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Abstract. We propose a level set based variational approach that in-
corporates shape priors into edge-based and region-based models. The
evolution of the active contour depends on local and global informa-
tion. It has been implemented using an efficient narrow band technique.
For each boundary pixel we calculate its dynamic according to its gray
level, the neighborhood and geometric properties established by training
shapes. We also propose a criterion for shape aligning based on affine
transformation using an image normalization procedure. Finally, we il-
lustrate the benefits of the our approach on the liver segmentation from
CT images.

1 Introduction

Level set techniques have been adapted to segment images based on numer-
ous low-level criteria. Several edge-based and region-based models have been
proposed without information priors. More recently, shape prior has been inte-
grated into the level set framework [1–3]. There are two topics in this area: a)
shape alignment and b) shape variability. The first issue is to calculate the set
of pose parameters (rotation, translation and scaling) used to align the template
set, and hence remove any variations in shape due to pose differences. And the
second question is the deformation of the shape, which is typical derived from a
training set using Principal Component Analysis (PCA) on the distance surface
to the object [4, 1].

In this paper, we introduce a new approach for shape variability, which com-
bines a parametric registration of shapes by affine moment descriptors with
shapes encoded by their signed distance functions. We solve the shape align-
ment using the image normalization procedure [5], which avoids increasing the
number of coupled partial differential equations of the problem. Finally, a new
active contour evolves using a combination the appearance terms and shape
terms. The paper is organized as follows: in Section 2, we show the problem of
the shape alignment and our approach based on image normalization. Section
3 describes the problem of building a shape term and present one based on the
two shape distance measure. Section 4 presents our framework for image seg-
mentation. Finally, in Section 5, we apply our procedure for liver segmentation
from CT images.
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2 Shape Alignment

Consider a training set consisting of N binary images {Si}i=1,..N : Ω ⊂ Rn →
{0, 1}, n = 2 or 3. Our first aim is to align it, in order to avoid artifacts due
to different pose. The new aligned images are defined as S̃i = Si ◦ T−1

i , where
Ti is an affine transformation, given by the composition of a rotation, a scaling
transformation and a translation. Equivalently, Si can be written in terms of
S̃i as: Si = S̃i ◦ Ti. Traditionally, the pose parameters have been estimated
minimizing the following energy functional, via gradient descent [2]:

Ealign =
N∑

i, j = 1
i 6= j

∫
Ω

(S̃i − S̃j)2 dx∫
Ω

(S̃i + S̃j)2 dx
. (1)

Minimizing (1) is equivalent to simultaneously minimizing the difference between
any pair of binary images in the training database. We propose to improve this
approach by using a normalization procedure over the shape priors. An ad-
vantage is that the affine transformation is defined by closed-form expressions
involving only geometric moments. No additional optimization over pose param-
eters is necessary. This procedure will be applied both to the N aligned training
shapes and to the problem of aligning the active contour. Specifically, given a
reference image Sref , we propose a criterion for alignment based on a shape nor-
malization algorithm. It is only necessary to computer the first and the second
order moments. The first-order moments locate the centroid of the shape and the
second-order moments characterize the size and orientation of the image. Given
a binary image Si, we compute the second-order moment matrix, and the image
is rotated using the eigenvectors and it is scaling along the eigenvectors accord-
ing to the eigenvalues of the second-order moment matrix of Si and Sref . Then,
it is translated to the centroid. We do not consider the problem of reflection (for
this see [6]).

If we only consider moments up to order two, Si is approximated to an
ellipse/ ellipsoids centered at the image centroid. The ellipse/ellipsoids rotate
angles and the semi-axes are determined by the eigenvalues and the eigenvectors
of the second-order moment matrix [5]. We denote R as the rotation matrix.

Let Sref be a normalized binary image as reference and {λref
j }j=1,..,n be

the eigenvalues for the reference image. We consider one of the following scale

matrices: a) W =
√

λref

λi · I where λ = (
∏n

j=1 λj)1/n and I is the identity matrix

or b) W is diagonal matrix where wj,j =
√

λref
j

λi
j

. In the first case is a scaling

identical in all directions, while in the second case the size fits in each principal
axis as the reference. The first option is used for shape priors without privileged
directions otherwise the second option should be used. Finally, if the reference
centroid is xref , the affine transformation translates the origin of the coordinate
system to the reference centroid. Then, the affine transformation is defined as
follows:

T−1
i (x) = R ·W · (x− xi) + xref (2)
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This affine transformation aligns from Si to Sref . If we use a scaling identical in
all directions, Sref will be only a numeric artefact for the pose algorithm. The
alignment error does not depend on the reference, Sref . But when each principal
axis is adjusted to the reference, the alignment error depends on the choice of
the reference. We can not guarantee the optimal pose for any shape. But neither
the gradient descent method guaranteed to find the optimum because there is no
evidence that the functional (1) is convex. Our procedure is fast and optimum if
the shapes are closed to ellipses or ellipsoids. Section 5 will compare our approach
with the variational method of (1).

3 Handling shape variability

Early work on this problem involves the construction of shapes and variability
based on a set of training shapes via principal component analysis (PCA). In
recent years, researchers have successfully introduced prior information about
expected shapes into level set segmentation. Leventon et al. [1] modeled the
embedding function by principal component analysis of a set of training shapes
and added appropriate driving terms to the level set evolution equation. Tsai et
al. [2] suggested a more efficient formulation, where optimization is performed
directly within the subspace of the first few eigenvectors. Following these works,
suppose now that the N aligned shapes S̃i define N objects, whose boundaries
are embedded as the zero level set of N signed distance functions {φ̃1, . . . , φ̃N}
respectively, which assign positive distances to the inside of the object, nega-
tive to the outside. Now, we constrain the level set function φ̃ to a parametric
representation of the shape variability [2]:

φ̃α(x) = φ̃0(x) +
k∑

i=1

αiψ̃i(x) (3)

where k ≤ N is empirically chosen and α = {α1, . . . , αk} collects the weights
for the first k eigenvectors ψ̃i(x), i = 1, . . . , k. We also have the mean level set
function φ̃0(x) = 1

N

∑N
i=1 φ̃i(x) of the aligned shape database.This will drive

the shape variability, where the parameter vector α models shape deformations.
Experimentally, we have observed that given any parameter vector α, the shape
generated by (3) is also a normalized shape. It preserves the centroid, the orien-
tation and the product of the eigenvalues remains constant.

