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Abstract. We provide a set of syntactic tools for structuring large col-
lections of logical theories. Their use is demonstrated by a formalisation
of algebras that are used in describing the semantics of concepts in pro-
gramming languages, but also of more general systems.

1 Introduction

Within the series of RelMiCS, AKA and now RAMiCS conferences we have
seen many algebraic theories, starting with relation and Kleene algebras, which
have diversified considerably to cover more and more application areas. Still,
many of them share a significant common core, and hence it seems adequate to
think about their connections in a systematic way. At the same time, some of
the theories are quite complex. This is similar to the situation in programming,
where one tries to cope with that using suitable structuring mechanisms, such
as inheritance and encapsulation.

In the present paper we attempt a similar structured presentation of some
essential RAMiCS theories. While there is already some work in that direction
in connection with treating these theories with automatic theorem provers [6,
15, 29, 30], we try to modularise further in a number of new and perhaps unusual
ways to pinpoint more clearly which parts of the theories depend on which others.

Of course, there is already a lot of work on structuring larger formal theories.
There is the long series of languages designed in the field of algebraic specification,
like CLEAR [3], CIP-L [2], ASL [67], ACT ONE [14] and CASL [4]. They all comprise
some sort of structuring mechanism, and many show notational similarity to
what we will use in the present paper. However, by their nature they are mostly
restricted to first-order equational logic, whereas we will be more liberal. There
is also work on structuring specifications in Edinburgh LCF [40, 56]. General
structured specification frameworks based on category theory appear in [12, 16,
20, 58, 60, 61]. And there is the interesting dependently typed functional language
Agda [1] with proof assistant, which also allows expressing structured theories.

What we present here deviates from these approaches in that we intro-
duce a number of additional construction mechanisms. Moreover, we forego
the definition of a semantics in terms of operations on model classes or of
pushouts/colimits. Rather, we view our structuring tools as syntactic devices
that abbreviate certain compounds of formulas and can be re-used and instanti-
ated to exhibit common and recurring parts of specifications. For their meaning
we rely on the standard semantics of first-order and higher-order logic.



In motivating the particular ingredients of the theories we present we fre-
quently resort to their use in specifying the semantics of transition systems
and the like. However, as it has been demonstrated in many excellent papers
throughout this series of conferences, the theories have much wider applicability,
and we hope that our methods of structuring will help in extending the algebraic
treatment to many further areas.

2 Theories and Definitions

A theory has a name and may have an imports clause that specifies on which
other theories it depends, a list of sorts (i.e., names for carrier sets), a list of
operators and a list of predicates, each with their typing, a list of axioms (which
should be independent) and a list of properties, starting with the keyword de-
rives, that follow from the axioms. We will only write down the non-empty ones
of these; list items are separated by the symbol

|
| or line breaks, sometimes also by

a horizontal line. For space limitations we usually list only a few of the more in-
teresting/important derived properties. The operators and predicates are called
the constituents of the theory. Occasionally we will mark certain constituents as
hidden, since they only have auxiliary character for formulating certain axioms
in a more convenient and generic way. All non-hidden constituents are visible to
the outside and can be imported by other theories. A theory may also contain a
list of typed variables that are used in the axioms or derived properties. We omit
the explicit definition of variables whose type can be inferred from the typing
of the operators and predicates that are applied to them. We use the standard
convention that all free variables in a logical formula are implicitly universally
quantified.

Definitions are similar to theories except that they do not contain axioms.
Rather they give, following the keywords defined by, definitional equalities or
equivalences for each of their constituents. The only exception are new constants
that may be added without giving particular properties for them.

The distinction between theories and definitions is purely for documentation
purposes. For brevity we will refer to them uniformly as (building) blocks. Blocks
may be freely imported and/or instantiated , possibly under renaming. For the
latter we use simple positional notation, listing the new names between paren-
theses after the block name. The meaning of an import is simple replacement
of the block name by its body (with renaming if specified). If no renaming list
is given, the block is imported with its original names. Hence upon import of
several blocks into another one, identical names mean identical constituents.

An instantiated block may also be used in the axioms, defined by or derives
parts of other blocks; in this case its constituent information is ignored and only
the logical formulas in its body are copied in (under renaming if specified). In this
case the block serves as a function from constituent names to sets of formulas.
By this twofold use of blocks we achieve a certain notational economy, as will be
seen in the examples.



Types may be simple identifiers or Cartesian product, function or power set
types. Mostly, however, we will use the higher types only in auxiliary blocks to
improve the structuring; they will then disappear again after instantiation of
these blocks. Only at the very end of the paper, when we talk about quantales,
some higher types persist. A unary predicate is identified with the subset of
elements that satisfy it. Use of such a predicate in the position of a type then
achieves subsorting. In particular, if variables are declared to be of such a subsort
type, quantifiers involving them range over the subsort only.

As first examples to show our notation at work we specify some aspects of
comparison, in particular, of preorders and partial orders. First we just introduce
the type of the comparison predicate.

theory COMPARE

sorts S

predicates ≤ ⊆ S × S

Next, even without any assumptions on the predicate ≤, we define the con-
cepts of isotony and antitony. This already involves predicates of higher type
that take functions as arguments.

definition ISO ANTI

imports COMPARE

predicates isotone, antitone ⊆ S → S

defined by isotone(f) ⇔df ∀x, y . x ≤ y ⇒ f(x) ≤ f(y)
antitone(f) ⇔df ∀x, y . x ≤ y ⇒ f(y) ≤ f(x)

We now introduce a general mechanism for propagating properties like iso-
tony and antitony to binary operators. This again involves higher-order concepts.

theory LEFT ARG

sorts S

operators g :S × S → S

predicates P ⊆ S → S

hidden right const :S → (S → S)

axioms right const(y)(x) = g(x, y)
∀ y . P (right const(y))

Now for instance LEFT ARG(T, ◦, isotone) expresses that an operator ◦ :
T ×T → T on some set T is isotone in its left argument. A symmetrical theory
RIGHT ARG propagates a predicate to the right argument of a binary operator.
Below we will also use this mechanism to express left and right distributivity of
a binary operator in terms of distributivity of a unary one.

Next, we specify preorders and partial orders.

theory PREORDER

imports COMPARE

axioms x ≤ x
x ≤ y ∧ y ≤ z ⇒ x ≤ z

theory POSET

imports PREORDER

axioms x ≤ y ∧ y ≤ x ⇒ x = y

The fact that a set T with a binary relation � on it forms a partial order can
then be expressed as POSET(T,�).



With a similar theory BOOLEAN ALG(S,t,u,¬,⊥,>) one specifies Boolean
algebras; we omit the detailed axioms and properties. We also introduce some
standard notation for Boolean algebras without listing derived properties:

definition BOOLEAN OPS

imports BOOLEAN ALG

operators − , → :S × S → S

defined by x− y =df x u ¬y
|
| x→ y =df ¬x t y

3 Sequential Composition

We start our treatment of semantic theories with sequential composition which
occurs in many quite different contexts. Sequentiality can concern time and
space, like in sequences of events or elements of a list or an array.

We will denote sequential composition abstractly by ·. Concrete instances
are concatenation of formal languages (with finite or infinite words), relational
composition or gluing of sets of trajectories or program sequencing.

For now we do not require any laws about sequential composition. This is
captured by our first block:

theory GROUPOID

sorts S

operators · :S × S → S

Already with this extremely general structure we can describe interesting
and important computational phenomena, as will be shown in the next section.

But first we specify commutativity and idempotence:

theory COMMUTATIVE

imports GROUPOID

axioms x · y = y · x

theory IDEMPOTENT

imports GROUPOID

axioms x · x = x

4 Annihilation

An element x is a left annihilator w.r.t. to sequential composition if composition
with any element on the right does not change it.

definition LEFT ANNI

imports GROUPOID

predicates left anni ⊆ S

defined by left anni(x) ⇔df ∀ y . x · y = x

Left annihilation means absolute domination. It can be used to model catas-
trophic failure: after an annihilating element “nothing else can happen”. Note,
however, that sometimes left annihilation is a highly desirable property: when
studying infinite computations, like the ones initiated by (hopefully) always con-
tinuing operating systems, we usually do not want to take “behaviour after infin-
ity” into account, hence the desired sets of behaviours of such systems should be



left annihilators. In general, there may be various left annihilators in a groupoid.
For instance, in UTP [21] both the totally undefined and the totally unreliable
process are left annihilators. Symmetrically one specifies a right annihilator using
a definition RIGHT ANNI with a predicate right anni .

5 Characterising Failure

Although it seems almost paradoxical, something useful can be achieved with
annihilators. The ideas here are inspired by [11, 48] and were generalised in [44].

We assume that there is a distinguished left annihilator. It is intended to
represent systems about which nothing definitive can be said and which hence
can be viewed as “failing” in some sense. Since we are denoting sequential com-
position by ·, a fitting notation for such an element is 0.

theory FAILURE

imports LEFT ANNI

operators 0 :S

axioms left anni(0)

We will now, in our diction, adopt the view that an element x is “failing” iff it
represents a system that fails to terminate. Hence, as discussed above, x should
be a left annihilator. As all the computations of such a system are infinite, we
will call x purely infinite. Dually, an element x will be called purely finite if it
“notices” subsequent nontermination, i.e, if x·0 = 0. Notice that 0 is both purely
infinite and purely finite, but is the only such element. A semantic algebra is
strict if all its elements are purely finite, i.e., iff 0 is also a right annihilator.

definition FIN INF

imports FAILURE

predicates purely inf ⊆ S
purely fin ⊆ S

defined by purely inf (x) ⇔df left anni(x)
purely fin(x) ⇔df x · 0 = 0

theory STRICT COMP

imports FAILURE
|
| RIGHT ANNI

axioms right anni(0)

6 Further Aspects of Sequential Composition

Typically one requires at least associativity of sequential composition. This is
captured by our next blocks. We specify left associativity; a symmetric theory
R ASSOC provides the predicate right assoc of right associativity.

theory L ASSOC

imports GROUPOID

predicates left assoc ⊆ S

axioms left assoc(x) ⇔df ∀ y, z . x · (y · z) = (x · y) · z

Left-associativity and pure infiniteness show interesting connections:



theory L ASSOC INF

imports FAILURE
|
| L ASSOC

derives purely inf (x) ⇒ left assoc(x)
left assoc(x) ⇒ (purely inf (x) ⇔ x = x · 0)

Using the associativity predicates we can talk about semigroups.

theory SEMIGROUP

imports L ASSOC
|
| R ASSOC

axioms left assoc(x)

derives right assoc(y)

Frequently, one also assumes a unit 1 of composition. Concrete instances are
the language ε consisting just of the empty word, the identity relation or the
empty program skip. This leads to the next block, which can further be combined
with pure finiteness.

theory MONOID

imports SEMIGROUP

operators 1 :S

axioms 1 · x = x = x · 1

theory ONE FIN

imports MONOID
|
| FIN INF

derives purely fin(1)

7 Concurrency

A well studied algebraic framework for concurrency are the various process cal-
culi (ACP, CCS, CSP, . . . ), with varying properties of choice and sequential
composition. We will here treat some aspects of the recent approach of concur-
rent Kleene algebras [22]. Next to sequential composition · these offer a parallel
composition ‖. A basic idea is that the elements of such an algebra abstractly
represent sets of traces of some kind. These traces consist of events that are
occurrences of certain primitive actions such as communications or assignments.
One assumes that there are certain causal or temporal dependences between
events. Sequential composition has to respect these dependences, i.e., in a com-
position x · y no event in a trace in x may depend on a “future” event in a
trace in y. Parallel composition is much more liberal in that it does not impose
such a restriction (at the expense of allowing “hazardous” programs with race
conditions on the resources involved).

To capture this algebraically, one introduces a comparison relation ≤ where
x ≤ y expresses that y is more liberal than x. Let us now look at the terms
(x ‖ y) · (z ‖u) and (x · z) ‖ (y · u). The first of these is a sequential composition
of two parallel compositions. Therefore neither x nor y may depend on z or u.
The second one is a parallel composition of two sequential compositions with
the same basic constituents. This is more liberal than the first one, since only
dependence of x on z and of y on u must be excluded. This fundamental property
is the basis of the algebraic axiomatisation.



theory CONCURRENT BIGROUPOID

imports GROUPOID(S, ·) |
| GROUPOID(S, ‖)

|
| COMPARE

axioms (x ‖ y) · (z ‖u) ≤ (x · z) ‖ (y · u)

Since one wants to construct longer derivation chains, one frequently requires
≤ to be a partial order to admit transitivity steps. Moreover, in the basic model
of [22] these operators are associative and there is an idle process 1 which is a
common unit of · and ‖.

theory CONCURRENT BIMONOID

imports CONCURRENT BIGROUPOID

operators 1 :S

axioms MONOID(S, ·, 1)
|
| MONOID(S, ‖, 1)

An extension of this basic theory admits, a.o., a simple algebraic treatment of
the rely/guarantee calculus of [33]. The details would lead too far here. Further
applications are under way.

8 The Frame Rule and Separation Logic

Over every ordered groupoid one can define a very general form of Hoare triple,
for which the classical rules of sequencing and weakening hold:

definition GROUPOID HOARE TRIPLE

imports GROUPOID
|
| POSET

predicates { } ⊆ S × S × S
defined by x{y} z ⇔df x · y ≤ z
derives x{u · v} z ⇔ ∃ y . x{u} y ∧ y {v} z

x ≤ u ∧ u{y} v ∧ v ≤ z ⇒ x{y} z

If the groupoid is even a monoid one can also infer the classical rule for
skip, viz. x{1} z ⇔ x ≤ z. In the presence of parallel composition one obtains
the concurrency rule, and the so-called frame allows modular reasoning where a
disjoint context may be added in parallel to a program without invalidating the
reasoning using triples:

theory CONCURRENT HOARE TRIPLE

imports CONCURRENT BIGROUPOID
|
| GROUPOID HOARE TRIPLE

derives x{y} z ∧ u{v}w ⇒ (x ‖u){y ‖ v} (z ‖w)
x{y} z ⇒ (u ‖x){y} (u ‖ z)

A variant of the frame rule is of particular interest in the so-called separa-
tion logic [54] which allows modular reasoning about shared and mutable data
structures with pointers. Again, the details would lead too far.

9 Choice

The second fundamental concept that occurs in many circumstances is that of
choosing — in a more or less biased way — between a number of possibilities. If



the number of these possibilities is finite one speaks of bounded choice, otherwise
of unbounded choice. Bounded choice is mostly represented by a binary operator
for choosing between two alternatives, which under suitable assumptions allows
an inductive definition of choosing between any positive number of possibilities.
We will see below how to deal with zero possibilities. Frequent notations for that
operator are dc ,t,u and +, of which we will use the latter. Its typical axioms
are associativity, commutativity and idempotence, which are the axioms for a
meet or join semilattice.

theory SEMILATTICE

sorts S

operators + :S × S → S

axioms SEMIGROUP(S,+)
|
| COMMUTATIVE(S,+)

|
| IDEMPOTENT(S,+)

It is well known that every semilattice induces an order. In this paper we
interpret + as a join operator and write ≤ for the induced order, which is a
derived concept and hence not specified by a theory but by a definition. It
develops its full power in combination with a semilattice.

definition SUBSUMPTION

imports GROUPOID(S,+)

predicates ≤ ⊆ S × S
defined by x ≤ y ⇔df x+ y = y

theory SEMILATTICE WITH SUBSUMPTION

imports SEMILATTICE
|
| SUBSUMPTION

|
| ISO ANTI

derives POSET(S,≤)

x ≤ x+ y
|
| x+ y ≤ z ⇔ x ≤ z ∧ y ≤ z

LEFT ARG(S,+, isotone)
|
| RIGHT ARG(S,+, isotone)

In many cases, a semilattice of sets under union as join is used; the subsump-
tion order there coincides with set inclusion.

Over semilattices we can specify the property of distributivity:

definition DIST

imports SEMILATTICE WITH SUBSUMPTION

predicates distributive, super distributive ⊆ S → S

defined by distributive(f) ⇔df ∀x, y . f(x+ y) = f(x) + f(y)
super distributive(f) ⇔df ∀x, y . f(x) + f(y) ≤ f(x+ y)

derives distributive(f) ⇒ isotone(f)
super distributive(f) ⇔ isotone(f)

Often a unit for choice is assumed. It represents the choice between zero
possibilities. Its interpretation ranges from catastrophic error over failure to
chaos. Since we denote choice by +, a fitting notation for its unit is 0. The
definition of the subsumption order implies that 0 is its least element. Moreover,
the fact that 0 is the unit of choice means that choice is angelic; a 0 branch will
always be eliminated in favour of the other branch: 0 + x = x = x+ 0.



theory SEMILATTICE WITH MIN

imports SEMILATTICE

operators 0 :S

axioms MONOID(S,+, 0)

derives x+ y = 0 ⇒ x = 0 = y

definition SUBSUMPTION WITH MIN

imports SEMILATTICE WITH MIN
SUBSUMPTION

derives 0 ≤ x

10 Choice and Composition: Idempotent Semirings

An idempotent left semiring combines choice and composition such that compo-
sition is distributive in its left argument and isotone in its right one. As usual,
we have composition bind tighter than choice.

theory IL SEMIRING

imports
SEMILATTICE WITH MIN

MONOID
|
| FAILURE

|
| SUBSUMPTION

|
| ISO ANTI

|
| DIST

predicates right dist ⊆ S

axioms LEFT ARG(S, ·, distributive)
|
| RIGHT ARG(S, ·, isotone)

In a left idempotent semiring we can study pure infiniteness a bit further.

definition IL SEMIRING INF

imports IL SEMIRING
|
| FIN INF

operators inf :S → S

defined by inf x =df x · 0
derives purely inf (x) ⇒ right dist(x)

inf x ≤ x |
| purely inf (y) ∧ y ≤ x ⇒ y ≤ inf x

The last property means that inf x is the greatest purely infinite element
below x. Therefore we call inf x the purely infinite part of x.

A number of applications use weak idempotent semirings, in which compo-
sition is right-distributive while 0 need not be a right annihilator:

theory WEAK I SEMIRING

imports IL SEMIRING

axioms RIGHT ARG(S, ·, distributive)

If additionally 0 is also a right annihilator and composition also distributes
over choice in its right argument one speaks of an idempotent semiring .

theory I SEMIRING

imports WEAK I SEMIRING
|
| STRICT COMP

11 Converse and Relation Algebra

In many cases one is interested in reverting the “flow of control” as underlying
sequential composition. To this end one uses the converse x� of an element x:



theory CONVERSE

imports GROUPOID

operators � :S → S

axioms (x · y)� = y� · x�

Abstract relation algebra results from combining converse with a Boolean
idempotent semiring:

theory RELATION ALGEBRA

imports BOOLEAN ALG
|
| I SEMIRING(S,t,⊥, ·, 1)

|
| CONVERSE

SUBSUMPTION
|
| ISO ANTI

axioms (x t y)� = x� t y� |
| x · x� · y ≤ y

derives isotone( �)
x · y u z = ⊥ ⇔ x� · z u y = ⊥ ⇔ z · y� u x = ⊥

There is no need to tell the RAMiCS audience that there are many more
interesting and useful consequences of the axioms.

12 Iteration

Following Kleene’s seminal work [37], arbitrary finite iteration of an element x
is denoted by x∗. The axiomatisation follows [38].

theory LEFT KLEENE ALG

imports IL SEMIRING
|
| SUBSUMPTION

|
| ISO ANTI

operators ∗ :S → S

axioms 1 + x · x∗ ≤ x∗ |
| y + x · z ≤ z ⇒ x∗ · y ≤ z

derives isotone( ∗)

x∗ · x∗ = x∗ = (x∗)∗
|
| (x · y)∗ · x = x · (y · x)∗

|
| (x+ y)∗ = x∗ · (y · x∗)∗

x ≤ 1 ⇒ x∗ = 1

The symmetrical axioms that describe “iteration at the right” may need
adjustments due to the application circumstances (e.g. in probabilistic alge-
bras) [42, 64, 43]. Infinite iteration is added using seminal ideas from [53]; the
axiomatisation follows [5].

theory LEFT OMEGA ALG

imports LEFT KLEENE ALG
|
| SUBSUMPTION

|
| ISO ANTI

operators ω :S → S

axioms xω = x · xω |
| z ≤ y + x · z ⇒ z ≤ xω + y · x∗

derives isotone( ω)

0ω = 0
|
| x∗ · xω = xω

|
| xω · y ≤ xω |

| (xω)ω ≤ xω

(x · y)ω = x · (y · x)ω
|
| (x+ y)ω = (x∗ · b)ω + (x∗ · b)∗ · xω

x ≤ 1ω

The last derived property motivates the following definition.



definition OMEGA TOP

imports LEFT OMEGA ALG

operators > :S

defined by > =df 1ω

derives x ≤ x · x ⇒ xω = x · > |
| xω = xω · >

The latter property makes xω, e.g., not adequate for the precise description
of Zeno effects in hybrid systems. Hence again an adjustment may be needed.

13 Tests: Modelling Sets of States

Elements of semirings frequently represent sets of transitions. To represent sets
of states one may use special transitions that abstract assert statements as
known from programming. A statement assert B skips (i.e., leaves the state un-
changed) if B holds and aborts otherwise. Considered as a relation, it is a subset
of the identity relation on program states. Hence sets of program states or predi-
cates characterising such sets are in one-to-one correspondence with subidentity
relations. A central property is that for them intersection and composition co-
incide. All this lays the basis for an algebraic representation of general sets of
states. Such an approach was presented, e.g., in [41] by distinguishing particular
semiring elements which, following [39], we call tests. Since we want the tests, the
algebraic counterparts of predicates, to form a Boolean algebra, we first specify
complementation.

definition IL SEMIRING WITH COMPL

imports IL SEMIRING

predicates are complements ⊆ S × S
test ⊆ S

defined by are complements(p, q) ⇔df p+ q = 1 ∧ p · q = 0 ∧ q · p = 0
test(p) ⇔df ∃ q . are complements(p, q)

derives are complements(p, q) ⇔ are complements(q, p)
are complements(p, q) ⇒ p ≤ 1 ∧ q ≤ 1

are complements(p, q) ∧ are complements(p, r) ⇒ q = r
are complements(0, 1)

Now we can specify the notion of an idempotent left semiring with tests.

theory IL SEMIRING WITH TESTS

imports IL SEMIRING WITH COMPL

operators ¬ : test → test

axioms COMMUTATIVE(test, ·)
¬p = q ⇔df are complements(p, q)

derives BOOLEAN ALG(test ,+, ·,¬, 0, 1)
I SEMIRING ⇒ COMMUTATIVE(test, ·)

The commutativity requirement for tests is equivalent to distributivity of
composition over choice also in its right argument on the subset of tests. However,
in concrete algebras it usually is more onerous to check distributivity, a property
involving three variables, than commutativity, which only involves two.



