scoring Methods

We explore three simple ways of computing a score for words based on counting
their frequencies in positive and negative documents. In all of the metrics below,
a word which appears only once or twice but in one kind of document by chance
could receive a very strong score; for this reason, we filter out words which do not
occur some minimum number of times in some minimum number of documents. The
following notation will be used to describe the scoring metrics:

P, N the total number of tokens (words) in all Positive (Negative) documents

wP, wN the number of occurrences of word w in Positive (Negative) documents

Other methods of computing scores, including unsupervised methods, are also
possible, but one advantage of the three presented here is that they are simple to

compute.

Normalized Positive Percentage (NPP) This scoring metric amounts to com-
puting the percentage of the time that a word appears in positive documents, nor-
malized to account for differences in the number of words in positive and negative

documents. This produces a value between 0 and 1.

wP

P N

This method was developed independently but was later learned to be a special case
of the method introduced by (Lacey, 2005), as part of an approach to determine

sentiment through average word scores of a document.

Normalized Difference (ND) This scoring method is similar to NPP, but instead
represents the difference between the percentage of positive and negative words. This
method is used in (Dave et al., 2003), with good results for the binary problem as a

classifier based on the sum of scores in a document. This produces a value between
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-1 and 1.
) wP _ wiN
_ _P N
P N

Precision This method was inspired by its use in (Wiebe et al., 2001) for extracting
potential subjective words. It represents the proportion of occurrences of the word
which were in positive documents, but does not account for differences in the number
of words in the sets of positive and negative documents. This produces a value

between 0 and 1.
wP

_— 1.
wP +wN (3.1.3)

precision =

3.1.2 Preprocessing

One other detail is how the data is preprocessed and tokenized. All data is prepro-
cessed to remove non-word characters, excess whitespace, and to convert all words to

lower case.

3.1.3 Example of Generating Numeric Features

Figure 3.2: Example of scoring the word “good”

15
3000

npp =
3005 *+ 7500
goodP =15 = 0-1'258 .

P = 3000 nd = M
goodN =4 3000 T 2500

= 0.515

N = 2500 15

prectsion = 1115

= 0.789
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As an example of how to compute the scores for a word, assume we have counted
the occurrences of words in positive and negative documents and have 15 instances
of the word good out of 3000 total words in positive documents, and 4 instances of

good out of 2500 total words in negative documents, as shown in Figure 3.2.

Table 3.2: Example 5 star Review in Original Form

Excellent sound system, reminds you of being in a movie theatre. Great, Great system

Table 3.3: Example Review Preprocessed and Annotated with Word Scores

0.860 0.655 0.533 - 0.569 0.503 0.548
excellent sound system reminds you of being
0.501 0.518 0.889 - 0.728 0.728 0.533
in a movie theatre great great system

Table 3.4: Features Generated from Example Review; Words: 14 Scored Words: 12
Range Count Feature

0.00-0.10 0 0.000
0.10-0.20 0 0.000
0.20-0.30 0 0.000
0.30-0.40 0 0.000
0.40-0.50 0 0.000
0.50-0.60 7 0.583
0.60-0.70 1 0.083
0.70-0.80 2 0.167
0.80-0.90 2 0.167
0.90-1.00 0 0.000

After scoring all of the words in a corpus, and filtering out words which do not
appear enough times, we can begin generating the features for the documents. As an
example, we go through the process of generating features for one 5 star review. We
show the original text of the review in Table 3.2, the text as our system sees it with

the word scores in (or ‘-’ where the system has not learned a score) in Table 3.3, and
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the counts and normalized counts for each bin in Table 3.4. The normalized counts
then get used as the features for a machine learning algorithm.

After going through this process for a set of documents, we have a set of numeric
features based on the distribution of the word scores that is much more compact than

the BOW representation and can be used with any machine learning algorithm.



Chapter 4

Evaluating Ordinal Problems

The evaluation of machine learning systems is an important aspect that is often
overlooked. While many researchers have examined how to evaluate binary problems,
and some have looked at multiclass problems, there is very little existing work focusing
on evaluating ordinal problems. We consider a number of metrics that we have found
in other studies, along with two novel approaches, and perform our own experiments
to determine which measure we should use in the ordinal case. In order to facilitate
the discussion, we narrow our focus slightly from ordinal problems as a whole to
ordinal problems with certain restrictions on relative costs of errors, which we feel are
appropriate for a great deal of ordinal domains, including sentiment analysis, but not
all. We examine how the different error metrics relate to each other, and also analyze

a scenario where we believe three of the measures do not perform as intended.

4.1 Defining the Type of Domain

In order to facilitate discussion of the sort of domain we are interested in, we present
some constraints on the costs associated with different errors, as shown in the in-

equalities of (4.1.1). The cost of misclassifying an example of class k as class j is

35
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denoted by cost(k, 7). The first two conditions indicate that it is always preferable to
chose a class that is closer to the optimal class given that the direction of the error
is the same, while the second two impose additional constraints on the size of cost
differences which can exist if the direction of the error differs. As an example, in a 5
class ordinal problem where the target class is 3, the first two conditions mean that it
is always preferable to chose class 4 over class 5, or class 2 over class 1, while the last
two conditions mean that it would always be preferable to chose class 2 over class 5,
or class 3 over class 1. Note that we do not require that cost(k, k+n) = cost(k, k—n),
we only require that differences between costs of errors that are the same number of
classes away from the target not be greater than differences between costs for errors

with a larger class difference.

cost(k,i) < cost(k,i +n),i >=k,n>0
cost(k,1) < cost(k,i —n),i <=k,n>0
(4.1.1)
cost(k,k —n) < cost(k,k+n+1),n>0
cost(k,k +n) < cost(k,k —n—1),n>0

We feel that these are suitable constraints for the text analysis domains that we
examine in this thesis, along with a large subset of all ordinal domains. However,
one can imagine an ordinal scenario where these constraints may not be met. For
instance if a classifier was determining if patients complaining of chest pain should be
sent for emergency surgery, sent for further tests, kept for observation, or sent home,
the ideal classifier should probably generally err on the side of more treatment rather
than less, while the cost of being off by one is very different when the difference is

emergency surgery vs. more tests instead of keep for observation vs. sent home.
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4.2 Measures

We selected a variety of measures to examine through reviewing previous work on
ordinal problems in a variety of domains. We again note that the majority of work

has simply reported accuracy without considering other measures.

Accuracy (ACC) is frequently used as an evaluation metric. It is simple, intu-
itive, and represents the proportion of correctly classified examples. However, beyond
problems inherent in even binary problems, in the ordinal case it does not provide
any indication of the severity of the error. Accuracy ranges from 0 to 1, with 1 being

ideal.

Accuracy within n (ACC1, ACC2, etc) represents a family of measures which
are similar to accuracy, however, they allow for a wider range of outputs to be con-
sidered “correct”. In the case where the correct output is 4 stars, outputs of 3 stars
and 5 stars would be considered accurate within 1, along with the correct output of 4
stars. When there are k classes, accuracy within k — 2 includes all outputs as correct
except for the worst possible kind of error, that is, mistaking class k& with class 1 or
vice versa. These measures, like accuracy, range from 0 to 1 with 1 being ideal.

These measures provide a more qualitative picture of the performance of the
classifier and the severity of its errors, while greatly summarizing the information in
a confusion matrix. It is not, however, the intention that they be used as stand alone
performance measures in most cases. While this concept is not entirely novel (Dikkers
(2005) uses the concept of “percentage correct within 1” for ordinal classification of
credit scores), it is not used frequently.

Like all measures, this family provides a summary, and like all summaries, some
information is lost. However, given our constraints on costs, we feel that these mea-

sures preserve the most important information. If detailed costs are known, it could
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be possible to distinguish between classifiers that are equal at all accuracies within

n, however, this is generally not the case.

Mean Absolute Error (MAE) and Mean Squared Error (MSE) are fre-
quently used for regression type problems. These measures are based on the absolute
or squared difference between the desired output and the system output for each
example. Strictly speaking, they make more sense when the problem is not truly or-
dinal and the distances between values are meaningful, however, they do distinguish
between correct output, slightly wrong output, and very wrong output. In this work
we use these measures on the final output of the classifier for numbered categories,
and not on some internal representation of the classifier, such as an output between
0 to 1 that is divided in to different classes based on thresholds. MAE and MSE are
in the range from 0 to infinity, with 0 being ideal.

When trying to devise new measures, we found that if we compute the average
of the accuracies within n, (2F%2"F%=2) where k is the number of classes and a;
represents accuracy within ¢, with a¢ representing simple accuracy, the result is a
measure that is perfectly inversely correlated with MAE but in the range from 0 to
1, with 1 being ideal. We can also express MAE and MSE in terms of a weighted

sum of the accuracies within n, as shown in equation (4.2.1), where k represents the

number of classes, ay_; = 1, and ag represents simple accuracy.

k-1
MAE = Z n(a, — ap-1)
n=1

k-1

MSE = ZnZ(an — ap—-1)

n=1

(4.2.1)

Linear Correlation (Correl) measures a linear relationship between two sets of
numbers. A perfect classifier would have a correlation of 1. However, given that
correlation measures the relationship between values regardless of the actual values,

it is also possible for a classifier to be well correlated but to have output which is
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incorrect, but in this unlikely scenario the incorrect output could be linearly scaled in
some way to produce correct output. Correlation ranges from -1 to 1, although will

usually be from 0 to 1.

Normalized Distance Performance Measure (NDPM) is a measure intro-
duced by (Yao, 1995) that is designed for information retrieval in cases where a user
has established relative preferences for documents. This can be applied to ordinal
classification when we assume that the user is indifferent towards documents appear-
ing in the same class, and prefers documents from a higher class to those of a lower
class. In this respect, this measure seems appropriate for purely ordinal situations
where we do not know the magnitude of the difference, only that there is one.

NDPM is calculated based on comparing each pair of “documents” in the set.
d > d' means that the user prefers d to d’, while d ~ d’ means that the user has no
preference between d and d’. If d > d’ in both the user and system rankings, the pair
agrees. If d = d' in one ranking, but d ~ d’ in the other, the pair is compatible. If
d > d' in one ranking, and d’ > d in the other, the pair contradicts. The number of
contradictory pairs between user (u) and system (s) rankings is denoted as C~, and
the number of compatible pairs for which the user assigns a preference but the system
is indifferent is denoted as C*. The DPM is then defined as dpm(>,, >;) = 2C~ +C™.

The DPM is then normalized by comparing it to the worst case, which, as shown
in (Yao, 1995) is the converse of the user ranking — that is, the ranking where the
lowest ranking is assigned whenever the user assigns the highest ranking, the 2nd
lowest ranking is assigned whenever the original assigns the 2nd highest ranking, and
so forth, and not the reverse list of the rankings.

dpm(>y, =)

22
dpm(>u, >'1CL) (4 2 )

ndpm(>y,, =s) =

NDPM ranges from 0 to 1, with 0 being ideal.
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ROC for Ordinal Classification (VUS) has been proposed by (Waegeman et al.,
2008b) using the volume under a 3d surface (VUS) as opposed to the area under a
curve as is used in the AUC measure for binary classification. (Waegeman et al.,
2008a) introduces an efficient dynamic programming algorithm to calculate the VUS.
The VUS, like AUC, ranges from 0 to 1.

A major disadvantage of this approach is that even the efficient algorithm still
takes some time to compute when being calculated on a few thousand examples,
while the other measures are trivial to compute. This is significant when many fairly
large experiments are being conducted. Another issue is that there is an intermediate
value which consists of the product of the number of examples from each class for
which overflow can be a concern. A 10 class problem with 100 examples per class is
enough to cause overflow in a Java long variable, while a 5 class problem can have
over 5000 examples per class. We found that this method performed poorly in initial

experiments and did not continue to use it.

Accuracy + Correlation (A+C) is a measure constructed simply by averaging
the accuracy and correlation. We were motivated to try this combination in an
attempt to overcome the shortcomings of accuracy by combining it with a measure
that provides some information about the severity of the errors. In theory this result
could range from -1 to 1, but in practice, negative correlations are only seen for very
poorly performing classifiers, so the range can easily be truncated to 0 to 1, by setting

any negative values as 0.

4.3 Desirable Qualities of an Evaluation Measure

Comparing evaluation measures is a task made difficult by the virtue of it being hard
to define exactly when a measure is better than another, particularly in a general

sense.
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We feel that the accuracies within n summarize the overall picture and preserve
the most important information for this type of ordinal problem. For this reason, we
analyze the correlations between the other metrics and the accuracies within n, and
we are looking for a measure that correlates well with all of the accuracies within n.
In the particular domain of ordinal sentiment analysis, we feel that “off by one” type
errors are much less serious than errors that are at the opposite end of the scale, and
so we emphasize correlation with the higher accuracies within n.

In addition, given a domain where the inequalities presented in (4.1.1) are satis-
fied, we can define a scenario where one classifier is indisputably better than another.
If accuracy within n is higher for each n (or higher for at least one and equal for
others), the system with the higher accuracies within n is superior. By definition,
accuracy cannot distinguish between two classifiers that have the same accuracy but
are different at some higher n, likewise for each of the individual accuracies within n.

Finally, we need a measure that does not require a careful consideration of all
costs, as these costs are not precisely known. In some ordinal domains, and even for
some particular applications in text analysis domains, it may be possible to define
such costs in detail, however, given that this thesis does not focus on a particular
application it is not feasible to do so here. We note that MAE and MSE are effectively

simple cost weightings on the error.

4.4 Examining Correlations Between Measures

We build classifiers using the DVD reviews in the dataset from (Blitzer et al., 2007).
These experiments make use of an early attempt to reduce the feature size of bag
of words based sentiment analysis; in this case, we used word scoring techniques to
identify the most positive and most negative words to use as features; these results
are only used to judge the correlations between measures. We use 2500 reviews drawn

at random from the collection of 34,741 reviews included in the “unlabeled” files to
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Table 4.1: Correlations Between Error Measures (absolute values), Average of 4 clas-
sifiers, imbalanced dataset
MAE MSE Correl NDPM A+C ACC ACCl1 ACC2 ACC3

MAE 1 0944 0.256 0.065 0.384 0.523 0.904 0874 0.775
MSE 0.944 1 0234 0014 0272 0226 0923 0944 0.898
Correl 0.256 0.234 1 0.821 0955 0.307 0.006 0.122 0.364
NDPM 0.065 0.014 0.821 1 0819 0366 0.285 0.117 0.222
A+C 0.384 0.272 0.955 0.819 1 0576 0.069 0.138 0.343
ACC 0.523 0.226 0.307 0.366 0.576 1 0205 0.104 0.096
ACC1 0.904 0923 0.006 0.285 0.069 0.205 1 0924 0.696
ACC2 0.874 0944 0.122 0.117 0.138 0.104 0.924 1 0.744
ACC3 0.775 0.898 0.364 0.222 0.343 0.096 0.696 0.744 1

filter out the top and bottom 25% of words that are most associated with positive and
negative documents to help reduce the number of features, and another set of 2500
reviews also drawn at random from the same set to generate a bag of words feature set
using the words selected in the first step as features. We then train classifiers on the
features as implemented by WEKA with default settings (Witten and Frank, 2005) to
perform 10 fold cross validation. We used 2 base classifiers, SMO and J48, and we use
each of those alone and wrapped with the OrdinalClassClassifier method discussed in
(Frank and Hall, 2001), for a total of 4 distinct classifiers. This experiment has been
published in (Gaudette and Japkowicz, 2009).

1 are shown

The absolute value of the linear correlations between the measures
in Table 4.1. When we examine classifiers constructed on this dataset, MSE clearly
correlates most highly with all of the accuracies within n, while MAE correlates better
with simple accuracy but not as well with the accuracies within n, particularly for
higher n. However, all of the other measures are very far behind.

When looking at the results of individual folds, there are cases where all accura-

cies within n (including simple accuracy) for one fold agree on the better classifier,

yet correlation, NDPM, and accuracy + correlation are best for the worse classifier.

1 As calculated using the CORREL function in Microsoft Excel 2007
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Table 4.2: Demonstrating flaws in metrics; A > B means that A is superior by the
metric to B
Target Output A Output B Measure A B

1 ACC 05 05 A=B
ACC1 07 06 A>B

ACC2 07 07 A=B

ACC3 09 09 A=B

MSE 36 39 A>B

MAE 12 13 A>B
Correl 0.12 015 A< B
A+C 031 032 A<B
NDPM 045 044 A< B

U O W W o W W N = =
= U = o QO W R R A
= OU = b QO QO = N W

This suggests a problem with these measures — they are not choosing the superior

classifier.

4.5 Examining Agreement with Accuracies Within

As established previously we view the set of accuracies within n as summarizing
the most important information about a classifier for ordinal applications given our
constraints on the costs of different kinds of errors. In particular, if each accuracy
within n for one classifier is equal to or greater than the equivalent accuracy within n
for a second classifier (with at least one being greater), the first classifier is superior.
A measure which does not always agree with this assesment is not a good measure
for this task.

In Table 4.2, we demonstrate that some metrics can produce results in which an
inferior classifier is deemed to be superior by some of the measures through presenting
a simple example with 10 data points, with one difference between the two classifiers.
Classifier A meets our definition for a superior classifier, as in a case where the target
is 3, it predicts 4 and B predicts 1. Both MAE and MSE agree with this assessment,

while the individual accuracies within n find no difference except for ACC1. Classifier
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B is deemed superior by correlation, accuracy + correlation, and NDPM. Given that
MSE and MAE can be expressed as weighted averages of the accuracies within n, it

is not possible for this flaw to apply to them.

4.6 Conclusions

Both the experimental results examining the correlations of the metrics, and the ex-
ample of how correlation, accuracy + correlation, and NDPM can at least sometimes
find that an inferior classifier is better, show that of these measures, MAE and MSE
are most desirable for the subset of ordinal problems meeting the constraints we de-
fined for the magnitude of the costs. Given our particular domain, we feel that MSE is
most appropriate as we want to absolutely minimize the largest errors at the expense
of potentially having more small errors. This is despite the fact that neither of these

two measures is truly ordinal by design.



Chapter 5

Parameter Settings

In this chapter, we test the three proposed scoring methods, experiment with varying
numbers of bins, and finally, test several alternative machine learning algorithms to
optimize speed and performance. We perform these tests using two different datasets,

each of which is used as both a binary and ordinal problem.

5.1 Datasets

In order to determine reasonable settings for our system, we use two different publicly
available sentiment analysis datasets, and use each as a binary and as an ordinal
problem. The first set is the electronics reviews from (Blitzer et al., 2007), which we
will refer to as the electronics dataset. This set consists of user reviews collected from
Amazon.com, and rated on a 5 star scale. The authors eliminated reviews of 3 stars,
as their focus was on the binary problem, and they considered reviews of 3 stars to be
ambiguous; however, for ordinal tests, we treat this as a 5 class classification problem
that has no examples of class 3 in order to preserve the larger gap between a 2 star
and 4 star rating for the evaluation methods, while in the binary case, less than 3

stars is negative and over 3 stars is positive. The second dataset consists professional
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movie reviews by one author (Steve Rhodes, also referred to as author A) compiled
by (Pang and Lee, 2005), which we will refer to in this chapter as the Pang dataset.
The reviews in this dataset consist of only the subjective elements and are scored
both as a 4 class ordinal problem and on a scale from 0-1. For the ordinal problem,
we use the 0-3 scale, while for the binary problem, we treat reviews with a score of

0.5 or less as negative and the rest as positive.

5.2 Methodology

In order to test a wide variety of options relatively quickly, we use 5 fold cross vali-
dation except where otherwise noted. Results on ordinal problems will be compared
using Mean Squared Error (lower is better), while results on binary problems will be
compared using AUC (higher is better).

For the machine learning algorithms, we use the implementations found in WEKA
3.6.1 (Witten and Frank, 2005) with default settings except where otherwise noted,
and access these through the Java API. One major exception is that for SMO classi-
fiers, the option to “fit logistic models” was found to substantially improve AUC and
so we use it in all SMO classifiers. Running times reported in this chapter include the
time taken to load all of the files and perform a 5 fold cross validation, and are run
on a laptop with a Pentium M 1.73 GHz processor, and a memory limit of 1200mb

for the Java virtual machine.
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Figure 5.1: Influence of the number of bins on total time

5.3 Experiments

5.3.1 Determining appropriate scoring methods and num-

bers of bins

The purpose of this experiment is to determine which scoring method(s) are best and
to examine the effects of varying the numbers of bins. We use the SMO classifier
(WEKA'’s implementation of SVM) as it has shown promise in preliminary work. We
test the three scoring methods with a variety of different numbers of bins on the
ordinal and binary versions of the two datasets, using 5 fold cross validation. The
influence of the number of bins on the time required to train the classifiers is shown
in 5.1, and the performance results are shown in figures 5.2 and 5.3.

Overall, we find that the differences between different numbers of bins and scoring

methods are quite small over a range of possibilities. While error bars are not shown
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in these graphs, generally most of the results are within the 95% confidence range of
the best result. Precision is most often the best scoring system.

For the binary problems, shown in figure 5.2, using as few as 10 bins produces
good results on one problem, but not on the other. Overall, 25 bins seems to be a
good choice for a default setting as the results are good on both datasets. As the
best performance is at or below 25 bins in both cases, and increasing the number of
bins slows the classifier down, there seems little reason to consider using more than
25 bins for binary problems.

Results are more mixed for the ordinal problems, shown in figure 5.3, but gen-
erally, they appear to benefit from using more bins than previously suggested for the
binary problems. The electronics dataset seems to benefit from increasingly large
numbers of bins, however, this produces a slower classifier. 50 bins seems to be a
good first choice considering both datasets; it produces close to optimal results on
both datasets, while still being relatively fast.

The precision scoring method nearly always produces the best results overall.
The only exception is on the ordinal Pang dataset, where all 3 scoring methods
produce incredibly close results at 32 bins.

Thus, the recommendations from this study would be that if using SVM as the
base classifier, use precision scoring, and use 25 bins for a binary problem and 50 bins
for an ordinal problem. If there is time for further optimization of the parameters,
there seems no point in searching above 50 bins for the binary problem, while the
ordinal problem may have improved performance above 50 bins, and probably would
not benefit from going lower than 32. However, while it is possible to make bad
choices for the number of bins for a particular problem, most choices in the range of

10-100 bins will be very close to the best.
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Table 5.1: Several algorithms on the Ordinal Pang Dataset with 50 bins
Algorithm MSE Accuracy Time (S)
SMO (Poly kernel) 0.501 0.558 20.1
SMO (PUK kernel) 0.453 0.595 112.5
SMO (RBF kernel) 0.480 0.566 123.1

BayesNet 0.519 0.559 13.5
MultilayerPerceptron 0.556 0.547 525.4
RandomForest 0.666 0.506 18.2

Kstar 0.702 0.499 592.5

NaiveBayes 0.705 0.489 15.7

REPTree 0.755 0.467 13.9

J48 0.833 0.472 17.3

5.3.2 Testing a wide range of algorithms

In this section we will investigate whether SMO is a good choice of algorithm, or
whether there are other algorithms we should consider. The times reported here are
for a single run of 5 fold cross validation. Differences within a few seconds may not
be significant, however, as shown in Table 5.1 most of the time differences are quite
large.

We select a number of very different algorithms and use them with the default
implementations in WEKA in order to search for alternatives that compete with SMO
with respect to both speed and performance. We compare all classifiers using 50 bins,
as this was a good choice for SMO; while this number of bins may not be optimal
for all classifiers, given the previous results which imply that the number of bins
does not make a large difference within a wide range, we feel that a classifier that is
substantially worse than SMO with this setting is not likely to be competitive with
SMO at any setting.
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Table 5.1 shows the performance of a selection of classifiers along with two dif-
ferent kernels for the SMO algorithm, compared with the default SMO polynomial
kernel which was used in the previous experiments, sorted by MSE.

The two alternate SMO kernels perform well, however, they are considerably
slower than the polynomial kernel. The PUK kernel performs best of the two and
also appears to be faster than RBF. The BayesNet classifier is of interest as its
performance is quite similar to our baseline, while being considerably faster. Mul-
tilayerPerceptron’s performance is not dramatically worse than the baseline, but its
speed is and we will not consider it further. All remaining classifiers are markedly

inferior in performance.

5.3.3 Further testing of BayesNet and SMO with PUK Kernel

In this experiment, we compare BayesNet and SMO with PUK with varying numbers
of bins to our baseline SMO results, in order to determine the impacts of these choices
on speed and performance and whether either of these algorithms is a worthwhile
choice.

On the binary electronics dataset, as shown in figure 5.4, PUK requires far longer
to obtain results that are not significantly better than the baseline, while BayesNet
is faster than the baseline, but slightly worse performance wise.

The results on the ordinal Pang dataset are shown in Figure 5.5. On this dataset,
SMO with the PUK kernel remains substantially slower than SMO with the linear
kernel on the ordinal Pang dataset, and remains so even with small numbers of bins.
The initial selection of 50 bins is best in terms of performance, while 25 bins appears to
be a reasonable compromise between between performance and time. However, even
with 10 bins, this algorithm is considerably slower, and with 10 bins, the performance
advantage that we see with 25 or more bins disappears. BayesNet is faster than the

SMO baseline on this dataset, while also achieving good performance with small
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numbers of bins.

Given the gap in training times, and the fact that this method’s primary benefit is
speed, we will not consider the PUK kernel further, however, there may be situations
where speed is less of a concern where this option would be useful. BayesNet, on the

other hand, remains promising.

5.3.4 BayesNet vs. SMO on all test datasets

Now that we have determined that BayesNet is competitive on performance and is
fast, we will look at BayesNet in comparison to SMO on all datasets and with a wide
range of bins, as well as showing how the differences compare with the 95% confidence
range of the SMO results.

On the ordinal Electronics dataset, shown in figure 5.7a, BayesNet is consistently
performing better than SMO although both are close. All of the BayesNet results fall
within the 95% confidence range of the best SMO result, however, the best overall
results are with BayesNet and many of the BayesNet results perform significantly
better than many of the SMO results. On the ordinal Pang dataset, shown in figure
5.7b, both the best and the worst results are obtained with SMO, and 4 out of 6 of the
BayesNet results are within the 95% confidence range of the best result. BayesNet
appears to have a small advantage over SMO in terms of performance on the ordinal
datasets, but not enough to establish a significant difference.

On the binary problems, shown in figure 5.6, the two classifiers are very similar
in terms of performance, with all results falling in the 95% confidence range of the

best. However, SMO is consistently producing better results.

5.3.5 BayesNet vs. SMO speed analysis

Finally, we would like to demonstrate the time differences between these algorithms

in a somewhat more rigorous, controlled fashion than the previous tests. In order to
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do this, we perform 3 runs of 5 fold cross validation using varying numbers of bins
on the ordinal Pang and binary electronics datasets. We compare some of the better
performing numbers of bins for BayesNet with SMO classifiers built using a small but
reasonably performing number of bins (5 for the ordinal dataset, 10 for the binary
dataset), the optimal number of bins found for that particular dataset (32 for the
ordinal, and 10 for the binary), and, since on the binary dataset these were both 10,
we also include our overall recommendation of 25 bins. This allows us to compare
both the fastest and the best performing SMO classifiers to the BayesNet classifiers.

In order to minimize the effects of other CPU use, these experiments were done
within a short time period, and with the same background conditions. We chose
these two test datasets as they had the smallest time differences in preliminary work.
Error bars are not shown here as they are very small; the times recorded were quite
consistent from run to run, varying by 0.5s using SMO with 32 bins on the ordinal
Pang dataset, and less than 0.25s in all other cases.

Time differences are very significant in the Ordinal case, as shown in Figure
5.8a. SMO with 32 bins takes nearly twice as long as BayesNet with 20 bins — and
a substantial part of the time recorded here is the time to read in datasets. This
is presumably because SVM handles ordinal classification by constructing multiple
binary classifiers; in addition, BayesNet performs best with fewer bins. In terms of
performance, the BayesNet classifiers compare well to the results with SMO; while
the differences are not large enough to be significant, BayesNet is performing best.

In the Binary case, shown in Figure 5.8b, the time differences are much smaller,
with the differences between SMO with 10 bins and BayesNet with 25 bins not being
significant using a T-test. Given that the time differences here are much smaller than
in the ordinal case, performance slightly favours SMO, and SMO is a bit less sensitive
to the number of bins chosen, we will continue to recommend SMO with 25 bins in

the binary case.
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5.4 Conclusions

Given that the primary motivation of using this feature extraction method is speed,
we will focus on using BayesNet with 25 bins for ordinal problems as performance is
slightly better while being much faster, and SMO with 25 bins for binary problems,

as performance seems slightly better with only a small speed penalty.



Chapter 6

Experiments

This chapter presents the results of comparing the numeric scoring method described
previously with a baseline Bag of Words (BOW) method. In order to do so, we test
the two methods on a variety of datasets from different sources. The numeric method
is performed using 25 bins in all cases, with a BayesNet classifier for ordinal problems
and SMO classifier for binary problems.

We consider a wide selection of datasets. We group them here into document level
sentiment analysis, short sentiment analysis, and other related problems. Roughly
speaking, the short texts represent up to a few sentences, while the documents are
generally longer; but while there is a clear distinction in terms of the average size of
elements in these datasets, there is overlap for particular instances. The datasets are
described in detail in section 2.4.2.

In order to thoroughly test the numeric method, we will perform 10 x 10 Cross
Validation on the smaller datasets, however, this is not possible on all datasets due
to their size or the availability of test data. As discussed in Chapter 4, we use Mean
Squared Error (MSE) to compare error for ordinal cases, and Area under the ROC
curve (AUC) for binary cases, and also report accuracy on all cases. We include

95% confidence intervals where repeated tests were run, and when these are close, we
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use a T-Test to demonstrate statistical significance. We will report p-values where
they fall in the borderline of significance, between 0.1 and 0.01 so that the reader
may make their own judgements in these more borderline cases. Where available and
comparable, we present the results obtained by the creators of the dataset. We note
that these are not always provided, or, in other cases, we did not use the data in the
same way and the results are not comparable. We also include the results of a simple
majority class classifier on the same cross validation or training/testing split used for
our other results.

Two different computers were used to run these experiments. One machine is a
laptop with a Pentium M 1.73Ghz processor and 4400 RPM hard drive. The other is
a desktop computer with an AMD Athlon 64 X2 5200+ Dual Core processor running
at 2.7Ghz. The Java Virtual Machine on the laptop was given 1200mb of RAM, while
on the desktop it was given 1500mb. Unless otherwise noted, experiments in the same
group are run on the same machine, with the laptop generally being used for shorter
experiments. The reported times are meant to highlight large differences, and include
the time to load the documents, and then generate the features, train, and test them,
averaged over the 100 runs for the datasets where cross validation is performed, or

for the single classifier where it is not.

6.1 Document Level Sentiment Analysis

6.1.1 Amazon Reviews

This dataset consists of online user reviews across 4 categories and was used in (Blitzer
et al., 2007). As shown in Table 6.1, the numeric scoring method is always slightly
more accurate with substantially higher AUC, while also being considerably faster
than the BOW method, but neither performs as well as the linear predictor method

used in (Blitzer et al., 2007). The Electronics portion of this dataset was used for
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Table 6.1: Amazon reviews, BOW vs. Numeric, Accuracy, AUC, and Time

Dataset Type Accuracy AUC (IE:I?:S)
Numeric 0.801 =+ 0.005|0.874 =+ 0.004 | 0:01.0
Electronics BOW 0.791 £ 0.005 | 0.791 =+ 0.005 | 0:22.2
Linear Predictors | 0.844
Numeric 0.797 4 0.005 | 0.865 =+ 0.005 | 0:01.4
DVD BOW 0.775 =+ 0.006 | 0.776 =+ 0.006 | 0:37.8
Linear Predictors | 0.824
Numeric 0.768 4+ 0.005 | 0.839 =+ 0.005| 0:01.4
Books BOW 0.754 <+ 0.006 | 0.754 =+ 0.006 { 0:42.9
Linear Predictors | 0.804
Numeric 0.814 =+ 0.006 | 0.896 =+ 0.004 | 0:01.0
Kitchen BOW 0.809 =+ 0.005 | 0.809 4 0.005 | 0:23.5
Linear Predictors | 0.877
. Numeric 0.796 =+ 0.003 | 0.874 = 0.002 | 0:04.6
All Data BOW 0.791 +0.002 | 0.791 = 0.002 | 10:00.1
b Numeric 0.795 =+ 0.005 | 0.869 =+ 0.005 | 0:04.9
Average BOW 0.782 =+ 0.006 | 0.782 =+ 0.006 | 2:06.5
Majority © 0.474 0.500

2Qne classifier trained on all datasets. BOW classifier is 2x10 CV, all other classifiers 10x10 CV

bAverage performance of the individual classifiers over all datasets and total time to train the
individual classifiers

¢The results for the majority classifier are the same for all datasets given the same seed for the
split of the data into folds
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parameter tuning. These datasets were manually balanced such that each class rep-
resents 50% of the documents.

In this case, we also chose to look at how a classifier trained and tested on all
datasets together performed in comparison to the average of all classifiers. We found
that both can train a classifier using all of the data that is slightly better than the
average performance of the individual classifiers, however, training this classifier is
very, very slow for the BOW method — so much slower we only performed 2x10 CV,
and used the faster desktop computer, rather than 10x10 CV and it still took many
times longer to train. On the other hand, the numeric method trains a combined

classifier slightly faster than the sum of the individual numeric classifiers.

6.1.2 Large Amazon Datasets

This data is a superset of the smaller Amazon reviews used in the previous section.
It maintains the original skewed distribution of online user reviews, however, these
also do not include 3 star reviews. We use 3 categories for which over 100,000 reviews
are available, and in all cases, these results use a test set of 10,000 reviews, which is
larger than the total number of documents in most of the other data sets. We are

not aware of any published results directly on these large datasets.

Varying Dataset Size The first stage presents a wide cross section of dataset sizes
with both the numeric method and the bag of words method in order to demonstrate
how both methods react to increasing amounts of training data, on both ordinal
and binary datasets. We demonstrate that the time taken to train using the Bag
of Words dataset grows much faster than the time taken to train with the numeric
method. These experiments were performed by running the numeric classifier for
a given number of documents and then the BOW method. Due to some common

preprocessing of the data, the method which is run first has an advantage in terms of
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Table 6.2: Books Large data set, Ordinal
Numeric BOW
# of Time Time
reviews MSE  Accuracy (h:mm:ss) MSE  Accuracy (h:mm:ss)
1000 1.826 0.603 0:00:07 1.897 0.579 0:00:19
2000 1.638 0.624 0:00:09 1.784 0.581 0:00:54
5000 1.530 0.630 0:00:19 1.640 0.607 0:28:39
10000 1.393 0.633 0:00:37 1.439 0.642 2:49:02
15000 1.315 0.624 0:01:22 1.277 0.670 8:23:31
30000 1.263 0.622 0:05:26
75000 1.200 0.628 0:08:58 Majority Classifier
150000 1.162 0.634 0:35:10 2.034 0.630
300000 1.056 0.653 1:14:54

time, which is often significant when comparing the smallest datasets; this situation
is reversed in the case of the ordinal DVD reviews, and the effect of this reversal will
be examined in the next section.

All combinations are run with a range of numbers of training documents. In
all cases, training sizes of 1000, 2000, 5000, and 10,000 reviews are used, along with
several larger sets based on fractions of the available data. We did not train BOW
on the largest numbers of documents as it was already very time consuming to train
those classifiers using 10,000-20,000 documents, and the time was increasing rapidly.
Figure 6.1 shows the time differences graphically on the Books dataset, for which we
had the largest amount of data to use. For comparison, we include the results of a
simple majority class classifier on the same test set.

In the case of ordinal book reviews, shown in Table 6.2, the best overall accuracy
is obtained with the BOW classifier developed with 15,000 reviews; however, this
classifier took over 8 hours to train, and is also considerably worse by MSE than
many of the numeric classifiers. With small training sets (1000-5000), the numeric
classifier is more accurate with a modestly improved MSE, and also faster (particularly

relevant with the dataset of 5000). With moderate training sets (10000-15000), BOW
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Table 6.3: Books Large data set, Binary

Numeric BOW
revﬁv:/): Accuracy AUC (h:’fxiz?ss) Accuracy AUC (h:rfriz?ss)
1000 0.865 0.812 0:01:18 0.846 0.637 0:00:16
2000 0.872 0.825 0:00:41 0.863 0.675 0:01:48
5000 0.884 0.863 0:01:54 0.876 0.722 0:08:34
10000 0.889 0.877 0:02:58 0.891 0.757 0:46:48
15000 0.900 0.892 0:03:16 0.899 0.776 1:58:09
20000 0.901 0.897 0:03:45 0.906 0.797 3:39:58
30000 0.905 0.900 0:06:22
75000 0.914 0.919 0:15:60 Majority Classifier
150000 0.922 0.935 0:35:56 0.859 0.500
300000 0.929 0.950 1:12:30

performs better by accuracy and is close with MSE; however, BOW requires hours to
train on these datasets. The best overall performance by MSE is obtained using the
numeric features.

For the binary book reviews, shown in Table 6.3, at a given amount of data
the accuracy for both features is similar, while the AUC for the numeric features is
considerably better. In this case, we are able to obtain the best accuracy using large
datasets with the numeric method. The numeric method can process large datasets
very quickly.

In the case of ordinal music reviews, shown in Table 6.4, the imbalance is so
severe that it becomes difficult to improve over a majority class classifier; with 2000
or fewer training examples available, the majority class classifier is the best choice
by both measures. However, with more data available, the classifiers trained with
numeric features are clearly the better choice by MSE, and accuracy remains very
close to that of a majority class classifier. Examining a confusion matrix shows that
with more and more data, the classifier improves on identifying the minority classes.

The binary Music dataset, shown in Table 6.5, is by far the fastest for the BOW

method to learn with 10,000 data points. Like in the case of the ordinal version of
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Table 6.4: Music Large data set, Ordinal

Numeric BOW
# of Time Time
reviews MSE  Accuracy (h:mm:ss) MSE  Accuracy (h:mm:ss)
1000 1.272 0.700 0:00:55 1.350 0.637 0:00:17
2000 1.270 0.695 0:00:13 1.352 0.639 0:00:53
5000 1.148 0.699 0:00:29 1.290 0.657 0:27:58
8109 1.078 0.699 0:00:52 1.206 0.662 1:42:40
10000 1.040 0.698 0:01:01 1.218 0.662 3:08:09
16218 1.027 0.694 0:01:26
40545 0.995 0.687 0:03:53 Majority Classifier
81090 1.002 0.691 0:07:54 1.259 0.704
162180 0.956 0.694 0:31:55
Table 6.5: Music Large data set, Binary
Numeric BOW
rev?év:: Accuracy AUC (h:rfrirr?:ss) Accuracy AUC (h:rfrtrr?l?ss)
1000 0.917 0.791 0:00:10 0.904 0.572 0:00:13
2000 0.918 0.809 0:00:12 0.903 0.619 0:00:24
5000 0.923 0.848 0:00:27 0.906 0.675 0:02:44
8109 0.926 0.857 0:00:23 0.915 0.707 0:08:11
10000 0.929 0.869 0:00:49 0.921 0.717 0:13:58
16218 0.932 0.879 0:01:11
40545 0.936 0.900 0:03:39 Majority Classifier
81090 0.941 0.919 0:06:44 0.918 0.500
162180 0.943 0.925 0:26:47
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Table 6.6: DVD Large data set, Ordinal
Numeric BOW
# of Time Time
reviews MSE  Accuracy (h:mm:ss) MSE  Accuracy (h:mm:ss)
1000 1.765 0.597 0:00:06 1.870 0.567 0:00:18
2000 1.489 0.608 0:00:08 1.720 0.580 0:00:52
5000 1.346 0.590 0:00:11 1.531 0.602 0:34:40
5621 1.299 0.600 0:00:12 1.458 0.606 0:39:26
10000 1.338 0.597 0:00:18 1.376 0.623 3:44:20
11243 1.332 0.600 0:00:35
28109 1.276 0.605 0:03:25 Majority Classifier
56219 1.223 0.602 0:03:28 1.970 0.611
112438 1.217 0.613 0:16:05

Table 6.7: DVD Large data set, Binary

Numeric BOW
rev:i/tv::i Accuracy AUC (hflirr?fss) Accuracy AUC (h:rfrii?ss)
1000 0.876 0.826 0:00:14 0.860 0.645 0:00:17
2000 0.884 0.841 0:00:16 0.870 0.691 0:00:31
5000 0.889 0.849 0:00:35 0.885 0.735 0:04:48
10000 0.895 0.867 0:01:11 0.891 0.757 0:33:33
20000 0.907 0901 0:02:11 0.908 0.799 3:01:31
25000 0.911 0.905 0:04:38
50000 0.917 0.915 0:10:40 Majority Classifier
100000 0.920 0.924 0:24:37 0.867 0.500

this dataset, accuracy hovers around that of a majority class classifier, and the BOW
classifier only beats the majority classifier in terms of accuracy with 10,000 examples.
Again, the two methods are similar in terms of accuracy, with the numeric method
having a slight edge with a given amount of data. As noted in other sets, with 10,000
documents, the performance difference by accuracy is quite small.

On the ordinal DVD dataset, shown in table 6.6, we notice that the accuracy
stays within a fairly small range for the numeric method, while it varies more widely

for the BOW classifier — both the best and the worst accuracies come from the BOW
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method. We note that on this dataset the classifiers were trained in the opposite
order as on the other datasets, meaning that the BOW method has a disadvantage
in terms of time due to its time recording some of the common preprocessing steps.

On the binary DVD reviews, shown in Table 6.7, with a given amount of data
the numeric method is always much better in terms of AUC, similar but generally

slightly better in terms of accuracy, but, as with the other datasets, much faster.

Repeated Runs In order to further demonstrate the time differences in the range
of dataset sizes where they are comparable we will focus on a smaller selection of
dataset sizes and look at the effects of altering the order in which the experiments
are performed. This also provides repetition of the results. We chose dataset sizes
with an intent to cover a wide range of allowable training times up to approximately
30 minutes, however note that the time required to train using a particular num-
ber of reviews varied considerably between some of the datasets, with music being
particularly fast.

We perform 4 repetitions of the following process, with training sets of 2000, 5000
(ordinal datasets only), 10000 (binary datasets only), and 100,000 (numeric features
only).

for i = 1..4
Randomly select a 10000 document test set
For each training set size

if 1 is even
train and test numeric method
train and test BOW method

else
train and test BOW method
train and test numeric method

The performance of these tests is shown in Figure 6.2 for the Binary case and
6.3 for the Ordinal case. We notice that results are closest with 5,000 and 10,000

document sets, and performed T-Tests on the closest results. The accuracy difference
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between the two methods is not significant for the Books and DVD datasets with
10,000 documents in the binary case, or for Books with 2000 or DVD with 5000 in
the ordinal case. For 5000 Book reviews in the ordinal case, we found borderline
significance with p = 0.068. In terms of MSE, we found the difference between the
two measures with 2000 Music reviews to be significant with p = 0.012, and for 2000
DVD reviews we found borderline significance at p = 0.071.

When discussing time here, we divide the time into the “setup” time and the
“classifier” time. The setup time includes the time taken to read in the documents
from text files on disk and perform all processing to convert them into the features
given to the machine learning algorithm (in this case, WEKA Instances). As the
system was not implemented with this sort of time comparison in mind, there are a
few particulars that need to be considered. Documents are only read in as needed,
and, in addition, the first time a particular document is used, some initial calculations
common to both representations are performed. The test documents are accessed for
the first time during the very first run of a set, which greatly affects the set up time
of the first run given the large size of the text set.

Because of this, the time for the first run of 2000 is greatly inflated, as it includes
the time to process the 10000 test documents, while the time for the second run is
optimistic. The most realistic setup times would be for the first runs of the larger
tests; furthermore, the “first” runs for the higher numbers of documents are also
slightly faster.

There was a large amount of variance in the setup times, as shown in Figure 6.4.
While the numeric features appear to be slightly faster to set up than the equivalent
BOW scenarios, given this variance it is difficult to make a claim stronger than stating
that this part of the training time does not take any longer for the numeric features
than it does for the BOW features.

However, the difference in the overall training time, shown in Figures 6.5 and

6.6 is striking when we move past 2,000 documents. Setup time for both methods is
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Table 6.8: Ordinal Movie Reviews, BOW vs. Numeric, Accuracy, MSE, and Time

Author Type MSE Accuracy Time (s)

Numeric | 0.580 =+ 0.013 | 0.518 = 0.009 0.83

Schwartz BOW 0.691 =+ 0.020 | 0.510 = 0.009 13.20
Pang & Lee 0.51
Majority | 0.905 0.428

Numeric | 0.478 =+ 0.010 | 0.557 = 0.008 1.48

Berardinelli BOW 0.443 =+ 0.012 | 0.644 =+ 0.007 35.64
Pang & Lee 0.63
Majority | 0.861 0.456

Numeric | 0.634 =+ 0.016 | 0.468 = 0.011 1.05

Renshaw BOW 0.696 =+ 0.020 | 0.496 =+ 0.009 13.39
Pang & Lee 0.50
Majority | 1.012 0.370

Numeric | 0.490 =+ 0.010 | 0.566 =+ 0.007 1.65

Rhodes BOW 0.478 £ 0.011 | 0.609 = 0.006 43.79
Pang & Lee 0.57
Majority | 0.891 0.433

similar with the same amount of data, however, the classifier time for the numeric
method is trivial while it grows very quickly for the BOW method. In the ordinal
case, the numeric classifier trains on 100,000 documents in approximately 1/3 the
time the BOW method takes to train on 2,000, while in the Binary case, the BOW
method on 2,000 documents is only slightly faster.

6.1.3 Ordinal Movie Reviews

The Pang Scale dataset (Pang and Lee, 2005) consists of automatically determined
subjective extracts from professional movie reviews by 4 different authors; one author,
Rhodes, was used to determine the parameter settings, while the others were not.
Results for this experiment are presented in Table 6.8. In the case of Accu-
racy, BOW is significantly better in three of the cases, however, on the reviews by
Schwartz, the numeric method is better with borderline significance per a T-Test

(p = 0.075). However, looking at MSE, the numeric features are significantly better
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for the Schwartz and Renshaw reviews, while BOW is better on the Rhodes reviews
with borderline significance (p = 0.035). In the case of the Berardinelli reviews, BOW
is significantly better. While the performance results are mixed on this data set, it
does show how much faster the numeric method is.

We compare our results to those reported by (Pang and Lee, 2005), noting that
we are approximating the values reported in a graph. Comparing to Pang & Lee
based on accuracy, we find that in one case, the Numeric features appear to be
slightly better than their best result, and in one other case, Pang & Lee’s result is
within the confidence range of our Numeric features. In the two other cases, Pang
& Lee’s result is better than our result for the Numeric feature set. However, we
also note the comparison of their result to our simple BOW; in two cases our simple
BOW classifier appears to be better, while in the other two the results are virtually
the same. This confirms our assessment that this simple BOW is a good baseline to
compare against.

The documents in this dataset are relatively long, well written, by a limited set of
authors, and, as mentioned, contain only the subjective elements. It seems likely that
one or more of those first three factors makes the problem easier for BOW, or perhaps
the numeric method derives more useful information from the objective portions of
the text. However, it should be noted, that if it is indeed one of those factors that
affects the results here, many of the applications of sentiment analysis involve shorter,
less well written texts by a wide range of authors, and the subjectivity extracts are

an extra processing step.

6.1.4 Binary Movie Reviews

This test uses the Cornell Polarity dataset (version 2.0) of binary movie reviews (Pang
and Lee, 2004). Note that this is not the same dataset as the binary split of the ordinal

dataset used to determine parameter settings; it is a set of reviews by many authors
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Table 6.9: Binary Movie Reviews
Accuracy AUC Time (mm:ss)
Numeric | 0.824 =+ 0.005 | 0.896 = 0.005 | 0:03
BOW | 0.850 £ 0.005 | 0.850 = 0.005 | 1:18
Pang & Lee | 0.872
Majority | 0.474 0.500

divided into positive and negative reviews.

In this case, as shown in Table 6.9, the numeric features outperform BOW in
terms of AUC but not accuracy. While the numeric features are faster, the BOW
features may still be fast enough for an application on this size of data set. The SVM
based method in (Pang and Lee, 2004) performed better than either implementation

here.

6.2 Short texts

6.2.1 Movie Review Snippets

These snippets were quite challenging to learn for both methods, as shown in Table
6.10, considering that this is a balanced binary problem.

Looking at the training data, we notice that some of the snippets use very cre-
ative or sophisticated language; there are also several examples of snippets clearly
from borderline reviews that would be difficult for a human to place. For example,
“effective but too-tepid biopic” comes from a positive snippet, while “interesting, but
not compelling.” comes from a negative snippet. We came across at least one snippet
which was in Spanish.

However, while the numeric method outperforms the BOW method the difference

is comparable to that in many other datasets.
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Table 6.10: Movie Review Snippets
Accuracy AUC Time (mm:ss)
Numeric | 0.760 =+ 0.002 | 0.841 =+ 0.002 | 0:05

BOW | 0.739 &£ 0.002 | 0.739 = 0.002 | 19:56
Majority | 0.488 0.500

Table 6.11: Twitter Results
Accuracy AUC Time (h:mm:ss)
Numeric 0.759 0.798 0:00:40
BOW 0.741 0.739 3:30:19
Majority 0.347 0.500

6.2.2 Twitter

The Twitter dataset contains a large amount of noisy training data automatically
labeled based on the presence of the smileys :) (positive) and :( (negative), and a
small amount of hand labeled test data. As such it is not possible to perform cross
validation for randomized experiments.

The numeric method provides a small boost to accuracy, a larger boost to AUC,

and a very substantial decrease in time.

6.2.3 Product Reviews

This dataset consists of identifying opinions with regards to specific features of a

product using a 6 class ordinal scale (-3, -2, -1, 1, 2, 3). There is relatively limited

training data, and the classifications are made based on a small amount of text.
The numeric method improves over BOW in both the binary and ordinal cases,

as shown in Table 6.12.
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Table 6.12: Product Reviews

Ordinal
MSE Accuracy Time (s)
Numeric | 2.635 =+ 0.076 | 0.421 =+ 0.009 0.28
BOW | 3.083 +£ 0.090 | 0.405 = 0.008 6.28
Majority | 4.079 0.346
Binary
Accuracy AUC Time (s)
Numeric | 0.770 =+ 0.007 | 0.839 =+ 0.007 0.43
BOW | 0.746 + 0.007 | 0.731 =+ 0.008 3.90
Majority | 0.601 0.500

Table 6.13: Subjective Sentences

Accuracy

AUC

Time (mm:ss)

Numeric
BOW

Pang & Lee
Majority

0.910 = 0.002
0.880 =+ 0.002
0.92
0.489

0.967 =+ 0.001
0.880 =+ 0.002

0.500

0:05
9:15

6.3 Performance on Other Problems

6.3.1 Detecting Subjective Sentences

This dataset consists of 5000 each of subjective sentences taken from movie reviews
and objective sentences taken from movie plot summaries, resulting in a 10000 element
set. As previously noted the time required for BOW increases mainly with the number
of documents, not with the number of words. The numeric method is superior in all

ways to the BOW classifier on this dataset. The numeric features produce results

that are very close to Pang & Lee’s reported results on the dataset.
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Table 6.14: Congressional Debate Transcripts
Accuracy AUC Time (m:ss)

Segment
Numeric 0.634 0.675 0:5.6
BOW 0.612 0.606 4:22.2
Thomas et al. 0.661
Majority 0.584 0.500
Speaker
Numeric 0.695 0.780 0:5.3
BOW 0.654 0.652 0:17.5
Majority 0.441 0.500

6.3.2 Detecting agreement in Congressional Debate Tran-

scripts

This dataset links the transcripts of debates surrounding various pieces of legislation
with the vote of the speaker on that legislation. The division by ‘segment’ treats each
speech segment independently, while by ‘speaker’ groups all of a speaker’s speeches
about a particular piece of legislation together. This dataset provided separate train-
ing and test sets, and so this represents training on the training set and testing on
the testing set.

As shown in Table 6.14, the numeric method improves over the baseline BOW
method in both cases. One interesting thing to note is that even though the same
amount of text is processed in both cases, the BOW classifier takes many times longer
to train when the training data is divided into 2740 speech segments rather than 1174
speakers, while the numeric classifier is barely affected by this.

We include the result reported by (Thomas et al., 2006) for their basic SVM ap-
proach. They were able to obtain an accuracy of 70.8% through modeling agreement

between speakers and with the same speaker.
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Table 6.15: French Sentences, Binary

Accuracy AUC Time (s)

Numeric | 0.594 =+ 0.011 | 0.614 =+ 0.011 0.30

BOW | 0.561 =+ 0.011 | 0.561 = 0.011 1.94
Majority | 0.533 0.500

6.3.3 Detecting Pleasantness of French Sentences

This dataset consists of 702 sentences from a French language newspaper, rated in
terms of how “pleasant” they are — effectively, distinguishing good news from bad
news.

As shown in Table 6.15, this proved to be a difficult problem for both the numeric
and BOW approaches, however, the numeric approach did perform best and much

more quickly.

6.4 Feature Selection

Another approach one might take to speeding up BOW is the idea of feature selection
— selecting the most relevant features. In this section, we briefly compare the numeric
features, plain BOW features, and BOW features reduced through two fast feature
selection methods, Chi Squared and Information Gain. We use 5 fold cross valida-
tion on the binary electronics (2000 review balanced version), subjective sentences,
and movie review snippets datasets. These feature selection methods both evaluate
individual attributes; methods which evaluate subsets of attributes together exist but
are much slower (Hall and Holmes, 2003).

On the electronics dataset, shown in Table 6.16, all classifiers complete in seconds
but the numeric features are still the fastest. However, in this instance, the feature
selection methods which select 250 features both achieve slightly higher accuracy than
the numeric features, and, while slower, this difference in time may not be meaningful

on a dataset of this size, as both complete in under 10 seconds.



6.4. Feature Selection 84

Table 6.16: Feature Selection, Electronics

Method Features Accuracy Time (s)
BOW 2855 0.786 19.25

Numeric 25 0.790 1.41

Chi Squared 100 0.789 5.70

Chi Squared 250 0.807 8.03

Chi Squared 1000 0.775 14.06
Information Gain 100 0.788 5.24
Information Gain 250 0.807 7.77

Information Gain 1000 0.780 13.52

Table 6.17: Feature Selection, Subjective Sentences
Method Features Accuracy Time (m:ss)

BOW 4041 0.874 11:27.03

Numeric 25 0.911 0:04.24

Chi Squared 100 0.828 0:54.41

Chi Squared 250 0.860 1:12.81

Chi Squared 500 0.877 2:18.88

Chi Squared 1000 0.883 3:54.14
Information Gain 100 0.830 0:55.75
Information Gain 250 0.862 1:22.86
Information Gain 500 0.878  1:56.13

Information Gain 1000 0.883  3:03.52

As shown in Table 6.17, on the subjective sentences dataset, feature selection
by both methods performed slightly better than plain BOW with 500 selected fea-
tures and even better with 1000, and with substantial time savings over plain BOW.
However, the numeric features are still much faster than any of the feature selection
methods, and achieve the highest accuracy by a substantial margin.

Finally, on the Movie Review Snippets dataset, shown in Table 6.18, we again
see that feature selection can save considerable time over plain BOW, and improve
performance slightly with enough features, however, it is still orders of magnitude
slower than the numeric features, and like on the subjective sentences dataset, the

numeric method achieves the best performance.
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Table 6.18: Feature Selection, Movie Review Snippets

Method Features Accuracy Time (m:ss)
BOW 3688 0.732 37:21.3

Numeric 25 0.755 0:044
Chi Squared 100 0.655  0:58.5
Chi Squared 250 0.697 2:15.7

Chi Squared 1000 0.743  3:58.5
Chi Squared 1500 0.748  5:26.7
Information Gain 100 0.654 0:58.4
Information Gain 250 0.691 1:254
Information Gain 1000 0.743 4:24.9
Information Gain 1500 0.748 8:09.4

6.5 Conclusions

The experiments indicate that the numeric features perform better than basic BOW
features in many, but not all, instances across a wide range of datasets, and do so
much faster. Although in some instances the results reported by the dataset creators
are superior, in others, our results are competitive.

The numeric features performed better than BOW in all respects on all of the
datasets with short texts, both sentiment and not, and on ordinal and binary prob-
lems. This covered datasets with a wide range of numbers of documents and quality
of writing, and even different languages, from 702 total sentences for French Sentences
to 40000 training documents for the Twitter dataset.

In terms of datasets with longer documents, the numeric features performed
best as compared with BOW in all instances on the smaller sets of Amazon reviews.
On the larger Amazon sets, we found that with 1000 and 2000 documents, the best
performance was achieved through using the numeric features, while in some instances
with 5000-20000 documents, sometimes the BOW features performed best in terms
of accuracy and in one instance (Books 15000) in terms of MSE as well. In the
Books and DVD datasets in the ordinal case the best overall accuracy at any amount

of data was obtained with the BOW features; however, the best overall MSE was
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from the numeric features. These accuracy differences were less than 2%, while the
amount of time taken to train the BOW classifiers was several hours. Our features
also performed well on the Congress dataset.

On the document level movie review datasets, the results are mixed. The numeric
features perform slightly better on accuracy on one of the authors, and we see the
worst relative performance overall on two of the authors. However, we note that the
MSE differences are relatively large in favor of the numeric features on two of the
datasets, and relatively small in favor of BOW on the other two — on average, MSE
prefers the numeric features. In the binary movie reviews, BOW has higher accuracy,
and while the numeric features retain their advantage in terms of AUC, it is the
smallest gap we see on that measure. These two datasets contain both relatively long
and relatively well written material. While not conclusive, it may be that the numeric
features are particularly adept at dealing with the shorter, less well written material
found in all manner of less formal online discourse including online user reviews.

In addition, we have briefly compared this approach with a feature selection based
approach. While feature selection can improve speed over plain BOW considerably,
and can also increase performance, the numeric features remain considerably faster,
particularly on larger datasets, and exceeded the performance of the best feature
selection methods on two of the three datasets we examined, and was close on the

other.



Chapter 7

Discussion And Conclusions

7.1 Summary

This thesis explored a method of developing a small numeric feature set based on
the distribution of word scores for machine learning of various text analysis tasks,
in particular sentiment analysis. The problem of evaluating ordinal problems in this
type of domain was also considered.

This method was thoroughly tested, comparing its performance to a basic bag
of words feature set over a wide range of ordinal and binary datasets. The ma-
chine learning algorithms were able to learn from the feature set produced by our
method significantly faster than from the bag of words features, particularly with
large datasets, and, in addition, the numeric features nearly always had a performance
advantage. We also briefly compared this method with feature selection techniques,
and found that it maintained a considerable speed advantage over the feature selec-
tion approaches, and that performance was in one case very close to but slightly worse
than the best performing feature selection techniques, and in the other two cases the
numeric method continued to outperform any BOW based method that was tested.

Furthermore, because of this speed advantage, these numeric features allow for

87
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using datasets which are orders of magnitude larger while still training in minutes. In
the experiments, the time required to read in and process the files was the bottleneck,
and we feel that a more refined system (both in terms of the software implementation
and the hardware available) could greatly improve over our simple implementation

for processing large amounts of text files.

7.2 Discussion

7.2.1 Why does this method work?

This work decomposes the problem of learning the sentiment of documents into two
parts: scoring the strength of different words based on their distribution in posi-
tive and negative documents, and then learning document sentiment based on the
distribution of those scores. This produces a compact representation, of around 25
features, compared with thousands for an effective “Bag of Words” approach.

While this decomposition results in the loss of some information — for instance, if
two words appearing together in a document is significant — it appears as if the BOW
representation may be too sparse for such relationships to be learned meaningfully.
It seems as though the machine learning algorithms for the BOW representation are
mainly learning which words are significant indicators of sentiment, but are much
slower at this than simple word scoring methods. It should be noted that Bag of
Words is, of course, a simplification of the original document as well, which loses
information on word order.

This idea can be generalized to the concept of learning something about the
attributes in a simple way and then using that knowledge to help with more compli-
cated learning approaches. In a slightly less general way, the numeric features group
attributes together (in this case, through their scores as determined by the word scor-

ing methods) and the machine learning algorithm learns based on the distribution of
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the attributes over the groups.

In the case of sentiment analysis, simple word scoring methods can learn the
sentiment to a large extent, even when just computed as a simple threshold, but not
as well as machine learning approaches.

While we have attempted to apply this feature extraction method to other non-
text data sets with limited results, we believe that this exact approach would only
work in limited contexts, where the attributes behave similarly to words, in that there
is a large number of sparse attributes and the moderately infrequent ones are most

useful.

7.2.2 Ratio of word count to document count

The idea of trying to filter out less useful words was one avenue that this research
explored. While this did not improve performance, an interesting finding is that words
which appear, on average, several times in the documents in which they do appear
do not seem to be good indicators of sentiment. However, sometimes they receive a
strong score. This includes non-relevant stop words (“the” is virtually neutral and
occurs the most times per document), and subjects whose reviews are skewed one
way or another. In the books dataset, this includes references to well known authors
(“twain”, “tolkien”, “chrichton” are all very positive) as well as topics or genres
(“iraq”, “poem”, “diet” all appear about 3 times per document, and are moderately
positive, very positive, and moderately negative respectively). The words “pan” and
“cash” were also both highly positive and appeared close to 3 times per document; it
turns out that “pan” is from references to “Peter Pan” as well as “pan-something”,
while “cash” referred to the person W.J. Cash.

This helps to explain why presence has been found to perform better than fre-
quency in BOW sentiment analysis; a word being more frequent does not make it

more meaningful to the overall sentiment of the document, while it may help indicate
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the topic.

7.3 Future Work

While this thesis tested 3 different word scoring techniques, there ére undoubtedly
many other possibilities. One particularly interesting avenue would be the application
of unsupervised or lightly supervised word scoring techniques to make use of unlabeled
data.

One idea which we did not have time to fully explore is to learn word scores from
either a broad range of datasets or a more targeted selection for which there is lots
of labeled data available, and adapt it to a new dataset with limited training data
through the process described below. This may also be promising when combined
with machine learning algorithms that can be adapted from one dataset to another
related dataset — and it is much easier to use the numeric representation than a BOW

representation for this sort of adaptation.

1. Generate word scores for each of n similarly sized domains individually.

2. Combine the counts from the n domains to create a master list of word scores,
with constraint that a word must appear in at least d domains (to simplify

computation, we do not also compute a document threshold). Retain counts.

3. Remove “domain dependent” words whose polarity goes from positive to neg-
ative or vice versa with a difference of greater than t (e.g. if ¢t = 0.1, discard
a change from 0.55 to 0.44) between the master list and any of the sub lists.

Possibly define ¢ in terms of bin increments.

4. Count words in a small set of documents from the target domain. Weight counts
by w, and combine weighted counts with master counts to generate new scores

for words. e.g. a word appears 10 times in positive documents and 5 times
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in negativevdocuments in the master list, while it appears 3 times in positive
documents and 1 time in negative documents in the new domain, and our weight
is 5. The counts are then computed as 10435 = 25 positive and 5+1%5 = 10

negative.

As mentioned earlier in this work, this feature extraction method could replace
the BOW component to many of the better systems for sentiment analysis and related

tasks, resulting in a much faster combined system.

7.4 Conclusions

This thesis has shown that it is possible to greatly condense the features used for
machine learning of sentiment analysis and other related tasks for large speed im-
provements. Second, we have shown that these features often improve performance
over a simple BOW representation, and when they do perform worse than BOW it
is not a large amount by MSE. These speed improvements make it possible to pro-
cess data sets orders of magnitude larger than previously attempted for sentiment

analysis, which in turn generally leads to further performance improvements.
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