
Integration of Component Fault Trees into the
UML

Rasmus Adler1, Dominik Domis2, Kai Höfig2, Sören Kemmann1, Thomas
Kuhn1, Jean-Pascal Schwinn3, and Mario Trapp1

1 Fraunhofer IESE
{rasmus.adler|soeren.kemmann|thomas.kuhn|mario.trapp}@iese.fraunhofer.de,

WWW home page: http://www.iese.fraunhofer.de
2 University of Kaiserslautern, Computer Science Department

{dominik.domis|kai.hoefig}@cs.uni-kl.de,
WWW home page: http://agse3.informatik.uni-kl.de

3 Siemens AG, Corporate Research and Technologies
jean-pascal.schwinn@siemens.com

Abstract. Efficient safety analyses of complex software intensive em-
bedded systems are still a challenging task. This article illustrates how
model-driven development principles can be used in safety engineering to
reduce cost and effort. To this end, the article shows how well accepted
safety engineering approaches can be shifted to the level of model-driven
development by integrating safety models into functional development
models. Namely, we illustrate how UML profiles, model transformations,
and techniques for multi language development can be used to seamlessly
integrate component fault trees into the UML.

1 Introduction

Embedded systems are of crucial importance to our society. We recognize our
dependence in the moments when these systems do not work or produce er-
rors. Headlines in the newspaper about plane crashes or car accidents show how
coupled the advantages and dangerous disadvantages of these systems are to
each other. Therefore the development of embedded systems comes with a large
responsibility. Particularly the development of safety critical systems therefore
underlies a series of legislative and normative regulations making safety to one
of the most important non-functional properties of embedded systems. One of
the main requirements is a sophisticated safety analysis of the system. Partic-
ularly in the case of software-intensive embedded systems, their complexity is
rapidly increasing and extended analysis techniques are required that scale to
the increasing system complexity.

Model driven development is currently one of the key approaches to cope
with increasing development complexity, in general. Applying similar concepts
to safety engineering is a promising approach to extend the advantages of model
driven development to safety engineering activities. First, it makes safety engi-
neering as a standalone subtask of system development more efficient. Second,

II

and even more importantly, this is an essential step towards a holistic devel-
opment approach closing the gap between functional development and safety
engineering.

This paper illustrates how model driven design principles can be applied to
safety analysis techniques in order to enable an efficient analysis of complex
systems. In contrast to other approaches it is not the goal to extend existing
development approaches with some additional safety properties. Instead, it is
the goal to shift full-fledged, established, and well-accepted safety engineering
approaches to the level of model-driven development and to seamlessly integrate
them to the functional development. In this paper, we use fault trees as an
established analysis approach and illustrate how they can be integrated to a
model-driven design approach. As a starting point we use component fault trees,
which extend standard fault trees with the concept of modularity. In order to
shift this approach to the model driven development level, we have defined a
domain specific modeling language and according analysis and transformation
algorithms. Since safety and particularly certification bodies are usually very
conservative, it is very important to enable the use of proven-in-use tools to
perform the actual analyses. To this end, model transformations are used to
generate exchange formats for standard fault tree analysis tools like FaultTree+
[9]. By this means, the flexibility and expressiveness of the DSML-based fault
tree language can be combined with the acceptance of proven-in-use analysis
tools.

To tap the full potential of this approach, the safety meta models are seam-
lessly integrated to the functional meta models in the second step. To this end
the functional models have been extended using a view concept, i.e., it is possible
to define a safety view for each component using DSML-based component fault
trees. By this means, safety becomes an integral part of software and systems
development, safety modeling tasks can (partially) be delegated to developers,
consistency checks between safety and functional models can be automated, and
safety models are automatically reused together with the owning component.
And even most importantly, it is sufficient to define the safety models of the
single components, the overall safety models can then be generated automati-
cally using the component safety models and the functional architecture models.
In most cases, the complexity consequently increases linearly with the number
of components so that the approach scales to large systems. Regarding first
applications in industry, the advantages of model-driven development can be
successfully extended to safety engineering. The combination of modularization,
reuse, and automation can tremendously increase the efficiency of safety analy-
ses of large systems. The remainder of this paper is structured as follows. First,
we present related work. Second, we introduce component fault trees. Third,
we present a more formal definition of CFTs based on a generic meta-model for
components. Based on, we explain our multi language integration for integrating
CFTs into architectural design models. Finally, we summarize our approach and
discuss its benefits for industrial usage.

III

2 Related Work

Many approaches exist that try to integrate safety analyses and design models in
order to reduce effort by automatically transforming the integrated model into a
classical safety analysis such as fault trees. These approaches can be divided into
three classes: Semantic Enriching, Fault Injection, and Failure Logic Modeling.

Semantic Enriching annotates additional safety-relevant semantic infor-
mation to design models such as the role of a class in a fault tolerance mech-
anism, the safety requirements of the annotated entity, or failure modes and
their likelihood of occurrence. The assumption for approaches belonging to this
category is that adding semantic information to entities of the system model is
sufficient for the deduction of a safety analysis model and requires less effort,
than modeling the safety behavior manually. In UML models stereotypes, tagged
values, and constraints are used for this purpose, usually. In [7], such annota-
tions are used to mainly identify redundancy mechanisms. They concentrate on
recurring safety analysis model constructs and automatically construct parts of
the safety analysis model at a high level. The annotations presented in [4] can be
applied to all elements of the design model. The used annotations are generically
defined to cover the whole design space and to allow a detailed deduction of the
safety analysis model. This coverage and the high detail of the safety analysis
model is in this approach achieved at the expense of a large number of different
annotations.

The advantage of Semantic Enriching is that safety-relevant information is
specified in the language of the design engineer or programmer and within the
same model as the analyzed system. This approach supports thereby the con-
sistency of the design and the safety analysis model and increases the commu-
nication between the system developer and the safety engineer. However, the
main disadvantage of approaches belonging to this category is the need for a
high degree of detail in the safety analysis model complicating the process of an-
notating the model entities. Additionally, the annotations are usually not using
the widely used semantics of common safety analysis models such as fault trees
and additional knowledge for using the semantics is needed. This makes them
difficult to apply, they are time-consuming, error prone and unfamiliar for safety
engineers and certification bodies.

Fault Injection requires a formal or an executable design model. Undesired
behavior is modeled along with the system model and model checkers or simu-
lations, for example, are used to find inconsistencies between the model and the
safety requirements. This procedure allows a high degree of automation and a
strong correctness of the results. Using model checking for fault injection was
invented by Liggesmeyer in [14]. More examples, can be found in [1], [10] and [3].
The drawback of approaches belonging to this category is the limitation of the
system model on formal models. Furthermore, approaches of this category do
not solve the problem of finding appropriate failure modes or support humans
to think about conceptual faults that are not in the model and were not specified
before.

IV

The approach presented in this paper, belongs to the third category: Failure
Logic Modeling (FLM) modularly defines the failure propagation of modules of
the system in parallel to the data-flow through the system similar to a standard
safety analysis. The disadvantage of FLM is that the annotation is still a manual
task and very similar to a manual safety analysis. However, in our opinion this
is also its advantage against Semantic Enriching and Fault Injection. The used
development model is not constrained to be executable, as in fault injection,
and the advantages of semantic enrichment that come from the combination of
the system model and safety analysis model can be achieved without the draw-
back of applying a complicated and unfamiliar set of annotations. In failure logic
modeling, the safety analysis can be performed in the way the safety engineer is
familiar with, but modularly and in parallel to the design model, which helps to
handle complexity and increases the communication between safety and system
engineering. Examples of Failure Logic Modeling can be found in [17], [8] an
[16]. The most similar approach to this paper are the Hierarchically Performed
Hazard Operation and Propagation Studies (HiP-HOPS), which annotate sub-
systems in Matlab/Simulink with propositional formulas, which are mathemati-
cally equivalent to fault trees [16]. The approach has already been integrated into
EAST-ADL [2], which extends the UML/SysML. In contrast to the approaches
as discussed before, we propose in this paper an approach that uses model-based
concepts to integrate the fault tree model with UML models. In this way, safety
becomes model-based analyzable in the model-based development with UML
models. The safety analysis model is then an integral part of the design model
and the advantages of model-based development are transferred to the safety
analysis model.

3 Introduction to CFTs

Fault tree analysis is a deductive, top-down method that analyzes the causes of
a hazardous failure of a complex system. Fault trees offer thus a breakdown with
regard to the hierarchy of failure influences. The root of the tree is called top
event and the leaves are called basic events. The decomposition of the top
event into the basic events is defined by the remaining nodes which are logical
operators. However, this kind of hierarchical decomposition is not sufficient when
dealing with complex technical systems. In the functional design, the complexity
of these systems is typically handled by an appropriate component concept that
allows the decomposition into manageable components. To facilitate this archi-
tectural decomposition also for the fault tree analysis, the concept of component
fault trees (CFTs) has been proposed in [12].

CFTs feature a decomposition approach that is used in a similar way in mod-
ern software design notations: subcomponents appear as ”black boxes” on the
next-higher level and are connected to the environment via their interface. The
output interface is given by so-called output events and the input interface
is given by so-called input events. Further, a CFT comprises so-called basic
events that represents internal faults. The CFT relates every output event to

V

its internally caused basic events and its relevant input events. This decomposi-
tion is modeled with logical operators as it is done in the decomposition of a top
event to a set of basic events in a common fault tree. Similar to a component,
a CFT can be instantiated several times in other CFTs. In their environment,
these instantiations are called ”subcomponent” or ”CFT instances”. These in-
stances can be composed by connecting input and output events. In- and output
events of a CFT appear as subcomponent events when they are instantiated
on the next-higher hierarchy level. The CFT graph as a whole is defined by its
edge connections and the mappings from subcomponents to the corresponding
CFT model describing their ”internals”. The complete CFT can be evaluated
qualitatively and quantitatively like a classical fault tree (see [11] for a formal
specification of CFTs, [12] for a description of the BDD-based and compositional
evaluation algorithm used for CFTs; UWG3, a tool for modelling and evaluation
of CFTs, can be found at [6]).

In the following, we exemplify the modeling of CFTs with the running ex-
ample of this article. It is a system for charging the battery of a car with an
electric power train. This system charging has to fulfill the safety requirement
that the car must not start-up when the male connector is plugged, since other-
wise the charging cable may crack and electrocute somebody. For detecting the
plugging of the male connector, the system comprises a hardware component
ProximitySensor, a hardware component VoltageSensor, and a software compo-
nent PlugDetection.

The hardware components send respectively a signal to the component PlugDe-
tection that indicates whether the male connector is plugged or not. The com-
ponent ProximitySensor outputs the boolean signal proximity that is supposed
to be true when the connector is plugged and false when the connector is un-
plugged. The component VoltageSensor outputs a signal voltage that is supposed
to be true when the plug connection is energized and false otherwise. If both sig-
nals are false then the component PlugDetection sets its Boolean output signal
plugged to true else it sets signal plugged to false. In this way, the component
minimizes the risk of violating the safety requirement due to an undetected
plugged connector.

Figure 1 shows the CFT PlugDetection that refers to the detection of a
plugged connector based on the signals proximity and voltage. The CFT com-
prises two output events (top triangles), two input events (bottom triangles)
and three basic events (circles). The event plugged omission refers to the com-
mon failure mode omission, i.e., an unexpected absence of a signal when it is
required. The event unplugged commission refers to the common failure mode
commission, i.e., an unintended provision of a signal when not required. The in-
put event Proximity FN captures a false negative value of signal proximity, i.e.,
the value is false although a connector is plugged. Accordingly, the input event
voltage FN refers to a false negative value of signal voltage. A false negative
value of both input signals leads to an undetected plugging of the connector.
Hence, the CFT defines that the conjunction of the input events causes both
output events. As the outputs events can also be caused by internal faults of

VI

Fig. 1. Example for a component fault tree (CFT)

the component PlugDetection, the CFT comprises the basic events that refer to
these internal faults. It has three basic events in order to distinguish between dif-
ferent kinds of faults. Basic event fault 1 refers for the class of faults that causes
only a omission of signal plugged. Basic event fault 2 refers to faults that cause
an omission and a commision of signal plugged. Accordingly, it is connected to
both OR gates. Basic event fault 3 refers to faults that cause an comission of
signal plugged. Please note that the identifiers fault 1 fault 2 and fault 3 are
anonymized due to NDA reasons. In practice the names should be expressive
and semantically meaningful.

