Skip to main content

Orientation Representation and Efficiency Trade-off of a Biological Inspired Computational Vision Model

  • Conference paper
Book cover Advances in Neural Networks – ISNN 2011 (ISNN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6676))

Included in the following conference series:

  • 2318 Accesses

Abstract

Biological evolution endows human vision perception with an “optimal” or “near optimal” structure while facing a large variety of visual stimuli in different environment. Mathematical principles behind the sophisticated neural computing network facilitate these circuits to accomplish computing tasks sufficiently as well as at a relatively low energy consumption level. In other words, human visual pathway, from retina to visual cortex has met the requirement of “No More Than Needed” (NMTN). Therefore, properties of this “nature product” might cast a light on the machine vision. In this work, we propose a biological inspired computational vision model which represents one of the fundamental visual information — orientation. We also analyze the efficiency trade-off of this model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kolb, H.: How the Retina Works. American Scienctist 91, 28–35 (2003)

    Article  Google Scholar 

  2. Lee, B.B.: Receptive Field Structure in the Primate Retina. Vision Res. 36, 631–644 (1996)

    Article  MathSciNet  Google Scholar 

  3. Hubel, D.H., Wiesel, T.N.: Receptive Fields, Binocular interaction and functional architecutre in the cat’s visual cortex. J. Physiology 160, 106–154 (1962)

    Article  Google Scholar 

  4. Zhan, X., Shou, T.: Anatomical Evidence of Subcortical Contributions to the Orientation Selectivity and Columns of the Cat’s Primary Visual Cortex. Neurosci. Lett. 324, 247–251 (2002)

    Article  Google Scholar 

  5. Rodieck, R.W.: Quantitative analysis of cat retinal ganglion cell response to visual stimuli. J. Vision Res. 5, 583–601 (1965)

    Article  Google Scholar 

  6. Kier, C.K., Buchsbaum, G., Sterling, P.: How retinal microcircuits scale for ganglion cells of different size. J. Neurosci. 15 (1995)

    Google Scholar 

  7. Croner, L.J., Kaplan, E.: Receptive Fields of P and M Ganglion Cells Across the Primate Retina. Vision Res. 35, 7–24 (1995)

    Article  Google Scholar 

  8. Wei, H., Jiang, Y.: An Orientational Sensitive Vision Model Based on Biological Retina. In: 2nd International Conference on Cognitive Neurodynamics (2009)

    Google Scholar 

  9. Distinctive Image Features from Scale-invarient Keypoints. Internatinoal Journal of Computer Vision (2004)

    Google Scholar 

  10. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Dalal, N., Triggs, B.: Histograms of Oriented Gradiants for Human Detection. In: Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  12. Wallace, R.S., Ong, P.W., Bederson, B.B., Schwartz, E.L.: Space-Variant Image-Processing. International Journal of Computer Vision 13, 71–90 (2004)

    Article  Google Scholar 

  13. Shah, S., Levine, M.D.: Visual Information Processing in Primate Cone Pathways — Part I: A Model. IEEE Transaction on Systems, Man and Cybernetics, Part B 26, 259–274 (1996)

    Article  Google Scholar 

  14. Balasuriya, S., Siebert, P.: A Biologically Inspired Computational Vision Front-end based on a Self-Organised Pseudo-Randomly Tessellated Artificial Retina. In: International Joint Conference on Neural Networks (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, Y., Wei, H. (2011). Orientation Representation and Efficiency Trade-off of a Biological Inspired Computational Vision Model. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds) Advances in Neural Networks – ISNN 2011. ISNN 2011. Lecture Notes in Computer Science, vol 6676. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21090-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21090-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21089-1

  • Online ISBN: 978-3-642-21090-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics