
ar
X

iv
:1

10
1.

59
40

v1
  [

cs
.D

M
] 

 3
1 

Ja
n 

20
11

Avalanche Structure in the Kadanoff Sand Pile Model ⋆

Kevin Perrot and Eric Rémila

Université de Lyon
Laboratoire de l’Informatique du Parallélisme,

(umr 5668 CNRS - ENS Lyon - Université Lyon 1),
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Abstract. Sand pile models are dynamical systems emphasizing the phenomenon of Self

Organized Criticality (SOC). From N stacked grains, iterating evolution rules leads to some
critical configuration where a small disturbance has deep consequences on the system, in-
volving numerous steps of grain fall. Physicists L. Kadanoff et al inspire KSPM, a model
presenting a sharp SOC behavior, extending the well known Sand Pile Model. In KSPM with
parameter D we start from a pile of N stacked grains and apply the rule: D−1 grains can
fall from column i onto the D−1 adjacent columns to the right if the difference of height
between columns i and i+1 is greater or equal to D. We propose an iterative study of KSPM
evolution where one single grain addition is repeated on a heap of sand. The sequence of grain
falls following a single grain addition is called an avalanche. From a certain column precisely
studied for D = 3, we provide a plain process describing avalanches.

Keywords: Discrete dynamical system, self-organized criticality, sand pile model.

1 Introduction

Sand pile models were introduced in [1] as systems presenting a critical self-organized
behavior, a property of dynamical systems having critical points as attractors. In the scope
of sand piles, starting from an initial configuration of N stacked grains the local evolution
of particles is described by one or more iteration rules. Successive applications of such rules
alter the configuration until it reaches an attractor, namely a stable state from which no
rule can be applied. SOC property means those attractors are critical in the sense that a
small perturbation — adding some more grains — involves an arbitrary deep reorganization
of the system. Sand pile models were well studied in recent years ([9],[5],[6],[15]).

1.1 Kadanoff sand pile model

In [12], Kadanoff proposed a generalization of classical models closer to physical behavior
of sand piles in which more than one grain can fall from a column during one iteration.
Informally, Kadanoff sand pile model with parameter D and N grains is a discrete dynam-
ical system, which initial configuration is composed of N stacks grains, moving in discrete
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space and time according to a transition rule : if the height difference between column i
and i+ 1 is greater or equal to D, then D − 1 grains can fall from column i to the D − 1
adjacent columns on the right (see figure 1).

≥ D

Fig. 1: KSPM(D) transition rule.

Sand pile models are specializations of Chip Firing Games (CFG). A CFG is played on
a graph in which each vertex v has a load l(v) and a threshold t(v) = deg+(v)1, and the
transition rule is: if l(v) ≥ t(v) then v gives one unit to each of its neighbors (we say v is
fired). As a consequence, we inherit all properties of CFGs.

Kadanoff sand pile is referred to a linear chip firing game in [11]. The authors show
that the set of reachable configurations endowed with the order induced by the successor
relation has a lattice structure, in particular it has a unique fixed point. Since the model
is non-deterministic, they also prove strong convergence i.e. the number of iterations to
reach the fixed point is the same whatever the evolution strategy is. The morphism from
KSPM(3) to CFG is depicted on figure 2.

Nsink 0 0 0 0 0

Fig. 2: The initial configuration σ of KSPM(3) is presented as a CFG where each vertex
corresponds to a column (except the sink) seen as a difference of height.

More formally, sand pile models we consider are defined on the space of ultimately null
decreasing integer sequences. Each integer represents a column of stacked sand grains and
transition rules describe how grains can move from columns. Let h = (h0, h1, h2, . . . ) denote
a configuration of the model, where each integer hi is the number of grains on column i.
Configurations can also be given as height difference σ = (σ0, σ1, σ2, . . . ), where for all
i ≥ 0, σi = hi − hi+1. We will use this latter representation throughout the paper, within
the space of ultimately null non-negative integer sequences.

1 deg+(v) denotes the out-degree of v.
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Definition 1. The Kadanoff sand pile model with parameter D, KSPM(D), is defined by:

– A set of configurations, consisting in ultimately null non-negative integer sequences.
– A set of transition rules : we have a transition from a configuration σ to a configuration

σ′ on column i, and we note σ
i→ σ′ if

• σ′
i−1 = σi−1 +D − 1 (for i 6= 0)

• σ′
i = σi −D,

• σ′
i+D−1 = σi+D−1 + 1

• σ′
j = σj for j 6∈ {i− 1, i, i +D − 1}.

Remark that according to the definition of the transition rules, a condition for σ′ to be
a configuration is that σi ≥ D.

1.2 Strategies and avalanches

A basic property of the KSPM model is the diamond property. If there exists two distinct

integers i and j such that σ
i→ σ′ and σ

j→ σ′′, then there exists a configuration σ′′′ such

that σ′ j→ σ′′′ and σ′′ i→ σ′′′. We note σ → σ′ when there exists an integer i such that

σ
i→ σ′. We define the transitive closure

∗→ of →, and say that σ′ is reachable from σ when
σ

∗→ σ′.
A strategy is a sequence s = (s1, . . . , sT ). We say that σ′ is reached from σ via s when

σ
s1→ σ′′ s2→ . . .

sT→ σ′ and we note σ
s→ σ′. We also say, for each integer t such that

0 < t ≤ T , that the column st is fired at time t in s. (informally, the index of the sequence
is interpreted as time).

For any strategy s and any nonnegative integer i, we state |s|i = #{t|st = i}. Let s0,

s1 be two strategies such that σ
s0→ σ0 and σ

s1→ σ1. We have the equivalence: [∀ i, |s0|i =
|s1|i] ⇔ σ0 = σ1. A strategy s such that σ

s→ σ′ is called leftmost if it is the minimal
strategy from σ to σ′ according to lexicographic order. A leftmost strategy is such that at
each iteration, the leftmost possible transition is performed.

We say that a configuration σ is stable, or a fixed point if no transition is possible
from σ. As a consequence of the diamond property, one can easily check that, for each
configuration σ, there exists a unique stable configuration, denoted by π(σ), such that

σ
∗→ π(σ). Moreover, for any configuration σ′ such that σ

∗→ σ′, we have π(σ′) = π(σ) (see
[11] for details).

In this paper, we are interested in the iterative process defined below. Starting with
no grain, we successively add a single grain on column 0, and make all the possible firings
until a fixed point is reached. We denote by π(k) the configuration obtained with this
process using k grains (from the structure of KSPM described above, one easily checks
that π(k) = π((k, 0ω)).

Let σ be a configuration, σ↓0 is the configuration obtained by adding one grain on
column 0. In other words, if σ = (σ0, σ1, . . . ), then σ↓0 = (σ0 + 1, σ1, . . . ).
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Formally the process is defined by π(0) = 0ω and the recurrence formula:

π(π(k − 1)↓0) = π(k).

The kth avalanche sk is the leftmost strategy from π(k − 1)↓0 to π(k). The goal of
the present paper is the description of avalanches. Informally, we want to describe what
happens when a new grain is added in a previously stabilized sand pile.

For D = 2, i.e. the classical SPM, this description is easy: the added grain moves
rightwards until it arrives in a plateau. But, for D > 2, the situation is not so simple. We
now state our results.

– In the general case, we prove (Section 2) the following properties:
• Each column is fired at most once,
• For any avalanche, as soon as an interval {L,L+1, ...., L+D−1} of successive fired

columns exists, the execution of the avalanche on the right part of this interval can
be turned into a pseudo local and elementary process.

Informally, that means that the knowledge of such an interval guarantees a regular
behavior of the avalanche on its right part.

– In the case when D = 3, we prove (Section 3) the property below:
• For each avalanche sk, there exists an integer L(k) in O(log k) such that either no

column is fired on the right of L(k), or columns L(k) and L(k) + 1 both are fired
(and therefore, the property of the second item above applies).

Informally, that means that we have the emergence of a regular behavior, after a short
transitional and complex phase.

These results give a better understanding of avalanches for sufficiently large columns.
We hope that in future work, they will help us in the approach of the structures of fixed
points π(k).