The CFT ProximitySensor that describes the failure behavior of the proxim-
ity sensor comprises an output event Proximity FN that refers to a false negative
value of the measured signal proximity. The CFT VoltageSensor that describes
the failure behavior of the voltage sensor comprises an output event Voltage FN
that refers to a false negative value of the measured signal voltage. As illustrated
in Figure 1, instances of the CFTs ProximitySensor and PlugDetection are com-
posed by connecting output event Proximity FN with input event Proximity FN
in order to define the overall CFT graph of the system. Instances of CFTs Volt-
ageSensor and PlugDetection are composed by connecting output event Volt-
age FN with input event Voltage FN. This means that the fault trees belonging
to output events Proximity FN and Voltage FN are adhered to the fault trees
belonging to output events plugged omission and unplugged comission.

4 Towards model-based CFTs

The aforementioned component fault trees enable developers to formally specify
the failure-propagation of their developed systems, and enable formal analysis
techniques. CFTs are on the most abstract level hierarchical components with
parts and connections between them. We therefore define CFTs based on a
generic meta-model for component based software development that resembles

VII

the most important principles of component based development CBD (cf. Figure
4). This meta model was build based on the UML modeling language.

Fig. 2. Component Meta model

The meta model consists of components, which define component types,
component proxies, which represent component instances, ports, and di-
rected connections. All are well known concepts in CBD. Components con-
sist of elements, which may be component proxies, connections, or generic
parts. Generic parts are abstract placeholders for more specialized language
constructs therefore and need to be specialized by more concrete meta models.

CFTs are defined based on this abstract meta model (cf. Figure 3). This
approach is helpful for language integration, which will be described in the next
section. CFTs define a specialized type of components, CFTComponent, and
specializes generic ports to input- and output event ports . Gates and
Events are specializations of the abstract element Part. Gates combine events
with each other. Two predefined gate types are common to all calculation back-
ends, these are the predefined and and or gates. Events represent faults, which
are the core of fault trees. After identifying faults and their propagation logic, the
next step is the definition of counter-measures to mitigate or tolerate the faults.
Because classic (C)FTs do not support the modelling of measures, in practice
the workaround is to model a failing measure as a basic event and relate it to
the fault or the fault-subtree with an AND-gate. The semantic of this would
be that a fault propagates, whenever the fault occurs AND the counter-measure
fails, too. The disadvantage is that one cannot distinguish original faults from
failing counter-measures. Having a meta-modelled DSML it is straight forward
to add a modelling element called Measure. This makes it not only possible
to distinguish faults from measures graphically, but also to use the extended
semantic information for additional analyses. One analysis could be to reason,
whether every fault is covered by at least one measure. Figure 3 shows the com-
plete meta model of Component Fault Trees, which is the abstract syntax of the
CFT language.

Sometimes, for specific application domains, or for enabling more expressive
fault trees, tool vendors provide proprietary gates as extensions to standard
fault tree gates. These types are valuable, and therefore must not be omitted by
modeling frontends. Additionally, it is necessary to integrate new domain specific

VIII

Fig. 3. CFT Meta model

languages with existing tool chains. For these reasons, the concrete syntax of
CFTs is realized as a UML profile. This makes it possible to use UML modeling
tools for developing component fault trees, and it enables us to inherit the UML
profiling mechanism for vendor specific language adaptations. For this reason,
the meta model has been converted to a UML profile (cf. Figure 4).

Our DSML approach for CFTs is based on the separation of modelling and
calculation. Thus, the step of code-generation for functional DSML is replaced
by a model transformation step from our model to a proprietary, tool specific
format for analysing with an external calculation back-end. The challenge on the
one hand and one huge advantage of our DSML approach on the other hand was
the demand for supporting several back-ends with vendor specific language ex-
tensions. The need for rapid tailoring and adaption of our DSML arose with the
realization that the analytical expressiveness of the different back-ends are not
equal. Some gate-types such as m-out-of-n-gates cannot be directly transformed
to the back-end language of other tools. Therefore we decided to apply the afore-
mentioned profile based approach together with tailored transformation rules for
each tool. By adding profiles to the regular CFT meta model, the language is
tailored to a specific tool. The generic set of transformation rules for CFTs is
specialized as well to yield tool specific transformations that transform to ven-
dor specific target models. This way, a heterogeneous and non-standardized set
of backend tools is made useable through one UML-based frontend, without
disabling tool specific extensions.

IX

Fig. 4. CFT UML profile

5 UML profiling as DSML design

The visualization of the elements, names and their relations of the concrete
syntax seems to be almost identical to the abstract syntax of the CFT language
(cf. Figures 3 and 4). Nevertheless by defining the concrete syntax of the CFT
language as UML profile, many benefits of model-driven development approaches
are available to the specification of fault trees. However, this does not change
the fact that the modeling language for describing component fault trees is still
isolated. The first advantage is to create safety models in the same tools that
are used for creating the architecture and design of the embedded system.

Moving from this promising step further to model-driven development, we
need tightly integrated models that store all relevant information for a developed
systen in one location. This enables developers to model relations between dif-
ferent system aspects and prevents redundant storage of information in several
repositories. This way components and their ports for example need to be stored
only once, in one repository. Languages that focus on specific aspects of the de-
veloped system - for example on CFTs and UML-based architecture definitions,
can refer to this common location. This makes it possible to reuse modeling
elements in several modeling languages, and keep them synchronized automati-
cally. The common limitation when applying MDD approaches, the replication
of information can be easily mitigated. As an example, the name of components
are replicated in two modeling languages, the UML and the CFT DSML. This

X

replication of information leads to inconsistencies as projects grow and get more
mature, and introduce therefore significant defects into models over time.

The solution to this situation is multi language integration, which is still a
challenging and uncommon topic. With multi language integration, modeling
languages or DSMLs are integrated in a manner that they refer to the same
elements. For example, if a developer changes the name of a component, all
references in other modeling languages are updated as well. In the following, we
describe the application of our approach to language integration of CFTs and
UML-based architecture definitions.

A common scenario regarding the UML for practitioners is to use only a
subset of the UML for developing software, which may be viewed as a UML
based DSL. Normally, this language tailoring is done through profiles, which
define new language elements based on existing meta classes and add (OCL)
constraints. This yields a DSL with a UML-based concrete syntax. Optionally,
the abstract syntax of the DSML may be specified as a meta model.

Our UML based DSML supports only very basic concepts, which are com-
ponents, ports, and relations. Relations are specialized into generalizations,
aggregarions, compositions, and directed, as well as non-directed relations. Com-
ponent types may consist of component proxies that provide an instance of a
defined component type. Other aspects of the UML are not considered in the fol-
lowing. Our multi language integration approach supports two different types of
coupling: referencing and harmonization. For our example, we use the tighther
harmonization approach. Referencing however is applicable for situations, in
which a more light-weight integration is necessary.

Referencing supports the integration of incompatible meta models with each
other. This technique does not require modification of any of the meta models
that are integrated, and therefore enables integration of existing tools and MDD
approaches even when they cannot be modified easily. Here, meta model integra-
tion is performed through explicit references, mapping functions, and synchro-
nization. Model elements are explicitely mapped from one modeling language to
another one through mapping functions. These functions define links between
both meta models, and are kept in an independent model. A concrete realiza-
tion of a referencing based approach was published in [13], which illustrates this
concept of language integration in greater detail.

Considering our multi language integration example, the set of functions
f ∈ F define explicit mappings from CFTs to UML, while f−1 ∈ F−1 define
mappings from UML back to CFTs. The shown mapping functions ensure that
port names are synchronized properly between components - relevant model ele-
ments are passed as parameters to the mapping functions. Additional functions
would cover the remaining properties of ports, e.g. they would ensure that ports
are deleted synchronously, or they would handle different language elements. All
language elements that are not explicitely known to mapping functions are ig-
nored. Since mapping functions only extract relevant model information, they
are resistant to meta model extensions. Another benefit, which is illustrated in
as well is the ability to provide 1:n synchronization - in CFTs, one UML port

XI

may be represented by several input or output events, which represent different
error modes. In the example, there are unexpected values and high delays for
port A. This situation is also easlily resolved by mapping functions, because the
mapping is performed for each pair of conforming model elements.

The referencing based approach is applicable in situations, in which it is not
possible to modify the meta models and/or tools that are integrated with each
other. Meta models of both languages remain unchanged, and therefore are not
affected by the integration. This also holds for existing transformations, model
checking approaches, and validations.

In our example, two DSMLs are integrated, which both may be modified
for integration. This enables application of our harmonization approach, which
provide a tighter, and more efficient integration of languages than referencing. It
modifies the meta model of both languages but ensures that the integrated meta
models remain compatible to those of the original languages. Figure 5 illustrates
our approach with a generic meta class as example. Here, first the common
base class g is created that holds common properties of classes e and f . Joint
properties, such as the proxies property are moved to the common base class.
Afterwards, the user visible meta class ℎ is created, which is used for modeling
and contains all properties of all integrated classes.

Fig. 5. Meta model harmonization example

This algorithm ensures a conforming integration of two DSMLs - its detailed
and formal description is the following:

– If two language elements e and f were distinct in the originating meta models
M and N , there are two distinct language elements e′ and f ′ in the combined
meta model O.

– All language elements e′ in the integrated meta model O have at least all
properties of their originating language elements e from each originating
meta model.

XII

– All language elements e′ in the integrated meta model O are compatible
to their source type (i.e. also have the type) e from their originating meta
model M .

This guarantees that existing profiles, model transformations, validations,
and model checkers may still be used with the integrated meta model, which
is our definition of compatibility. Integration on the other hand guarantees the
following:

– If two language elements e and f were similar in both originating meta
models M and N , they are represented by only one element g′ in the resulting
meta model O. This applies to language elements, relations, and attributes.

– Attributes with conflicting types from originating meta models are not har-
monized.

– Attributes with conflicting default values are given a new default value that
conform to the integrated meta model.

These definitions may be extended to integrated meta models that originate
from more than two meta models. A tighter integration is applicable when meta
models of modeling languages are sufficiently compatible to each other, e.g. when
they are built on a common meta model. The big advantage of this integration
approach is an implicit synchronization across modelling languages. Since mod-
elling languages are now parts of one holistic meta model, it is not necessary to
duplicate information anymore. Therefore, information is always accurate and
synchronized.

Meta model harmonization is our approach for tight meta model integration.
This is not a new technique - both, the UML and the MOF apply this technique
to merge language packages that define subsets of their respective meta models.
Package merging of one package with another creates the union of both packages,
which spans meta classes, attributes, and relations. Resulting meta classes hold
all properties of the original meta classes. The existing package merge relation
as defined by the UML is ambiguious in some situations though (see [5]). The
authors of [5] propose different semantics for package merge, which will also be
applied in the following for merging of abstract syntax. When it comes to the
concrete syntax, most UML modeling tools do neither support the extending
of their meta models, nor do they support the semantics of package merging.
Therefore, we map this merging approach to UML profiles. This is a feasible
approach, because many DSMLs may be specified as UML profiles, and, as al-
ready mentioned, commonly the UML as language for defining behavior and
architectures is often restricted by profiles as well.

Integration of meta models and/or UML profiles requires the integration
of meta classes, attributes, and relations. We use the following approach for
harmonization of source meta models or profiles M and N (in the following,
meta classes are used as synonym for meta classes/stereotypes):

– Definition of the harmonized meta model or profile O.

XIII

– Harmonization of meta classes/stereotypes from M and N . For every pair of
meta classes e and f that are similar in originating meta model, a new meta
class g is created that generalizes e and f . Additionally, a new meta class ℎ
that specializes e and f is created.

– For realization through profiles only: the stereotyped meta class(es) of g is
set to union of the stereotyped meta classes of e and f .

– Harmonization of class attributes for all meta classes e ∈ M and f ∈ N .
Every attribute a of meta class e, for which a ∈ e and a ∈ f holds is moved to
g, iff meta properties of a can be harmonized (see below). Attribute remains
in e or f otherwise.

– Harmonization of regular relations r: Regular relations are handled like at-
tributes, therefore, the rules for attributes apply here as well.

– Harmonization of generalizations g: Generalization relations g between two
elements i, j ∈ M are added as new generalization relations g′ between
elements i′ and j′ ∈ O.

– Harmonization of aggregations a: Aggregation relations are handled like at-
tributes.

For the harmonization of attributes, additional meta properties need to be
checked to ensure proper harmonization. These properties are the following:

– defaultV alue defines the default value of a property. Here, a suitable new
default value must be found if default values from both harmonized elements
e ∈ M and f ∈ N differ from each other. If no default value is found, no
default value is assumed for g ∈ O.

– isComposite defines whether a property is contained in its owner or not. If
the value of this property differs in source elements e ∈ M and f ∈ N , a cre-
ative decision is to be made by language developers to avoid meta modeling
conflicts. this may yield the decision of keeping both properties seperated,
because they obviously follow different (static) language semantics, or to
decide for one value for g ∈ O.

– isDerived defines whether a property value may be derived from other prop-
erties. If the value of this property differs in source elements e ∈ M and
f ∈ N , isDerviced needs to be set to false in g ∈ O, because its value needs
to be set manually and cannot be calculated.

– isReadOnly defines whether a property may be modified. If e ∈ M and f ∈
N differ, the value for g ∈ O is false. This may open unexpected privileges
that were not given by original meta models, which is necessary in this case.

– opposite defines an opposite value for an attribute. If values from both orig-
inating meta models differ, again a creative decision is necessary, because
there is no automated way for harmonization.

– The name property is typically the same and kept during harmonization,
the type is set to the harmonized input type g that was created during the
second step of our approach.

Language-specific presentations ensure that in each view only properties that
are of relevance to the currently used DSML are visible. For example, the safety

XIV

engineer that models with CFTs only perceives CFT related properties of the
Component modeling elements, software architects only perceive UML related
properties. Realization of views is tool specific - in our case, we used the DSL
engine of MagicDraw [15] to realize these views.

Meta model harmonization also has implications on the semantics of model-
ing languages. When a component with an associated CFT is generalized, the
sub-components inherit the CFT of the parent component. Therefore, they may
add new failure analysis, for example for new ports that are introduced by spe-
cialized components. A thorough analysis of these implications for all possible
integration scenarios is considered to be future work.

6 Conclusion

From a safety point of view, safety analyses are indispensable for ensuring the
safety of embedded systems. Particularly for complex, software intensive systems,
safety analyses is very time consuming and error-prone. The approaches we il-
lustrated in this paper, have shown in their practical application that applying
the principles of model driven engineering to safety analyses yields a promising
means to reduce the effort and to increase the quality of the analyses. This is
particularly true, if the safety analysis models are seamlessly integrated to the
functional development models leading to a higher potential for reuse as well as
automated generation and consistency checks of safety models. From a DSML
point of view, the integration of safety models has shown the feasibility that the
concepts of multi language development can be used to integrate non-functional
models to functional development models. The harmonization of the modeling
language based on profiles as well as the model transformations developed en-
ables the integrated use of accepted modeling environments and proven-in-use
analysis tools. The approach has been implemented and evaluated in context of
a cooperation project between Fraunhofer IESE and Siemens-CT. The imple-
mentation of the modeling language based on the profiling mechanisms of the
UML in combination with additional concepts for the multi language develop-
ment was fife times more efficient than a traditional development approach (a
team that developed a standalone CFT modeler using a traditional development
approach required more than five times as much effort as an independant team
that using the DSML-based modeler). Besides this speed-up factor, a further
very important advantage is the flexibility of the approach. The CFT exten-
sions can be easily modified and extended, which enabled a fast tailoring to the
organization-specific and even the project-specific requirements, which has been
a crucial advantage over the inflexible off-the-shelf solutions. The modeling lan-
guage was evaluated by applying to several real world examples of Siemens-CT.
The building of safety models according to the functional model was practical in
all examples as a reasonable overall structure for the component fault trees was
already given. The approach presented in this article therefore provides a very
good basis for future work. Regarding safety, this particularly means the inclu-
sion of further important safety models, like hazard and risk analyses or safety