The above specification is somewhat unsatisfactory in that it is not purely
equational and involves subsorting. This makes automatic verification quite cum-
bersome or even excludes the use of some automatic verification systems. We will
discuss alternative specifications below.

Using tests we can give algebraic semantics to a simple programming lan-
guage. Composition and choice are already present in semirings. We can enrich
this by case distinction:

definition IFTHENELSE

imports IL SEMIRING WITH TESTS

operators if then else : test × S × S → S

defined by if p thenx else y =df p · x+ ¬p · y

Using finite iteration we can also define a while loop:

definition WHILE

imports IL SEMIRING WITH TESTS
|
| LEFT KLEENE ALG

operators while do : test × S → S

defined by while p dox =df (p · x)∗ · ¬p

Moreover, we can give an algebraic definition of standard Hoare triples; it
appears in [39] and admits a simple algebraic soundness proof of Hoare logic.

definition HOARE TRIPLE

imports IL SEMIRING WITH TESTS

predicates { } { } ⊆ test × S × test

defined by {p} x {q} ⇔df p · x · ¬q = 0

14 Domain and Antidomain

An important concept for transition systems is the set of enabled states, i.e., the
set of states from which transitions are possible. For a transition relation R, this
is the domain of R. We apply this nomenclature also to the general case. Using
tests, a predomain operator can be characterised algebraically by quite simple
equational axioms [9]. The domain operator shows a stronger interplay between
predomain and composition, which can be used, e.g., for an algebraic proof of
relative completeness of the Hoare calculus [46].

theory PREDOMAIN

imports IL SEMIRING WITH TESTS

operators p :S → test

variables p : test
|
| x, y : S

axioms x ≤ px · x |
| p(p · x) ≤ p

derives p(x+ y) = px+ py
|
| p(x · y) ≤ p(x · py)

p(p · x) = p · px |
| pp = p

theory DOMAIN

imports PREDOMAIN

axioms p(x · py) ≤ p(x · y)

In a similar fashion one can specify a codomain operator. If one assumes an
idempotent semiring with tests, the axioms are just the mirror images of the ones



for domain. In case of a general idempotent left semiring, however, distributivity
of codomain over choice needs to be stated as an additional axiom [44].

Let us now briefly discuss the mentioned alternative axiomatisation of tests
and the domain operator. This has been carried out in a form specific to relation
algebra in [31] and in the general semiring setting in [8]. The idea is to avoid
explicit subsorting and to characterise the tests implicitly as the image of an
antidomain operator @ which yields the negation of the domain of its argument.
Over a full idempotent semiring the axiomatisation is surprisingly simple —
however, to fully grasp it, good knowledge about tests and domain is almost
mandatory. This is why we introduced their theories beforehand. In using the
antidomain theory, rather than quantifying over a variable p : test one uses a
variable x : S and writes @x instead of p. For the case of general left semirings
additional axioms are necessary; this is the subject of ongoing work.

theory ANTIDOMAIN

imports I SEMIRING

operators @ :S → S

axioms @x · x = 0
|
| @x+ @@x = 1

@(x · y) ≤ @(x ·@@y)

definition DERIVED DOMAIN

imports ANTIDOMAIN

operators p: S → S
|
| ¬ : test → test

predicates test ⊆ S

defined by test(x) ⇔df ∃ y . x = @y

px =df @@x
|
| ¬p = @@p

derives DOMAIN

15 Modal Operators: Diamond and Box

Many properties of transition systems can be described by the modal operators
diamond and box, which express existential and universal quantification over the
successor or predecessor states of a given set of states. We show exemplarily how
to define the forward modal operators in terms of domain; the backward ones
can be defined analogously in terms of codomain. Given a transition system x,
a state s satisfies the predicate 〈x〉q iff s has a successor under x that satisfies
q. This is equivalent to saying that s lies in the inverse image of q under x. The
box operator [x]q is the De Morgan dual of diamond. This is the basis of the
following specification.

definition FORWARDMODAL

imports DOMAIN

operators 〈 〉 , [ ] :S × test → test

defined by 〈x〉q =df p(x · q)
|
| [x]q =df ¬〈x〉¬q

variables u : purely fin
|
| z : right dist

|
| p, q : test

|
| x, y : S

derives 〈u〉0 = 0
|
| [u]1 = 1

〈z〉(p+ q) = 〈z〉p+ 〈z〉q |
| [z](p · q) = [z]p · [z]q

〈z〉p− 〈z〉q ≤ 〈z〉(p− q) |
| [z](p→ q) ≤ [z]p→ [z]q

〈x+ y〉p = 〈x〉p+ 〈y〉p |
| [x+ y]p = [x]p · [y]p

〈x · y〉p = 〈x〉(〈y〉p) |
| [x · y]p = [x]([y]p)

{p} x {q} ⇔ p ≤ [x]q



The last property shows that [x]q is the algebraic counterpart of the weakest
liberal precondition operator wlp.x.q used in program correctness calculi [10].