1.3 The context

The problem of describing and proving regularity properties, experimentally checked, for
models issued from basic dynamics is really a present challenge for physicists, mathemati-
cians, and computer scientists. There exists a lot of conjectures, issued from simulations,
on discrete dynamical systems with simple local rules (sandpile model [3] or chip firing
games, but also rotor router [13], the famous Langton ant[7][8]...) but very few results have
actually been proved. As regards KSPM(D), the prediction problem (namely, the problem
of computing the fixed point π(k) knowing π(k− 1)) has been proven in [14] to be in NC3

for the one dimensional case (the model of our purpose), which means that the time needed
to compute an avalanche is in O(log3N) where N is the number of grains, and P-complete
when the dimension is ≥ 3. A recent study ([10]) showed that in the two dimensional
case the avalanche problem (given a configuration σ and a column i on which we add one
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grain, does it have an influence an index j?) is P-complete, which points out a inherently
sequential behavior.

This study will provide tools to understand sand pile evolution. We hope that those
tools form a basis to obtain some good descriptions of fixed points π(k), but are also
deeply related with other subjects around sand piles such as unit elements of abelian group
structures presented in [2] and [4].

2 Avalanche process in the general case

This section begins with a first glance at avalanches, allowing notation simplifications.
Then avalanches are studied in details, leading to a simplified description of its behavior.

Proposition 1. For each strategy s such that π(N)↓0
s→ π(N + 1) and each i ∈ N , we

have |s|i ∈ {0, 1}.

Proof. Let s = (s1, . . . , sT ) be a strategy such that π(N)↓0
s→ π(N + 1). We have to prove

that, for 1 ≤ l < m ≤ T , we have sl 6= sm (obviously, |s|i ≥ 0 for all i). To do it, we prove
by induction t ≤ T that for 1 ≤ l < m ≤ t, we have sl 6= sm.
For initialization this is obviously true for t = 1. Now assume that the condition is satisfied
for an integer t such t < T , and let i be a column such that there exists an integer l ≤ t
such that i = sl. Let σ be the configuration such that π(N)↓0

s1→ . . .
st→ σ.

Notice that the transitions which can possibly change the value of the current configuration
at i could be: i (which decreases the value by D units), i+1 (which increases the value by
D − 1 units) or i−D + 1 (which increases the value by 1 unit).

Thus we have σi ≤ π(N)↓0i −D+D−1+1 since by definition, between π(N) and σ, exactly
one transition has occurred in i, at most one transition has occurred in i+ 1, and at most
one transition has occurred in i−D+1. For i ≥ 1, we get σi ≤ π(N)i. On the other hand,
since π(N) is a fixed point, we have: π(N)i < D, which guarantees that st+1 6= i. For i = 0,

there is no possible transition in i−D + 1, thus we get σ0 ≤ π(N)↓00 −D +D − 1, which
is σ0 ≤ π(N)0 + 1−D +D − 1. Thus σ0 ≤ π(N)0 < D which also gives: st+1 6= 0.
This ensures that the result is true for t+ 1, and, by induction, for T .

When talking about an avalanche s, lemma 1 allows us to write i ∈ s instead of |s|i = 1
without lose of information. We denote by s[u,v] the subsequence of s from u to v included.

We will now study avalanches in details. For D = 2, i.e. the classical SPM, avalanches
are quite simple, the added grain moves rightwards until it finds a stable position. For
D > 2, the situation is more complex, and needs a precise study, given by the following
lemma.

Lemma 1. Let s = (s1, . . . , stk) be the kth avalanche. Let rt = max{st′ , t′ ≤ t}.
– Assume that st+1 < rt. Then st+1 is the largest column number i such that i < rt and

i /∈ s[1,t]. Moreover, we have: rt − st+1 < D − 1.
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– Assume that st+1 > rt. We have: st+1 − rt ≤ D − 1.

Proof. We first order fired columns by causality. Precisely, a column i has two potential
predecessors, which are i + 1 and i − D + 1. State i = su. These columns are really
predecessors of i if they are elements of s[1,u], i.e if they are fired before i. By this way,
using the transitive closure, we define a partial order relation (denoted by <caus.), on fired
columns for s.

Now, consider the set At+1 of ancestors of st+1 (i.e. the set of columns i such that
i <caus. st+1) and, the set St of which have st as common ancestor (i.e. columns i such
that st <caus. i). We necessarily have rt ∈ At+1. Otherwise, we have At+1 ∩ St = ∅, and
this allows another strategy s′, constructed from s postponing the transitions at rt and
elements of St after the transition on st+1. This contradicts the fact that s is leftmost.

Let (i0, i1, ...ip) be a finite sequence such that i0 = rt, ip = st+1 and, for each j with
0 ≤ j < p, ij is a predecessor of ij+1. Such a sequence exists since rt ∈ At+1. One easily
proves by induction that ij = rt − j: this is true for i = 0. Assume it is true until the
integer j < p. We have either ij+1 = ij − 1 or ij+1 = ij +D − 1. But from the induction
hypothesis, ij +D − 1 is an ancestor of ij+1 or has not yet been fired, thus ij+1 = ij − 1.
This gives that st+1 is the largest column number i such that i < rt and i /∈ s[1,t].

Now if we assume, by contradiction, that p ≥ D−1, then rt−D+1 is not a predecessor
of rt, which yields that rt has no predecessor, which is a contradiction. This gives the
inequality of the first item. The second item is obvious, since st+1 ha a unique predecessor
which is st+1 −D + 1.

Lemma 1 induces a partition of fired columns between those which make a progress (i.e.
increases the greatest fired column) and those which do not. This distinction is important
in further development, so let us give progress firings a name. Let s = (s1, . . . , sT ) be an
avalanche, a column st is called a peak if and only if st > max s[1,t−1].

Remark 1. Two peaks p 6= q can be compared using chronological (<T ) or spatial (<S)
orders. Nevertheless, by definition of peaks we obviously have p <T q ⇐⇒ p <S q.

Lemma 2. Let s be the kth avalanche. Assume that there exists a column l, such that for
each column i with l ≤ i < l +D − 1, i ∈ s, and a column i′ such that i′ ≥ l +D − 1 and
i′ ∈ s. Let l′ be the lowest peak such that l′ ≥ l +D − 1.

There exists a time t such that:
{

for all i with l′ −D + 1 < i ≤ l′, i ∈ s[1,t]
for all i with l′ < i, i /∈ s[1,t]

Moreover l′ is the lowest integer such that l′ ≥ l +D − 1 and σt
l′ = D − 1.

Proof. Let t0 be the time when st0 = l′, i.e. the first time such that st0 ≥ l +D − 1, and
let j be the largest integer such that, for 0 ≤ j′ ≤ j, we have st0+j′ = st0 − j′. Let us state
t = t0 + j. We have j < D − 1.
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Let σt denote the configuration obtained from π(k − 1) via s[1,t]. Let i, with i < l′, such
that i /∈ s[1,t]. We claim that we have : i /∈ s. To prove it, we prove by induction that for
any t′ ≥ t, i /∈ s[1,t′]. Assume that this is satisfied for a fixed t′. This means that all the

transitions of s[t+1,t′] are done on columns larger than l′. Thus, σt′

i = σt
i and no transition

is possible on i for σt since s is leftmost (the only potential column to be fired is st0 − j−1,
but by assumption, either this column has been previously fired, or it cannot be fired by
definition of j, according to lemma 1) .
By contraposition, it follows that for each column i with l ≤ i < l+D−1, we have i ∈ s[1,t].
A simple (reverse sense) induction shows that, for l +D − 1 ≤ i ≤ l′ we have i ∈ s, since
by hypothesis i + 1, and i + 1 − D both are in s. Thus, by contraposition of the claim
above, for l +D − 1 ≤ i ≤ l′, we have i ∈ s[1,t]. This gives the the fact that for all i with
l′ −D + 1 < i ≤ l′, i ∈ s[1,t]
The fact that for all i with l′ < i, i /∈ s[1,t] is trivial, by definition of t0 and t.
We have l′ > l+D−2 and σt

l′ = D−1. assume that there exists l′′ < l′ satisfying the same
properties. Notice that for t0 ≤ t′ ≤ t we have s′t > l′ −D − 1. Thus the time t1 such that
st1 = l′′ −D + 1 is such that t1 < t0. That means that l′′ should have been fired before t0,
a contradiction.

Lemma 2 describes in a very simple way the behavior of avalanches. Thank to it, the
study of an avalanche can be turned into a pseudo linear execution, in which transitions
are organized in a clear fashion:

Theorem 1. Let s = (s1, . . . , sT ) be the kth avalanche and (p1 . . . , pq) be its sequence of
peaks. Assume that there exists a column l, such that for each column i with l ≤ i < l+D−1,
i ∈ s. Then for any column p such that p ≥ l +D − 1,

p is a peak of s ⇐⇒ p ≤ pq +D − 1 and π(k − 1)p = D − 1

Furthermore, Let pi = st, with pi ≥ l +D − 1, be a peak. Then

T ≥ t+ pi − pi−1 − 1 and for all t′ s.t. t < t′ ≤ t+ pi − pi−1 − 1, st′ = st′−1 − 1

A graphical representation of this statement is given on figure 3.

Proof. The first part is a straight induction on lemma 2.
The second part follows an induction summed up in the following fact: any column i such
that π(k − 1)i < D − 1 must wait for its right neighbor i+ 1 to be fired, and it should be
fired when both i + 1 and i −D + 1 has been fired (besides, i − D + 1 has already been
fired). Since any of such i is fired to reach a fixed point, T ≥ t+ pi − pi−1 − 1.

In the light of remark 1, theorem 1 easily allows us to compute the right part of kth

avalanche (from column l + D − 1), only knowing π(k − 1). The sequence of peaks is
computed as follows. The first one is the lowest column i greater or equal to l + D − 1

7
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Fig. 3: Illustration of Theorem 1 with D = 6. Surrounded columns l to l + D − 2 are
supposed to be fired. Black column is the greatest peak strictly lower than L +D − 1. A
column is grey if and only if its value is D − 1. Following arrows depicts the avalanche.

such that π(k − 1)i = D − 1. Then, given a peak i, the next one is the lowest j such that
π(k− 1)j = D− 1 and j− i ≤ D− 1. If such a j does not exist, then there is no more peak
and i is the largest fired column.

We can distinguish two movements within an avalanche: before a certain column it has
an unknown behavior, and from that column to the end the behavior is pseudo local, in
the sense that when an index is fired ahead (on the right) then any ‘hole’ is filled before
the progress can continue.

An important direct implication of theorem 1 is that if there exists a column l such
that for the kth avalanche sk, we have for all l ≤ i < l+D−1, i ∈ s, then for all j such that
l+D− 1 ≤ j < max sk, we have j − (D− 1), j, j +1 ∈ sk and therefore π(k)j = π(k− 1)j .
Intuitively, this equality hints some similarity between successive avalanches.

Note that previous results also apply for a grain addition on column 0 of any fixed
point configuration of KSPM(D).

This study constitutes a simplified understanding of the behavior of avalanches, which
we hope will be helpful toward the description of fixed points. As motivated above, next
subsection studies, for KSPM(3), the previous result hypothesis that for an avalanche s
there exists a column l such that for all l ≤ i < l +D − 1, i is element of s.

3 Short transitional phase when D = 3

In this section we prove that in KSPM(3), there exists a column l(N) in O(logN) such that
lemmas hypothesis is verified for any avalanche sk, with k ≤ N , such that max sk > l(k). In
other words, considering the N first avalanches, from a logarithmic column, we can apply
theorem 1 and consider avalanches pseudo locally, as described on figure 3. Here is the
statement:

Proposition 2. Let s be the kth avalanche of KSPM(3). There exists a column l(k) in
O(log k) such that for any k, when max{j|j ∈ s} > l(k), l(k) and l(k) + 1 both are
elements of s.

Proof. Let i be a fixed column. If i, i + 1 ∈ sk, then, theorem 1 states that for all i′ such
that i ≤ i′ < max{j|j ∈ s}, we have i′, i′ + 1 ∈ s. If j, j + 1 /∈ s, then, from Proposition 1,
we have max{j|j ∈ sk} < i.
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Let j be a fixed positive integer. Assume that the avalanche s fires 2j but not 2j − 1.
From remarks above, columns 0, 2, 4, ..., 2j are fired in s while columns 1, 3, 5, ..., 2j − 1 are
not fired.

If a column i+1 is fired while i is not, then we necessarily have π(k−1)i = 0, since the
firing in i+ 1 increases the value in column i from 2 units. Moreover, if the column i+ 1
is fired while i+2 is not, then we necessarily have π(k− 1)i+1 = 2, since the i+1 receives
at most one grain, by preceding firings.

On the other hand, obviously, the assumption on j enforces that π(k − 1)0 = 2 This
yields that (2, 0)j−2 is a prefix of π(k − 1).

We have the following fact :

Fact: There exists constant numbers A and B, with A > 0 such that if a configuration
π(N) has a prefix of the form (2, 0)j then N > A4j +B

This is obtained by the linear algebra analysis below. This gives the result of the
proposition.

Let π(N) = (σ0, σ1, . . . ) be the configuration and a = (a0, a1, . . . ) be its shot vector i.e.
the sequence a = (a0, a1, a2, . . . ) where ai is the number of times the column i has be fired
in the N first avalanches. According to the iteration rule we have the relation:

σi = ai−2 − 3ai + 2ai+1

i.e.

ai+1 =
1

2
(σi − ai−2 + 3ai)

We state A =





0 1 0
0 0 1

−1/2 0 3/2



. We denote by vi the column vector such that and vTi =

(0, 0, σi/2), and ui the column vector such that uTi = (ai−2, ai−1, ai) (with the convention
that uT is the row vector obtained by transposition of the column vector u) . The equality
above can be algebraically written in

ui+1 = Aui + vi

By iteration we get :

ui+2 = A2ui +Avi + vi+1

What we want is σ2i = 2 and σ2i+1 = 0 so vT2i = (0, 0, 1) and vT2i+1 = (0, 0, 0). With this
specification, we get :

u2(i+1) = A2u2i + b

9



with bT = (0, 1, 3/2). From this last relation we will deduce a condition on N to get
the sequence (2, 0)j .

Let us first find a new basis to get the matrix A on Jordan canonical form. The char-
acteristic polynomial of A is 1

2(2x + 1)(x − 1)2 and its eigenvalues are −1
2 of algebraic

multiplicity 1 and 1 of algebraic multiplicity 2. Since dim(ker(A − Id)) = 1 the Jordan
canonical form of A is

AJordan =





1 1 0
0 1 0
0 0 −1/2





And the new basis E′ = (e′1, e
′
2, e

′
3) according to the canonical one E = (eT1 = (1, 0, 0), eT2 =

(0, 1, 0), eT3 = (0, 0, 1)) is given by the linear relations:

e′1 = e1 + e2 + e3
e′2 = e2 + 2e3
e′3 = 4e1 − 2e2 + e3

Let p be the linear mapping consisting in the projection on the line D3 generated by e′3
according to the direction the plane P1,2 generated by e′1 and e′2. For any vector u, we have:
p(A2u) = p(A2(p(u)+u−p(u)) = p(A2(p(u))+p(A2(u−p(u)). Notice that, by definition of
p, u−p(u) is element of P1,2, and, therefore A(u−p(u)) and A2(u−p(u)) also are elements
of P1,2. This yields that p(A

2(u−p(u))) is null. On the other hand, since p(u) is element of
D3, A(p(u)) =

−1
2 p(u) and A2(p(u)) = 1

4p(u); thus p(A2(p(u)) = 1
4p(u). As a conclusion,

we get p(A2u) = 1
4p(u), which, in particular, allows the following equalities:

p(u2(i+1)) = p(A2u2i + b)

= p(A2u2i) + p(b)
= 1

4p(u2i)− 1
18e

′
3

Let v be the unique vector collinear with e′3 satisfying the equation

v =
1

4
v − 1

18
e′3

i. e. v = −2
27 e

′
3. Remember that p(v) = v. We have

p(u2(i+1) − v) = p(u2(i+1))− v

= 1
4p(u2i)− 1

18e
′
3 − (14v − 1

18e
′
3))

= 1
4p(u2i − v)

This gives by induction:

p(u0 − v) = 4jp(u2j − v)
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Now we specify the sequence of vectors ui, assuming that values ai are the shot vectors
of a configuration σ beginning by (2, 0)j . (For convention we also state a−2 = N and
a−1 = 0, thus we have uT0 = (N, 0, a0), u

T
1 = (0, a0, a1) and uTi = (ai−2, ai−1, ai) for i ≥ 2).

An easy computation gives that: p(u0 − v) =
N+a0+

2

27

9 e′3
Let xj be defined by p(u2j − v) = xje

′
3. We obtain the equality :

N + a0 +
2
27

9
= 4jxj

Obviously a0 ≤ N
D

= N
3 , which ensures that N + a0 +

2
27 ≤ 4N

3 + 1.
Furthermore, we necessarily have xj > 0, and, from lemma 3 proved on the bounce,

each element of p(Z3) is a multiple of ce′3, where c is a positive constant. If v is element
of p(Z3) we can conclude that xj ≥ c. If v is not element of p(Z3), we can conclude that
xj ≥ min{|ck+ 2

27 |, k ∈ Z}. In any case, there exists a positive real d, not depending on j,
such that xj ≥ d.

We conclude that 4N
3 + 1 ≥ 4jd, which gives N > 3d

4 4j − 3
4 to get a sand pile of the

form σ = (2, 0)jσ′.

We now give the lemma used in the previous proof.

Lemma 3. (constant steps) There exists a positive real c such that pe′
3
(Z3) = {i ce′3, i ∈ Z}.

Proof. The set of reals r such that there exists an element x in Z
3 such that pe′

3
(x) = re′3

is obviously a group. So we only have to prove that this group is discrete, i.e. that there is
no sequence (rn)n∈Z of positive reals such that lim

n→∞
(rn) = 0.

Assume, by contradiction, the existence of such a sequence, and let (xn)n∈Z be a sequence
of vectors such that, for each integer n, pe′

3
(xn) = rn.

A key-point is that vectors e′1, e
′
2 and e′3 have integer components, so we can state xn =

ane
′
1+bne

′
2+cne

′
3. The sequence (x

′
n)n∈Z defined by x′n = (an−⌊an⌋)e′1+(bn−⌊bn⌋)e′2+cne

′
3

also is a sequence of integer vectors such that for each integer n, pe′
3
(x′n) = rn. Moreover

this sequence is bounded. Thus (x′n)n ∈ Z takes a finite number of values, which enforces
that the sequence (rn)n ∈ Z also takes a finite number of values, which is a contradiction.

For KSPM(3), after a short transitional of logarithmic length, hypotheses of theorem
1 are verified , and the study of avalanches can be turned into a pseudo linear process.
Note that a trivial framing of the maximal non-empty column e(N) of a fixed point with
N grains shows that e(N) is in Ω(

√
N). As a consequence, pseudo local process stands for

the asymptotically complete behavior of avalanches.

Unfortunately, the approach above does not hold for D > 3. The main reason is that,
for D = 3 unfired columns induce a very particular and periodic prefix ((2, 0)j) on config-
urations. From D = 4, the structure of such a possible prefix is more complex and we did
not yet get a tractable characterization of those prefixes.
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4 Perspectives

In this paper we described avalanches as pseudo local processes from a certain column l.
We proved this column to be logarithmic in the number of grains N for KSPM(3),

leading to an asymptotically complete description of avalanches in that case. Simulations
for other parameter D suggests that the same outcome also holds.

The pseudo local process description involves some properties on avalanches, which we
hope will be useful toward the study of fixed points shape. For an avalanche s, a particularly
interesting consequence is that two successive fixed points are equal from l + D − 1 to
(max s)−1, which hints that next avalanche reaching this part of the configuration may have
a similar behavior. This would lead to a knowledge on the likeness of successive avalanches
and therefore a foresee on the shapes of fixed points. Further work may concentrate on
this point, where the main purpose is to go ahead iterating evolution rules, and to describe
fixed points with a plain formula.
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