XV

case models. For safety and for the NFP modeling in general, it is very important
to further advance the integration over different non-functional models.

References

1. M. Bozzano. ESACS: An integrated methodology for design and safety analysis of
complex systems. In Proc. of European Safety and Reliability Conf. ESREL, pages
237–245, 2003.

2. P. Cuenot, D. Chen, S. Gérard, H. Lönn, M.-O. Reiser, D. Servat, R. T. Kolagari,
M. Törngren, and M. Weber. Towards improving dependability of automotive
systems by using the east-adl architecture description language. pages 39–65, 2007.

3. W. Damm, A. Votintseva, A. Metzner, B. Josko, T. Peikenkamp, and E. Bde.
Boosting Re-use of Embedded Automotive Applications Through Rich Compo-
nents, 2005. Proceedings, FIT 2005 - Foundations of Interface Technologies.

4. M. A. de Miguel, J. F. Briones, J. P. Silva, and A. Alonso. Integration of safety
analysis in model-driven software development. Software, IET, 2(3):260–280, June
2008.

5. J. Dingel, Z. Diskin, and A. Zito. Understanding and improving UML package
merge. Software and Systems Modeling, 7(4):443–467, October 2008.

6. Essarel homepage. URL: http://www.essarel.de/index.html. Last accessed on
2010/08/02.

7. P. Ganesh and J. Dugan. Automatic Synthesis of Dynamic Fault Trees from UML
SystemModels. 13th International Symposium on Software Reliability Engineering
(ISSRE), 2002.

8. L. Grunske. Towards an Integration of Standard Component-Based Safety Eval-
uation Techniques with SaveCCM. Proc. Conf.Quality of Software Architectures
QoSA, 4214, 2006.

9. Isograph homepage. URL: http://www.isograph-software.com/ftpover.htm. Last
accessed on 2010/08/02.

10. A. Joshi, M. Heimdahl, M. Steven, and M. Whalen. Model-Based Safety Analysis,
2006. NASA.

11. B. Kaiser, P. Liggesmeyer, and O. Mäckel. A new component concept for fault
trees. In In proceedings of the 8th Australian Workshop on Safety Critical Systems
and Software (SCS03), Adelaide, pages 37–46, 2003.

12. B. Kaiser and A. Zocher. Bdd complexity reduction by component fault trees. In
In proceedings of the European Safety and Reliability Conference (ESREL 2005),
Adelaide, pages 1011–1019. Balkema Publishers, 2005.

13. T. Kuhn, S. Kemmann, M. Trapp, and C. Schaefer. Multi-language development
of embedded systems. In 9th OOPSLA DSM Workshop, Orlando, USA, 2009.

14. P. Liggesmeyer and M. Rothfelder. Improving system reliability with automatic
fault tree generation. In Fault-Tolerant Computing, 1998. Digest of Papers.
Twenty-Eighth Annual International Symposium on, pages 90 –99, 23-25 1998.

15. Magicdraw homepage. URL: http://www.nomagic.com/. Last accessed on
2010/08/02.

16. Y. Papadopoulos and M. Maruhn. Model-Based Automated Synthesis of Fault
Trees from Matlab.Simulink Models. International Conference on Dependable Sys-
tems and Networks, 2001.

17. A. Rugina. System Dependability Evaluation using AADL (Architecture Analysis
and Design Language), 2005. LAAS-CNRS.

