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Abstract. We consider the frugal coverage problem, an interesting vari-
ation of set cover defined as follows. Instances of the problem consist of
a universe of elements and a collection of sets over these elements; the
objective is to compute a subcollection of sets so that the number of
elements it covers plus the number of sets not chosen is maximized. The
problem was introduced and studied by Huang and Svitkina [7] due to
its connections to the donation center location problem. We prove that
the greedy algorithm has approximation ratio at least 0.782, improving
a previous bound of 0.731 in [7]. We also present a further improvement
that is obtained by adding a simple corrective phase at the end of the
execution of the greedy algorithm. The approximation ratio achieved in
this way is at least 0.806. Our analysis is based on the use of linear
programs which capture the behavior of the algorithms in worst-case
examples. The obtained bounds are proved to be tight.

1 Introduction

Set cover is among the most popular combinatorial optimization problems with
many applications. In the classical version of the problem, we are given a universe
of elements and a collection of sets over these elements and the objective is to
compute a subcollection of sets of minimum size that covers all elements. The
problem is known to be hard to approximate within sublogarithmic factors [5,
12] while the classical greedy algorithm achieves an almost tight approximation
ratio of Hn, the n-th harmonic number, where n is the number of elements in
the universe [9]. Several variations of the greedy algorithm have been proposed
that improve this approximation bound by constant (additive) factors [1, 4, 10].

A different objective was recently considered by Huang and Svitkina [7]; they
call the new combinatorial optimization problem frugal coverage. An instance of
frugal coverage consists of a universe of elements and a collection of sets over
these elements, and the objective is to compute a subcollection of sets so that
the number of elements covered plus the number of sets not chosen is maximized.
Without loss of generality, we can assume that each element belongs to at least
one set of the input collection. So, the objective can be thought of as computing a
subcollection that covers all elements so that the number of sets not chosen plus
n (the number of elements in the universe) is maximized. Clearly, an optimal



solution for set cover is also an optimal solution for frugal coverage. However,
this does not have any direct implication to the approximation guarantee for
frugal coverage algorithms.

A nice motivation for studying frugal coverage is the problem of locating
donation centers (DCL). Instances of DCL consist of a bipartite graph G =
(A ∪ L,E). An agent, represented by a node a ∈ A, is connected through an
edge e ∈ E to any donation center l ∈ L she would be willing to make a
donation. Every agent a has a preference ranking on the corresponding centers,
and every donation center l has a capacity, meaning that it can accept at most
some specific number of donations. The problem is to decide which centers to
open in order to maximize the number of donations, under the restriction that
an agent will only donate to her highest ranked open center. Huang and Svitkina
[7] present an approximation preserving reduction from frugal coverage to the
special case of DCL in which each center has unit capacity and each agent has a
degree bound of 2. They also prove that the greedy algorithm has approximation
ratio at least 0.731 for both problems.

We present a tight analysis of the greedy algorithm. This algorithm, starting
from an empty solution, iteratively augments the solution by a set that contains
the maximum number of uncovered elements until all elements are covered. We
show that its approximation ratio is exactly 18/23 ≈ 0.782, improving the pre-
vious bound in [7]. This approximation guarantee can be further improved by
adding a simple corrective phase at the end of the execution. Namely, we consider
each set in the solution produced that included two uncovered elements when
it was selected. If its removal does not leave an element uncovered, we simply
remove this set from the solution. The approximation ratio obtained in this way
is 54/67 ≈ 0.806. A simple instance shows that this bound is tight. We remark
that, even though such a corrective phase can improve the solution obtained by
the greedy algorithm with respect to the standard set cover objective, it does
not improve the worst-case approximation guarantee.

Even though the algorithms we consider are purely combinatorial, our analy-
sis is based on the use of linear programs. The technique can be briefly described
as follows. Given an algorithm A, we define a linear program that takes a value
f ∈ (0, 1) as a parameter. This linear program witnesses the fact that the al-
gorithm computes an at most f -approximate solution for some instance. The
constraints of the LP capture the properties of the algorithm as well as the
structure of the corresponding optimal solution. Then, a lower bound of ρ on
the approximation ratio of algorithm A follows by showing that the correspond-
ing LP with parameter f = ρ is infeasible. In order to do this, we exploit LP
duality. This particular approach was recently proved to be useful for variations
of set cover such as spanning star forest and color saving [2]. However, due to the
different objective of frugal coverage (and, in particular, the appearance of the
number of sets not chosen in the objective function), additional variables (and
different constraints) have to be included in the parameterized LPs. Except from
variations of set cover [1, 11], analysis of combinatorial algorithms through lin-
ear programs has also been performed in contexts such as facility location [8],



wavelength management in optical networks [3], and the maximum directed cut
problem [6]. The use of the LPs in these papers is slightly different than the
approach followed here, since the problem objectives allow for LPs that reveal
the approximation ratio of the algorithms.

We present the analysis of the greedy algorithm in Section 2 and consider
its extension with an additional corrective phase in Section 3. We conclude in
Section 4.

2 The greedy algorithm

We first consider the greedy algorithm (henceforth called GREEDY) which is
described as follows. While there is a set that covers at least one uncovered
element, choose the set that covers the maximum number of uncovered elements.
We show that its approximation ratio for frugal coverage is exactly 18/23 ≈
0.782. This improves the previous lower bound of 0.732 from [7].

2.1 The parameterized LP lemma

Let f ∈ (0, 1) and consider an instance I = (U , C) of the frugal coverage problem,
on which GREEDY computes an at most f -approximate solution. Without loss
of generality, we assume that every element of U belongs to at least one set
of C. We denote by O the optimal solution of (U , C), i.e., the subcollection of
C of minimum size that covers all elements in U . We assume that any set of
C belongs either to the optimal solution or is chosen by GREEDY; if this is
not the case for the original instance, we can easily transform it to one that
satisfies this assumption so that the solution computed by GREEDY is at most
f -approximate.

The algorithm can be thought of as running in phases, starting from phase
k, where k is the size of the largest set in the instance. In each phase i, for
i = k, ..., 1, the algorithm chooses a maximal collection of sets, each containing
i yet uncovered elements. Let (Ui, Ci), for i = k, ..., 1, denote the corresponding
instance which remains to be solved just before entering phase i of the algorithm.
Naturally, Ui consists of the elements in U that have not been covered in previous
phases and Ci consists of the sets of C which contain at least one such element.
We denote by Oi the sets in O that also belong to Ci. We consider an assignment
of all elements to the sets of O so that each element is assigned to exactly one
among the sets in O that contains it (if more than one). A set in Oi is called an
(i, j)-set if exactly j elements that have not been covered until the beginning of
phase i are assigned to it. For the phase i of the algorithm with i = 4, ..., 1, we
denote by αi,j the ratio of the number of (i, j)-sets in Oi over the number |O|
of optimal sets. Furthermore, let x5 be the ratio of the number of sets in O that
are chosen by GREEDY at the phases k, k − 1, ..., 5 over |O|. Also, let xi, for
i = 4, ..., 1, denote the ratio of the number of sets in O that are also selected by
GREEDY in phase i, over |O|.



By definition, it holds that |Oi| = |O|∑i
j=1 αi,j and |Oi| ≤ |O| −

|O|∑5
j=i+1 xj , for i = 1, ..., 4. Combining these expressions, we get that

i∑

j=1

αi,j +
5∑

j=i+1

xj ≤ 1. (1)

We denote by T the ratio |U|/|O|. Our definitions imply that |Ui| =
|O|∑i

j=1 jαi,j for i = 1, ..., 4. By the definitions of T and x5, we have

T ≥
4∑

j=1

jα4,j + 5x5. (2)

Clearly, for i = 1, ..., 4, it holds that |Ui \ Ui−1| = |Ui| − |Ui−1| ≥ ixi · |O|. We
have

i∑

j=1

jαi,j ≥
i−1∑

j=1

jαi−1,j + ixi. (3)

Now, consider phase i of the algorithm, for i = 4, 3, 2, and a set chosen
by GREEDY during this phase. The i newly covered elements of this set are
assigned to at most i sets in Oi. Furthermore, since GREEDY selects a maximal
collection of sets in phase i, we know that any set of Oi with i assigned elements
intersects some of the sets selected by GREEDY during this phase. This means
that the number |Ui \ Ui−1|/i of sets selected by GREEDY during phase i is at
least αi,i|O|/i. We obtain that

i∑

j=1

jαi,j −
i−1∑

j=1

jαi−1,j ≥ αi,i. (4)

Now, let SG denote the ratio of the number of sets chosen by GREEDY over
|O|. Clearly, GREEDY selects at most |U \ U4|/5 sets in phases k, k − 1, ..., 5,
and exactly |Ui \ Ui−1|/i sets in phase i, for i = 4, ..., 1. We have that

SG ≤
(

1
5
|U \ U4|+

4∑

i=1

1
i
|Ui \ Ui−1|

)
/|O|

=
1
5


T −

4∑

j=1

jα4,j


 +

4∑

i=1

1
i




i∑

j=1

jαi,j −
i−1∑

j=1

jαi−1,j




=
1
5
T +

4∑

i=1

1
i(i + 1)

i∑

j=1

jαi,j .

Let OPT(I) denote the benefit of the optimal frugal coverage of I. This naturally
corresponds to solution O for (U , C). It holds that

OPT(I) =

(
T + SG −

5∑

i=1

xi

)
|O|.



Furthermore, let GREEDY(I) denote the profit GREEDY obtains on I. We
have that

GREEDY(I) =

(
T + 1−

5∑

i=1

xi

)
|O|.

The assumption that the solution obtained by GREEDY is at most f -
approximate, i.e., GREEDY(I) ≤ f ·OPT(I), implies that

T + 1−
5∑

i=1

xi ≤ f


6

5
T +

4∑

i=1

1
i(i + 1)

i∑

j=1

jαi,j −
5∑

i=1

xi


 . (5)

By expressing inequalities (1)-(5) in standard form, we obtain our parame-
terized LP lemma.

Lemma 1. If there exists an instance I of the frugal coverage problem for which
the greedy algorithm computes a solution of benefit GREEDY(I) ≤ f ·OPT(I) for
some f ∈ [0, 1], then the following linear program LP(f) has a feasible solution.

i∑

j=1

αi,j +
5∑

j=i+1

xj ≤ 1, for i = 1, ..., 4

− (i− 1)αi,i −
i−1∑

j=1

jαi,j +
i−1∑

j=1

jαi−1,j ≤ 0, for i = 2, 3, 4

−
i∑

j=1

jαi,j +
i−1∑

j=1

jαi−1,j + ixi ≤ 0, for i = 1, ..., 4

− T +
4∑

j=1

jα4,j + 5x5 ≤ 0

(1− 6f

5
)T −

4∑

i=1

i∑

j=1

fj

i(i + 1)
αi,j −

5∑

i=1

(1− f)xi ≤ −1

αi,j ≥ 0, for i = 1, ..., 4 and j = 1, ..., i

xj ≥ 0, for j = 1, ..., 5
T ≥ 0

The proof of the approximation bound is based on the following lemma.

Lemma 2. For every f < 18/23, LP(f) has no feasible solution.

Proof. We can assume that LP(f) is a maximization linear program with ob-
jective 0. By duality, if it were feasible, then the optimal objective value of the
dual minimization linear program should be 0 as well. We show that this is not
the case and that the dual has a solution with strictly negative objective value.
This implies the lemma.



In the dual LP, we use the thirteen variables β1, β2, β3, β4, γ2, γ3, γ4, δ1, δ2,
δ3, δ4, η and ζ corresponding to the constraints of LP(f).Variables βi correspond
to the first set of constraints (inequality (1)) of LP(f), variables γi correspond
to the second set of constraints (inequality (4)), δi correspond to the third set
of constraints (inequality (3)), η corresponds to the next constraint (inequality
(2)), and ζ corresponds to the last constraint (inequality (5)). So, the dual of
LP(f) is depicted in Table 1.

min β1 + β2 + β3 + β4 − ζ

s.t. β1 + γ2 − δ1 + δ2 − ζf/2 ≥ 0 β4 − 3γ4 − 3δ4 + 3η − ζ3f/20 ≥ 0
β2 − γ2 + γ3 − δ2 + δ3 − ζf/6 ≥ 0 β4 − 3γ4 − 4δ4 + 4η − ζf/5 ≥ 0
β2 − γ2 + 2γ3 − 2δ2 + 2δ3 − ζf/3 ≥ 0 δ1 − (1− f)ζ ≥ 0
β3 − γ3 + γ4 − δ3 + δ4 − ζf/12 ≥ 0 β1 + 2δ2 − (1− f)ζ ≥ 0
β3 − 2γ3 + 2γ4 − 2δ3 + 2δ4 − ζf/6 ≥ 0 β1 + β2 + 3δ3 − (1− f)ζ ≥ 0
β3 − 2γ3 + 3γ4 − 3δ3 + 3δ4 − ζf/4 ≥ 0 β1 + β2 + β3 + 4δ4 − (1− f)ζ ≥ 0
β4 − γ4 − δ4 + η − ζf/20 ≥ 0 β1 + β2 + β3 + β4 + 5η − (1− f)ζ ≥ 0
β4 − 2γ4 − 2δ4 + 2η − ζf/10 ≥ 0 −η + (1− 6f/5)ζ ≥ 0
βi, δi ≥ 0, for i = 1, ..., 4
γi ≥ 0, for i = 2, 3, 4
ζ, η ≥ 0

Table 1. The dual of LP(f) in the proof of Lemma 2.

The solution β1 = f/2 + 1/46, β2 = f/4, β3 = f/3, β4 = 15/46 − f/4, γ2 =
f/4, γ3 = f/6, γ4 = 5/46 − f/12, δ1 = 1 − f, δ2 = δ3 = 45/46 − 5f/4, δ4 =
1 − 5f/4, η = 1 − 6f/5 and ζ = 1 satisfies all the constraints. Observe that
β1 + β2 + β3 + β4 − ζ = 5f

6 − 15
23 , which implies that the objective value of the

dual program is strictly negative since f < 18
23 . The lemma follows. ut

Theorem 1. The approximation ratio of the greedy algorithm is at least 18/23.

Proof. By Lemmas 1 and 2, we have that for any f < 18/23 and for any instance
I of the frugal coverage problem, the greedy algorithm computes a solution of
benefit GREEDY(I) > f · OPT(I). Hence, its approximation ratio is at least
18/23. ut

2.2 The upper bound

The instance depicted in Figure 1 proves that our analysis is tight. It consists
of 18 elements and 11 sets. GREEDY starts by choosing the 2 horizontal sets of
size 3, then it chooses the 3 horizontal sets of size 2, and, finally, it chooses all
the vertical sets in order to cover the last 6 elements. Thus, GREEDY uses all
11 sets in order to cover the 18 elements for a profit of 18. The optimal solution
consists of the 6 vertical sets of size 3 and has a profit of 23 since it covers the
18 elements without using 5 out of the 11 sets. The upper bound follows.



Fig. 1. The tight upper bound for GREEDY.

3 Adding a corrective phase

In this section we show that an improvement in the performance of GREEDY is
obtained by adding a simple corrective phase at the end of its execution. We call
the new algorithm GREEDYc and prove that its approximation ratio is exactly
54/67 ≈ 0.8059 for frugal coverage. The definition of the corrective phase is very
simple. After the execution of GREEDY, we examine every set s that was chosen
during phase 2; if by removing s we still have a cover of the elements, we simply
remove s from the solution.

3.1 The parameterized LP Lemma

We slightly modify the parameterized LP for GREEDY in order to capture the
behavior of the corrective phase. We will need some additional definitions. We
denote by G2 and G1 the sets included by the algorithm in phases 2 and 1,
respectively. A (2, 1)-set of O2 is of type Γ if its uncovered element is included
in a set of G2. A (2, 2)-set of O2 is of type A if both of its uncovered elements
are included in sets of G2 and is of type B otherwise. A set of G2 is of type
AA if it does not belong to O2 and its newly covered elements (during phase 2)
belong to (2, 2)-sets of O2 of type A and is of type kl ∈ {AB, AΓ, BB, BΓ} if its
newly covered elements belong to two sets of O2 of types k and l, respectively.
A set of G1 is of type ∆ if its newly covered element belongs to a (2, 1)-set of
O2. We introduce the variables tAA, tAB , tAΓ , tBB , tBΓ , tΓΓ , and t∆ to denote
the ratio of the number of sets of types AA, AB, AΓ , BB, BΓ , ΓΓ , and ∆ over
|O|, respectively. We also use variable d to denote the ratio of the number of
sets removed during the corrective phase over |O|. The next lemma provides a
lower bound on d, which we will use as a constraint in the parameterized LP for
GREEDYc.

Lemma 3. x1 − tAB − tBB − tBΓ − t∆ − d ≤ 0.

