Skip to main content

Dynamic Minimum Length Polygon

  • Conference paper
Book cover Combinatorial Image Analysis (IWCIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6636))

Included in the following conference series:

Abstract

This paper presents a formal framework for representing all reversible polygonalizations of a digital contour (i.e. the boundary of a digital object). Within these polygonal approximations, a set of local operations is defined with given properties, e.g., decreasing the total length of the polygon or diminishing the number of quadrant changes. We show that, whatever the starting reversible polygonal approximation, iterating these operations leads to a specific polygon: the Minimum Length Polygon. This object is thus the natural representative for the whole class of reversible polygonal approximations of a digital contour. Since all presented operations are local, we obtain the first dynamic algorithm for computing the MLP. This gives us a sublinear time algorithm for computing the MLP of a contour, when the MLP of a slightly different contour is known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berstel, J., Lauve, A., Reutenauer, C., Saliola, F.V.: Combinatorics on words, CRM Monograph Series, vol. 27. American Mathematical Society, Providence (2009); christoffel words and repetitions in words

    MATH  Google Scholar 

  2. Borel, J.P., Laubie, F.: Quelques mots sur la droite projective réelle. J. Théor. Nombres Bordeaux 5(1), 23–51 (1993)

    Article  Google Scholar 

  3. Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Trans. Pattern Analysis and Machine Intelligence 26(2), 252–258 (2004)

    Article  Google Scholar 

  4. Damiand, G., Dupas, A., Lachaud, J.O.: Combining Topological Maps, Multi-Label Simple Points and Minimum Length Polygon for Efficient Digital Partition Model. In: Aggarwal, J.K., et al. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 56–69. Springer, Heidelberg (2011)

    Google Scholar 

  5. Feschet, F.: Fast guaranteed polygonal approximations of closed digital curves. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 910–919. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Hobby, J.D.: Polygonal approximations that minimize the number of inflections. In: Proc. SODA, pp. 93–102 (1993)

    Google Scholar 

  7. Klette, R., Kovalevsky, V., Yip, B.: On length estimation of digital curves. In: Vision Geometry VIII, vol. 3811, pp. 117–128 (1999)

    Google Scholar 

  8. Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  9. Klette, R., Yip, B.: The length of digital curves. Machine Graphics Vision 9(3), 673–703 (2000)

    Google Scholar 

  10. Lindenbaum, M., Brückstein, A.: On recursive, O(N) partitioning of a digitized curve into digital straight segments. IEEE Trans. On Pattern Analysis and Machine Intelligence 15(9), 949–953 (1993)

    Article  Google Scholar 

  11. Lothaire, M.: Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications, vol. 90. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  12. Montanari, U.: A note on minimal length polygonal approximation to a digitized contour. Communications of the ACM 13(1), 41–47 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  13. Provençal, X., Lachaud, J.-O.: Two Linear-Time Algorithms for Computing the Minimum Length Polygon of a Digital Contour. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 104–117. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Roussillon, T., Tougne, L., Sivignon, I.: What does digital straightness tell about digital convexity? In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 43–55. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Said, M., Lachaud, J.-O., Feschet, F.: Multiscale discrete geometry. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 118–131. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Sklansky, J., Chazin, R.L., Hansen, B.J.: Minimum perimeter polygons of digitized silhouettes. IEEE Trans. Computers 21(3), 260–268 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sloboda, F., Stoer, J.: On piecewise linear approximation of planar Jordan curves. J. Comput. Appl. Math. 55(3), 369–383 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sloboda, F., Zat́ko, B.: On one-dimensional grid continua in R2. Tech. rep., Institute of Control Theory and Robotics, Slovak Academy of Sciences, Bratislava, Slovakia (1996)

    Google Scholar 

  19. Sloboda, F., Zat́ko, B.: On approximation of jordan surfaces in 3D. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 365–386. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Sloboda, F., Zat́ko, B., Stoer, J.: On approximation of planar one-dimensional continua. In: Klette, R., Rosenfeld, A., Sloboda, F. (eds.) Advances in Digital and Computational Geometry, pp. 113–160 (1998)

    Google Scholar 

  21. Smeulders, A.W.M., Dorst, L.: Decomposition of discrete curves into piecewise straight segments in linear time. In: Melter, R.A., Rosenfeld, A., Bhattacharya, P. (eds.) Vision Geometry. Contempory Mathematics, vol. 119, pp. 169–195. Am. Math. Soc., Providence (1991)

    Chapter  Google Scholar 

  22. de Vieilleville, F., Lachaud, J.-O.: Digital deformable model simulating active contours. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 203–216. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Voss, K.: Discrete images, objects, and functions in \({\bf Z}\sp n\), Algorithms and Combinatorics, vol. 11. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lachaud, JO., Provençal, X. (2011). Dynamic Minimum Length Polygon. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds) Combinatorial Image Analysis. IWCIA 2011. Lecture Notes in Computer Science, vol 6636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21073-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21073-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21072-3

  • Online ISBN: 978-3-642-21073-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics