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Abstract. Symmetry is an abstract concept that is easily noticed by
humans that designers make new creations based on its use. Images of
these designs belong to a general group called wallpaper images that ex-
hibit a repetitive pattern. We present a novel computational framework
for automatic classification method by symmetries, based on Symmetry
Group theory features for wallpaper images. The existing methods have
several drawbacks because of the use of heuristics. These methods have
shown low classification values when images exhibit imperfections due to
the fabrication or the hand made process. Also, there is no way to give
some computation of the classification goodness-of-fit. We propose to
obtain an automatic parameter estimation for symmetry analysis. Thus,
the image classification is redefined as distances computation to the pro-
totypes of a set of defined classes. Our experimental results improves the
state of the art in wallpaper classification methods.

Keywords: Symmetry, symmetry groups, prototype-based classification,
adaptive nearest neighbour classification

1 Introduction

Symmetry is an abstract concept that is easily noticed by humans and as a
result designers make new creations based on its use. In industrial sectors, the
notion of symmetry is always present as an aesthetic element, indispensable in
each new design. These designs, see examples in Fig. 1, are commonly referred
as reqular mosaics, wallpaper images, wallpaper patterns, or simply Wallpapers.
Thousands of these samples accumulated over the years are stored in company
storerooms or museums. But designers suffer serious limitations when searching
and manage these format, and designers are accustomed to use other abstract
terms related with perceptual criteria. Therefore, some kind of image analysis is
necessary to extract information about the internal geometry and structure of
patterns. Little effort has been made in their image analysis and classification,
and so this work explores this direction.

A symmetry of any 2D pattern can be described through a set of geometrical
transformations that transforms it in itself: isometries. These are: translations,
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2 Classification of repetitive patterns using Symmetry Group Prototypes

Fig. 1. Details of wallpaper images obtained from [10], [2], and [4] collections. These
are images of real textile samples. The geometry of the UL is also shown.

rotations (n-fold), reflections (specular), and glide reflections (specular plus lat-
eral displacement). Regarding translational symmetry, a wallpaper pattern is a
repetition of a parallelogram shaped subimage, called Unit Lattice (UL). A lat-
tice extraction procedure is then needed to obtain the lattice geometry. In this
work we assume that the lattice geometry has been already obtained and the
UL is known, e.g. using autocorrelation [5], Fourier or wavelets [1].

We rely on the Symmetry Groups theory [3] to formulate a mathematical de-
scription of structures. A symmetry group is the set of isometric transformations
that brings a figure in coincidence with itself. In the 2D case, a Plane Symme-
try Groups (PSG) is defined by means of two translational symmetries (lattice)
and some other isometries. For example, Fig. 1 (left) has only translational. In
contrast, the other patterns of Fig. 1 have more isometries, such as 180° rota-
tions and reflections about two axes. The last pattern can be reconstructed using
120° rotations. The ’crystallographic constraint’ limits the number of PSG to 17
cases, helping us to describe the pattern structure. Fig. 2 shows the details of
each PSG as well as their standard notation. For example, the patterns in Fig.
1 belong, from left to right, to symmetry groups P1, PMM, PGG and P31M.
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Fig. 2. Representation of the 17 Wallpaper Groups, their standard notation and their
internal symmetries. The UL is referred as Fundamental Parallelogram.

The interest in the algorithmic treatment of symmetries, has been recognized
by the recent tutorial at ECCV 2010 Conference [6]. It constitutes an extended
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discussion and comparison of state of the art Symmetry Detection algorithms.
A global success of 63% over a test bed of 176 images is reported. The classical
algorithms to catalogue wallpapers [3] are heuristic-based procedures to be used
by humans. These are proposed in the form of decision trees whose branches are
raised as questions to ask by looking at the design. Because of the ambiguities
in the computer reformulation of these questions, their implementation is very
complex. The main computer autonomous approach of this kind has been made
by Liu et al. [5]. This model expresses the Schattschneider algorithm in the
form of a rule-based classifier (RBC) where each symmetry group corresponds
to a unique sequence of yes/no answers. It can be seen as a kind of decision
tree classifier with binary symmetry values. Our experience confirms that this
method can be tuned to obtain 100% hits for the Joyce [4] dataset, but this
set-up is not successful for other image collections. In addition, the use of RBC
obtains only one result without an associate measure of confidence. It becomes
necessary to enhance this solution, as indicated in [7].

2 PROPOSED METHOD

We propose a novel computational framework based on continuous measures of
symmetries for a distance-based classification into symmetry groups approach
applied to real and synthetic images of two-dimensional repetitive patterns. The
use of binary class prototypes describing the PSG mentioned above, adaptively
adjusted on image conditions, assumed the high degree of variance of symmetry
features, due to noise, deformations or just the nature of the hand made products.
As this classification results in an ordered list of content similarity based on
symmetry, it can be used as an result for Context-Based Image Recovery (CBIR)
applications. We started by using a Nearest Neighbour Classifier (NNC) as this
enabled us to obtain a measure of goodness for the classification. This kind of
methods require the use of continuous-value feature vectors.

2.1 Feature computation and Symmetry Groups classification

A close view to PSG description in Fig. 2 reveals that the minimum number of
symmetry features needed to distinguish every PSG is twelve: four (Ra, Rs, Ry,
and Rg) related to rotational symmetries; four (17, T», T1¢, and Tag) to describe
reflection symmetries (non-glide and glide) along axes parallel to the sides of UL;
and four more features (D1, D2, D1, and Dyg) for reflection (non-glide and
glide) with respect to the two UL diagonals. We defined a symmetry feature
vector (SFV) of twelve elements that identifies the presence/absence of these
symmetries as (f1, fa, ..., f12). To obtain a symmetry feature f; for a specific
isometry, e.g 2-fold rotation, we apply this transformation to the original image
I(z,y) obtaining the transformed image I7 (x,%). A piece of the transformed
image, of the size of the bounding box of the UL (m), is taken. A score map is
then computed as Map(z,y) =1 — SAD(z,y), where:

SAD(z,y) = 5 324, 4o (@ — 20,y — yo) — BBox(wo,10))| (1)
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If symmetry is present in the image, this map peaks at several positions
indicating the presence of that symmetry, while revealing lower values in areas
where the symmetry is not hold. The |mazimum — minimum| difference should
then be a good measure to quantify the feature. However, there are patterns
without internal symmetries, such as P1 (Fig. 1), so that max-min difference
should be relative to any other value representing the presence of symmetry.
The only symmetry always present in every pattern is the translational symmetry
(S7). Finally, we compute the normalized components of the SFV as follows:

max(Map)—min(Ma .
fi= é‘T—gz)in(]Wa(p) 2o1<i<12 (2)

The higher the value of f;, the more likely the image contains symmetry.
Table 1 shows the SFV vectors obtained for the four wallpaper samples in Fig. 1.
As expected, these results partially confirm high values that indicate the presence
of symmetry and low values otherwise. The bold values means a value that has to
be considered as presence of symmetry to consider each vector as the group that
it belongs to, while the others mean absence of others symmetries. Because these
features were computed as gray level differences between image patches, their
values will strongly depend on the particular arrangements of image pixels: the
image complezity. As a consequence SFV requires a higher level of adaptation
to the image conditions, i.e. taking into account on the contents of each image
separately. This idea will be used later by an adaptive NNC.

Table 1. Symmetry feature vectors of the four wallpapers showed in Fig. 1.

Sample SFV:(RQ, R3, R4, Rﬁ, Tl, TQ, D1, D27 TlG, TQG, D1G7 DQG) PSG

1 (0.62, 0.47, 0.69, 0.34, 0.65, 0.67, 0.80, 0.59, 0.37, 0.43, 0.80, 0.59) | P1
2 | (0.82,0.09, 0.20, 0.09, 0.88, 0.83, 0.20, 0.19, 0.27, 0.26, 0.2, 0.19) [PMM
3 [(0.95, 0.42, 0.33, 0.46, 0.39, 0.45, 0.31, 0.48, 0.98, 0.99, 0.31, 0.43)| PGG
4 ((0.46, 0.69, 0.28, 0.49, 0.74, 0.65, 0.48, 0.72, 0.74, 0.65, 0.48, 0.72) | P31M

To classify a wallpaper image, featured by SF'V, we need a set of class samples.
Fortunately, the number of classes and their structure are known in advance. For
the sake of simplicity, we start by proposing the use of binary prototypes repre-
senting each one of the classes. Table 2 shows the resulting 23 prototypes. Some
classes have two prototypes because there are two possibilities where reflection
symmetry can appear.

After applying the NNC to several image collections we did not found sig-
nificant improvements in comparison with RBC (see the Experiments section).
This is probably due to the bias of the feature values: minimum values are not
near ’0’, nor maximum values are near S;. In that situation, the use of binary
prototypes, with inter-class boundaries equidistant to each class, does not fit
the problem. However, some advantage has been achieved. First, the Euclidean
distance to the class prototype can be used as a measure of confidence. Second,
the NNC produces an ordered set of outputs describing the class membership of
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Table 2. Binary prototypes for the 17 PSG classes.

Classes

Prototype

5

Feature vectors Classes Fefii(;teoz};gfors
P1 1(0,0,0,0,0,0,0,0,0,0,00)||rrr (1,0,0,0,0,0,1,1,0,0,1,1)
P2_[(1,0,0,0,0,0,0,0,0,0,0,0)| —p; (10.1.0.0,0.0.00.0.0)
PM,; [(0,0,0,0,1,0,0,0,0,0,0,0)| 577 (1’0’1’0’1’1’1’1’0’0’1’0)
PMz 1(0,0,0,0,0,1,0,0,0,0,0.0) /=57~ (1’0717070’071’1’1717170)
pgl (0.0.0.00.0.0.0.L0.0.0) 507 5'500,0.0:00.0.0)
ICDM"; Eg’8’8’8’8’8’?’8’8%’?’8; P31M;((0,1,0,0,1,1,1,0,1,1,1,0)
o (0’0’0’0’0’0’0’1’0’0’0’1) P31M,|(0,1,0,0,1,1,0,1,1,1,0,1)
AT (1’070’0’1’170’0’070’0’0) P3M14/(0,1,0,0,0,0,1,0,0,0,1,0)
oo o b P3N, |(0,1,0,0,0,0,0,1,0,0,0,0)
PMGh[(1,0,0,0,1,0,0,0,0,1,0,0)| =755 (LT0.100.00.0000)
PMG5|(1,0,0,0,0,1,00.1,0,0,0)| 5 (1’1’0’1’1’1’1’1’1’1’1’0)

PGG [(1,0,0,0,0,0,0,0,1,1,0,0) Rt ot Rt R o R

each sample. This latter consideration can enable an automatic adjustment of
the prototypes in order to adapt them to the image variability.

2.2 Adaptive NNC (ANNC)

Recent works on NN classifiers have shown that adaptive schemes [9] outperform
the results of classic NNC in many applications. In response to the ambiguities
in computed symmetry values, we propose an adaptive approach based on estab-
lishing a merit function to adapt the inter-class boundaries to the specific image
conditions. Fig. 3-a shows a simplified example of a 2D feature space including
4 binary prototypes. The inter-class boundaries are symmetric with respect to
each prototype. In a real context, the SFV(f1, fa) vectors never reach certain
areas close to the prototypes, Fig. 3-b shows this forbidden areas. The distorted
distances force to adapt the boundaries between classes.
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Fig. 3. From left to right: a) A 2D feature space and prototypes P1, P2, P3 and P4.
b) Forbidden areas. c) Adaptation of class boundaries. d) Final disambiguation.

To do this, a transformation of the the feature space can be performed by
normalizing these features. In this new space, the null-class P1 disappears, there-
fore this class should be treated separately. The new boundaries between classes
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can be searched in a way that maximizes a merit function. We use orthogonal
boundaries defined by a single parameter U, the Uncertainty Boundary of Sym-
metry. We studied several merit functions and, finally, propose the distance ratio
between the reported first and second classes after classifying the sample with
respect to binary prototypes using a NN classifier. The result is the boundary
U,pt that best separates the classes. Moreover, instead of moving the inter-class
boundaries, the problem is reformulated to modify the class prototypes into new
values (H, L) € [0,1] that are symmetrical with respect to the middle value U
(Fig. 3-c). Finally, the closest class to new prototypes (H, L) and the null-class
P1 are disambiguated (Fig. 3-d). The algorithm is as follows:

Step 1 - The symmetry values are normalized, see Eq. 3, discharging the P1
class and resulting in a 16-class problem.

f/ fi—min(SFV) 1 S i S 12

i maw(SFV)fmin(SFV);

Step 2 - The original prototypes are transformed into (H, L) prototypes for
each of 16 classes. These values are defined with respect to parameter U as:
H=1,L=2-U—-1forU >0,5and L =0, H=2-U otherwise.

Step 8 - For each U, ranging from 0.2 to 0.8, the H and L limits are computed
and a NNC is performed using SFV’ and the resulting prototypes. Repeating
steps 2-3 for all U values, the value (U,p:) that maximizes the merit function is
selected, and the corresponding class is also tentatively selected.

Step 4 - Finally, we disambiguate the candidate class from the previously
excluded P1 class. To achieve this, we again re-classify the SF'V but only using
the P1 and candidate classes.

3 EXPERIMENTS

As indicated in [6], without a systematic evaluation of different symmetry de-
tection and classification algorithms against a common image set under a uni-
form standard, our understanding of the power and limitations of the proposed
algorithms remains partial. As image datasets reported in literature were not
publicly available, we selected several wallpaper images from known websites, to
carry out the comparison between the proposed ANNC and the reference RBC
methods. We picked out image datasets from Wallpaper [4], Wikipedia [10],
Quadibloc [8], and SPSU [2], resulting in a test bed of 218 images. All images
were hand-labelled to make the ground truth. As the original RBC algorithm
source code was unavailable, we implemented it using the original RBC decision
tree reported in [5], but using our SF'V feature vectors, and binarising the fea-
tures using a fixed threshold (the average of the better classification results) for
all image datasets. The results obtained with RBC, NNC and ANNC classifiers
are shown in Table 3. For the shake of brevity, we only put here the percentage
of successful classification, i.e. accuracy or precision results.

The first image collection is Wallpaper, a standard collection reported in
previous works. In this case, both RBC and ANNC methods obtain a 100%



Classification of repetitive patterns using Symmetry Group Prototypes 7

Table 3. Experimental classification results from RBC, NNC, and ANNC.

Collection|#img| Sub-set |[RBC|NNC|ANNC|INNC2|ANNC2|NNC3|ANNC3

Wallpaper| 17 100 |82,35] 100 || 100 | 100 | 100 | 100
Wikipedia| 53 54,72[60,38] 62,26 || 73,55 | 81,13 | 81,13 | 83,02

17 |[WikiGeom|88,24[88,24] 100 || 94,12 100 | 100 | 100
Quadibloc| 46 71,74]69,57| 82,61 || 82,61 | 91,30 | 91,3 | 95,63

29 |Quad0102[62,07]75,86] 79,31 |[ 86,21 | 89,66 |89,66| 93,10
17 | Quad03 |88,24]58,82] 88,24 || 76,47 | 94,12 |94,12| 100
SPSU | 102 49,02[62,76] 59,80 || 71,57 | 76,47 | 76,47 | 82,35

| Global [ 218 | [59,18]65,15] 68,35 [[ 76,60 | 82,60 [82,60] 86,70 |

of success. The RBC achieves the same result as reported in [5], which means
that our implementation of this algorithm has similar results as the original
implementation. To take into account the varying complexity of the images, we
separate the next two collections in sub-sets. In the WikiGeom dataset, which is
a sub-set of Wikipedia formed by strongly geometrical patterns, the ANNC and
NNC results outperformed the RBC.

In the case of the entire Wikipedia collection, which includes other distorted
images, a decrease in results is evident. Similar results were obtained with Quadi-
bloc image collection, which is of intermediate complexity. We studied it as two
subsets: one formed by sketches over uniform background (Quad0102), and other
(Quad03) is constituted by more complex motives with many highly contrasted
colours. The ANNC obtains near 80% of success rate with this collections, clearly
outperforming the NNC and RBC methods. The worse results were obtained
with the more complex images in the SPSU collection. In this case, all results
are below 60%. This lower values are due to the existence of noise and impre-
cise details (hand-made) in the images. Also, these exhibit several repetitions
and illumination artifacts, which suggest the neccesity of pre-processing. It is
remarkable that the ANNC algorithm is still 10 points up that RBC algorithm.
The latest row gives a global hit success considering the number of images in
each collection.

The fact of working with a distance-based classifier offers an additional advan-
tage because it delivers a value defining the degree of proximity to the prototype
chosen (d; = dist(SFV, P;)). This (P;,d;) description, which can be extended to
the whole set of prototypes, can be used as a high level semantic image descrip-
tor, useful in areas such as Content Based Image Retrieval. This is particularly
helpful in the presence of complex images that, due to various factors (manufac-
turing, noise, damaged parts, small details, ... ), present an ambiguity about the
symmetry group they belong to, exhibiting characteristics of several of them be-
ing even complicated their labelling by experts. Thus taking, the first two (NNC2
& ANNC2) or three (NNC3 & ANNCS3) classification results, the success rates
are considerably higher (see Table 3) and the distance to the second and third
candidate are near the first result. That shows that many of the classification
errors were due to the above-mentioned factors.
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This idea can be conveniently exploited in the context of CBIR.

4 CONCLUSIONS

This paper had presented a proposal for a novel computational framework for
classification of repetitive 2D pattern images into symmetry groups. The feature
vector is composed of twelve symmetry scores, computationally obtained from
the image gray level values. A main issue is the use of binary class prototypes to
represent the 17 PSG classes. However, the absence of symmetry is never com-
puted as '0’, nor the presence of symmetry is computed as '1’, even assuming
perfect image conditions. The RBC and the NNC behave poorly, because of the
ambiguities in symmetry computation. This leads to the use of some adaptive ap-
proach, implemented by an adaptive classifier. The ANNC is non-parametric, so
there is no need to adjust the parameters involved, and it is also non-supervised,
S0 no learning stages are needed. The experimental results show that the ANNC
outperforms the other methods, even with very complex image collections.

As future work we are now on looking for a new way of computing the sym-
metry features, because the used approach seems to have a limited sensitivity.
We are also extending the test beds, and the method to colour images. More-
over, the results can be useful in recovery tasks using an extended version of
ANNC - which produces a list of similarity to every group that can be sorted
from highest to lower values, and so for example, detect images that are near to
several groups.
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