Proof. We partition (2, 2)-sets of O2 of type B into two subtypes. Such a (2, 2)-
set s is of type B̂ if one of its elements is included in a set of G1 that also belongs
to O2 and is of type B̄ otherwise. Now, we extend the notation tk to denote the
ratio of the number of sets of G2 of type k ∈ {AB̂,AB̄, B̂B̂, B̂B̄, B̄B̄, B̂Γ, B̄Γ}
over |O|.



Observe that for each set s of O2 of type B̂, there exists a set in O1∩G1 (the
one containing the uncovered element of s at the beginning of phase 1) and any
other set of O1 ∩ G1 is of type ∆. Hence, x1 ≤ tAB̂ + 2tB̂B̂ + tB̂B̄ + tB̂Γ + t∆.
Now, observe that the number of sets that will be removed during the corrective
phase include those of type B̂B̂. Hence,

d ≥ tB̂B̂ ≥ x1 − tAB̂ − tB̂B̂ − tB̂B̄ − tB̂Γ − t∆ ≥ x1 − tAB − tBB − tBΓ − t∆,

as desired. ut
Variables a1,1, a2,1, and a2,2 will not be explicitly used; observe that we can

replace them as follows:

α1,1 = tAB + 2tBB + tBΓ + t∆

α2,1 = tAΓ + tBΓ + 2tΓΓ + t∆, and

α2,2 = tAA +
3
2
tAB +

1
2
tAΓ + 2tBB + tBΓ + x2.

The profit GREEDYc(I) is now d|O| more than GREEDY(I), i.e.,

GREEDYc(I) =

(
T + 1−

5∑

i=1

xi + d

)
|O|,

while OPT(I) is the same as in the previous section. In this way, we have ob-
tained the following parameterized LP lemma for GREEDYc.

Lemma 4. If there exists an instance I of the frugal coverage problem for which
GREEDYc computes a solution of benefit GREEDYc(I) ≤ f ·OPT(I) for some
f ∈ [0, 1], then the linear program LPc(f) has a feasible solution.

tAB + 2tBB + tBΓ + t∆ +
5∑

j=2

xj ≤ 1

tAA +
3
2
tAB +

3
2
tAΓ + 2tBB + 2tBΓ + 2tΓΓ + t∆ + x2 +

5∑

j=3

xj ≤ 1

i∑

j=1

αi,j +
5∑

j=i+1

xj ≤ 1, for i = 3, 4

− 2α3,3 −
2∑

j=1

jα3,j + 2tAA + 3tAB + 2tAΓ + 4tBB + 3tBΓ + 2tΓΓ + t∆ + 2x2 ≤ 0

− 3α4,4 −
3∑

j=1

jα4,j +
3∑

j=1

jα3,j ≤ 0

−
3∑

j=1

jα3,j + 2tAA + 3tAB + 2tAΓ + 4tBB + 3tBΓ + 2tΓΓ + t∆ + 2x2 + 3x3 ≤ 0



−
4∑

j=1

jα4,j +
3∑

j=1

jα3,j + 4x4 ≤ 0

− T +
4∑

j=1

jα4,j + 5x5 ≤ 0

x1 − tAB − tBB − tBΓ − t∆ − d ≤ 0

(1− 6f

5
)T − f

3
tAA − ftAB − f

3
tAΓ − 5f

3
tBB − ftBΓ − f

3
tΓΓ − 2f

3
t∆

−
4∑

i=3

i∑

j=1

fj

i(i + 1)
αi,j −

5∑

i=3

(1− f)xi − (1− f)x1 − (1− 2f

3
)x2 + d ≤ −1

αi,j ≥ 0, for i = 3, 4 and j = 1, ..., i

xj ≥ 0, for j = 1, ..., 5
tAA, tAB , tAΓ , tBB , tBΓ , tΓΓ , t∆ ≥ 0
T ≥ 0

The proof of the approximation bound is based on the following lemma.

Lemma 5. For every f < 54/67, LPc(f) has no feasible solution.

Proof. Similarly to the proof of Lemma 2, we assume that LPc(f) is a maxi-
mization linear program with objective 0. We show that its dual has a solution
with strictly negative objective value when f < 54/67. This implies the lemma.

To construct the dual of LPc(f) we use the eleven variables β1, β2, β3, β4,
γ3, γ4, δ3, δ4, η, µ and ζ corresponding to the constraints of LPc(f). Variables
βi correspond to the constraints in the first three lines of LPc(f), variables γi

correspond to the constraints in the fourth and fifth line, variables δi correspond
to the constraints in the sixth and seventh line, and η, µ, and ζ correspond to the
three last constraints of LPc(f), respectively. So, the dual of LPc(f) is depicted
in Table 2.

The solution β1 = 41/134, β2 = f/3 + 13/67, β3 = 0, β4 = 31f/108, γ3 =
0, γ4 = f/12, δ3 = δ4 = 1 − 67f/54, η = 1 − 6f/5, ζ = 1 and µ = 1 − f satisfies
all the constraints. Observe that β1 + β2 + β3 + β4 − ζ = 67f

108 − 1
2 , which implies

that the objective value of the dual program is strictly negative for f < 54
67 . The

lemma follows. ut
The next statement follows by Lemmas 4 and 5.

Theorem 2. The approximation ratio of GREEDYc is at least 54/67.

3.2 The upper bound

The instance which yields the tight upper bound for GREEDYc consists of 48
elements and 31 sets; see Figure 2. There, the sets selected by GREEDYc are
shown, while the optimal solution consists of the 12 vertical disjoint sets of size 4



min β1 + β2 + β3 + β4 − ζ

s.t. β2 + 2γ3 + 2δ3 − f
3
ζ ≥ 0 β4 − γ4 − δ4 + η − f

20
ζ ≥ 0

β1 + 3
2
β2 + 3γ3 + 3δ3 − µ− fζ ≥ 0 β4 − 2γ4 − 2δ4 + 2η − f

10
ζ ≥ 0

3
2
β2 + 2γ3 + 2δ3 − f

3
ζ ≥ 0 β4 − 3γ4 − 3δ4 + 3η − 3f

20
ζ ≥ 0

2β1 + 2β2 + 4γ3 + 4δ3 − µ− 5f
3

ζ ≥ 0 β4 − 3γ4 − 4δ4 + 4η − f
5
ζ ≥ 0

β1 + 2β2 + 3γ3 + 3δ3 − µ− fζ ≥ 0 µ− (1− f)ζ ≥ 0

2β2 + 2γ3 + 2δ3 − f
3
ζ ≥ 0 β1 + β2 + 2γ3 + 2δ3 − (1− 2f

3
)ζ ≥ 0

β1 + β2 + γ3 + δ3 − µ− 2f
3

ζ ≥ 0 β1 + β2 + 3δ3 − (1− f)ζ ≥ 0

β3 − γ3 + γ4 − δ3 + δ4 − f
12

ζ ≥ 0 β1 + β2 + β3 + 4δ4 − (1− f)ζ ≥ 0

β3 − 2γ3 + 2γ4 − 2δ3 + 2δ4 − f
6
ζ ≥ 0 β1 + β2 + β3 + β4 + 5η − (1− f)ζ ≥ 0

β3 − 2γ3 + 3γ4 − 3δ3 + 3δ4 − f
4
ζ ≥ 0 −η + (1− 6f/5)ζ ≥ 0

βi ≥ 0, for i = 1, ..., 4 −µ + ζ ≥ 0
γi, δi ≥ 0, for i = 3, 4
ζ, µ, η ≥ 0

Table 2. The dual of LPc(f) in the proof of Lemma 5.

(note that only half of them are shown in the figure). Clearly, the profit obtained
by GREEDYc is 48 + 6 = 54, while the profit of the optimal solution is at least
48+19 = 67, and the upper bound follows. We remark that the corrective phase
does not remove any set.

Fig. 2. The tight upper bound for GREEDYc.

4 Extensions

Our focus in the current paper has been on simple algorithms for frugal coverage.
A possible improvement could be obtained by extending the corrective phase
so that it considers removing sets included in phases of the greedy algorithm
before phase 2. Another sophisticated technique that can probably lead to further
improvements has been proposed by Duh and Fürer [4] for the set cover problem
with sets of bounded size and is known as semi-local optimization. This technique
has been proved to be useful in other problems such as color saving and spanning



star forest [2, 4]. In future work, we plan to extend our analysis to greedy-like
algorithms that combine semi-local optimization and corrective phases.
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