Equivalently, one can axiomatise one of the modal operators directly and
define the other one and domain in terms of it. For instance, one can use the
last property above to axiomatise the box operator. Then the diamond operator
is defined as the De Morgan dual of box: 〈x〉q =df ¬[x]¬q. Finally, domain can
be retrieved as px =df 〈x〉1.

Interestingly, in presence of star no special axioms are needed to establish
star induction for diamond and box:

theory MODAL STAR

imports LEFT KLEENE ALG
|
| FORWARDMODAL

variables p, q : test
|
| x : S

derives p ≤ q ∧ p ≤ [x]p ⇒ p ≤ [x∗]q
({p · r} x {p}) ∧ p · ¬r ≤ q ⇒ ({p} while p dox {q})

The second property is a special case of the first one and corresponds to the
familiar inference rule for the while loop. More generally, box calculus does not
only admit an algebraic soundness proof of Hoare logic, but also one of relative
completeness [46].

Moreover, box can also be used to model total and general correctness and
the wp operator. In fact, wp turns out to be the box operator in an algebra of
commands [47]. Hence the abstract relative completeness result can immediately
be re-used to show relative completeness of wp-based Hoare logic.

16 Logics of Knowledge and Belief

In this section we use some of our blocks to build algebraic theories of knowledge
and belief. The idea is to abstract the access relations of Kripke models for
multiagent systems to elements of an idempotent semiring with tests and to
represent the knowledge and belief operators as instances of the general box
operator with suitable additional axioms. The monomodal case is obtained by
setting set �p =df [x]p for some fixed transition element x.

definition MULTIAGENTn

imports MODAL ISEMIRING
|
| MODAL STAR

operators a1, . . . , an, a : S
|
| K1, . . . ,Kn,E,C : test → test

defined by K1p =df [a1]p
|
| . . .

|
| Knp =df [an]p

a =df a1 + · · ·+ an
|
| Ep =df [a]

|
| Cp =df [a+]

derives Cp ≤ C(Cp)
|
| Cp · Cq ≤ C(Cp · Cq) |

| Cp · Cq ≤ C(Cp · q)

The positive and negative introspection axioms are captured as follows.

definition INTROSPECTION

imports IL SEMIRING WITH TESTS

predicates sat posintro, sat negintro ⊆ test → test

axioms sat posintro(f) ⇔df ∀ p . f(p) ≤ f(f(p))
sat negintro(f) ⇔df ∀ p .¬f(p) ≤ f(¬f(p))



This allows specifying belief logic:

theory MULTIBELIEFn

imports MULTIAGENTn
|
| INTROSPECTION

axioms sat posintro(K1)
|
| · · · |

| sat posintro(Kn)

sat negintro(K1)
|
| · · · |

| sat negintro(Kn)

The axiom of truth (or reflexivity of the access elements) is expressed by

definition TRUTH

imports IL SEMIRING WITH TESTS

predicates sat truth ⊆ test → test

axioms sat truth(f) ⇔df ∀ p . f(p) ≤ p

Then multiagent knowledge logic is specified by

theory MULTIKNOWn

imports MULTIBELIEFn
|
| TRUTH

axioms sat truth(K1)
|
| · · · |

| sat truth(Kn)

derives C(p→Ep) ≤ p→Cp
|
| Cp · Cq = CCp · CCq = C(Cp · Cq)

It should be clear how further special-purpose multimodal logics can be con-
structed along these lines.

17 Quantales and Temporal Logics

Now we really leave the first-order setting. For a number of applications it is
important that the underlying left semiring is not only a semilattice, but even
a complete lattice in which composition distributes over arbitrary/non-empty
suprema in its left/right argument. Such structures are known as left quantales
and, in case the underlying semiring is even full, quantales [49, 55]. For systematic
reasons we call the supremum operator lub (least upper bound) rather than sup.

theory LQUANTALE

imports SEMIGROUP
|
| POSET

operators lub :P(S) → S

axioms lubT ≤ y ⇔ ∀x . x ∈ T ⇒ x ≤ y
lubT · y = lub {x · y | x ∈ T}

T 6= ∅ ⇒ y · lubT = lub {y · x | x ∈ T}

Again, frequently a unit of composition is useful.

theory UL QUANTALE

imports LQUANTALE
|
| MONOID

From a unital left quantale we can derive an idempotent left semiring.



definition UL QUANTALE AS SEMIRING

imports UL QUANTALE

operators 0 : S
|
| + : S × S → S

defined by 0 =df lub ∅ |
| x+ y =df lub ({x} ∪ {y})

derives IL SEMIRING

In a unital left quantale, star and omega can be defined as least/greatest
fixpoints. To this end we first enrich left quantales by an infimum operation glb
(greatest lower bound).

definition UL QUANTALE WITH GLB

imports UL QUANTALE

operators glb :P(S) → S

defined by glbT =df lub {x ∈ S | ∀ y ∈ T . x ≤ y}

Least and greatest fixpoints are defined using the Tarski/Knaster theorem.

definition FIXPOINTS

imports UL QUANTALE WITH GLB
|
| ISO ANTI

operators µ, ν : isotone → S

defined by µf =df glb {z ∈ S | f(z) ≤ z}
νf =df lub {z ∈ S | z ≤ f(z)}

Now we can specify iteration in a quantale.

definition UL QUANTALE WITH ITERATION

imports UL QUANTALE AS SEMIRING
|
| FIXPOINTS

operators ∗,ω :S → S

hidden f :S × S → (S → S)

defined by f(x, y)(z) =df x+ y · z
y∗ =df µf(1, y)

|
| yω =df νf(0, y)

derives LEFT KLEENE ALG
FULLY DIST ⇒ LEFT OMEGA ALG

where

theory FULLY DIST

imports UL QUANTALE AS SEMIRING
|
| FIXPOINTS

axioms glb {x+ y | y ∈ T} = x+ glbT

Further applications of left quantales concern, e.g., hybrid systems and the
various temporal logics. For instance, to capture CTL∗ one can interpret the
quantale elements as abstracting sets of computation paths (the semantics of
path formulas) and tests as abstracting sets of states (the semantics of state
formulas); a distinguished element n abstracts the single-step transition relation.
Then we can define an until operator U as xU y =df µz . y + (x u n · z). This
admits proving all standard CTL laws purely algebraically [45]. Moreover, for
the sublogics CTL and LTL the general CTL∗ semantics can be transformed into
simplified versions in ω-regular form. These do no longer use the full power
of quantales but just star and omega. Finally, for LTL even just star is used.



This provides interesting connections between µ-calculus representations and
star/omega-algebra. Other logics like ITL, IL, DC or NL can also be captured
in this setting. For lack of space we cannot spread out the details in form of
structured theories here.

18 Conclusion and Outlook

The algebraic structures presented form a comprehensive and flexible framework.
They cover various semantic models in a uniform algebraic fashion. Further ap-
plications have concerned residuals (e.g., to define generalised modal operators
as in [65, 57]), predicate transformer semantics (e.g., as demonic refinement alge-
bra [66, 59] or command/design algebra [47, 18, 19]), probabilistic programs [42,
64, 43], game algebra [51, 52], hybrid systems [26, 27], neighbourhood logic [25]
and linked object structures and separation logic [13, 7]. There is even a greater
variety of applications outside the realm of program semantics. Many of them
use standard relation algebra; for these the ideas in the present paper are not as
useful, since the underlying theory is fixed. However, we mention a few that use
variants of the semiring setting, for which the idea of building blocks of theo-
ries may have some profit. For instance [17, 24] provide algebraic descriptions of
some aspects of routing systems. But also the cardinality operator in Dedekind
categories and allegories as used for flow problems [35, 36], or collagories [34]
could be organised in the form of structure theories as proposed here.

As mentioned in the introduction, machine support for this type of theories
has been intensively studied. This has resulted in large, modularised collections
of theories and automatic proofs on the web [28, 23, 32, 50, 62]. Moreover, there
are strong links with the TPTP project [63].

As a continuation of that and the ideas in the present paper we envisage a
system for composing and analysing structured theories, of course with check
for syntactic well-formedness including type constraints. Moreover, the system
should perform a normalisation of a structured theory into a “flattened” un-
structured one and then determine which fragment of logic is actually used, in
particular, whether the overall theory is equivalent to a first-order one. It should
then make suggestions which of the existing automatic theorem provers look
most promising for use with that theory.

We are convinced that there is much more potential in the algebraic approach.
What needs to be done is to explore further areas to see whether the structuring
mechanisms we have proposed in the present paper are sufficient and maybe can
notationally be streamlined further.

Acknowledgement I am grateful for valuable comments by H.-H. Dang, R.
Glück, P. Höfner, P. Roocks and A. Zelend.
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