3.1 Shape model

Each aligned training shape φ̃i can be represented by its corresponding shape
parameter αi = (αi1, αi2, ..., αik). Cremers et al. [3] have introduced nonlinear
statistical shape priors based on kernel density estimation. The goal of statistical
shape learning is to infer a statistical distribution P(α) from these samples.
Following [3], it considers a nonparametric density approximation:
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P(α) =
1
Nσ

N∑
i=1

K

(
α−αi

σ

)
(4)

where K(z) = 1√
2π

exp(− |z|2
2 ), being σ2 = 1

N

∑N
i=1 mini 6=j |αi − αj |2 the av-

erage nearest neighbor distance . It combines the nonparametric shape prior
and a data term within a Bayesian framework to form the energy functional for
segmentation. The data term use to minimize the probability of misclassified
pixels for two regions [7]. Let u : Ω ⊂ Rn → R be the image to be segmented
and let φ̃ be the level set function with φ̃(x) > 0 if x ∈ Ωin and φ̃(x) < 0 if
x ∈ Ωout. We also consider the regularized Heaviside function H(s). The data
energy functional is written as

Edata(α) = −
∫

Ω

H(φ̃α(x)) log(pin(u(T−1(x))))dx

−
∫

Ω

(1−H(φ̃α(x))) log(pout(u(T−1(x))))dx (5)

being T−1 the affine transformation which accommodates shape variability due
to differences in pose, it is also calculated using geometric moments. With the
nonparametric models for shape and intensity introduced above, this leads to an
energy of the form

E(α) = Edata(α)− log(P(α)). (6)

This approach is quite robust with respect to initialization and noise. However,
it has also been observed that the evolution becomes inefficient when the object
shape to be segmented varies significantly with respect to the training base.
Indeed, when the dimension of the shape parameter vector is much lower than
the number of elements of the active contour, then the decision of each element of
the boundary can not be taken with a vector so generic. Therefore, we propose a
signed distance-based measure. Let Φ be the level set function for segmentation,
and φ̃α be the one embedding the shape model as (3). Both are signed distance
functions. Hence, we propose the following shape term:

Eshape(Φ, φ̃α) =
1
2

∫
Ω

(Φ(x)− φ̃α(T (x)))2dx. (7)

It minimizes the dissimilarity measure between the target Φ(x) and the shape
model φ̃α(T (x)). The pose parameter is calculated with the moments of Φ(x) ≥ 0
and φ̃α(x) ≥ 0. The optimization criterion produces local pixel-wise deformation.

4 Our model

Several edge-based and region-based models have been proposed. These two
types of models are usually based on the fact that the regions are piecewise con-
stant and the borders have high slopes. However, the regions of interest are not
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usually statistically homogeneous; noise, weak edges and small objects are also
presented in most of the real images. We propose a new procedure that takes all
these features into account. The basic idea is to pre-process the image with a
filter based on the nonlinear diffusion techniques. The segmentation problem was
formalized by Mumford and Shah as the minimization of an energy functional
that penalizes deviations from smoothness within regions and the length of their
boundaries. Under certain assumptions on the discretization, the nonlinear dif-
fusion filters are connected with minimizing the Mumford Shah functional [8].
Following this idea, we have used a nonlinear diffusion filter and we have also
applied a stopping time criteria for obtaining piecewise smooth images. We can
certainly assume that the nonlinear diffusion produces a filtered image where the
intensity distributions are closed to Gaussian functions, modeled with the mean
and variance for each region. Let us consider a image made up of two regions and
integrating the maximization of the a posteriori probability and the regularity
constraint, we obtain the following energy [7]:

Eregion(Φ) = −
∫

Ω

H(Φ(x)) log pin(u(x)|µin, σ
2
in)dx

−
∫

Ω

(1−H(Φ(x))) log(pout(u(x)|µout, σ
2
out))dx+ ν

∫
Ω

|∇Φ(x)|dx (8)

where p(u|µi, σi) denotes the probability of observing the filtered image u when
Ωi is a region of interest and ν is a positive constant chosen empirically. On the
other hand, Kimmel and Bruckstein [9] have developed a novel and robust edge
integration scheme. The edge-based stopping term serves to stop the contour on
the desired object boundary. The active contour evolves along the second-order
derivative in the direction of the image gradient. The functional is given by

Eedge(Φ) = −
∫

Ω

δ(Φ(x))∇u · ndx+
∫

Ω

H(Φ(x))div
(

∇u
‖∇u‖

)
‖∇u‖dx (9)

being δ() a regularized version of the Dirac function such as δ(s) = H ′(s) and
n is the normal unit vector to zero level set. Finally, the global functional is a
weighted sum of the above ones where is combined data terms and shape priors:

E(Φ, φ̃α) = %1Eregion(Φ) + %2Eedge(Φ) + %3Eshape(Φ, φ̃α) (10)

where %i are positive constants chosen empirically. Obviously, there are two
evolutions, the first one is the active contour for the object segmentation and
the second one represents the deformation model evolution. The two evolutions
are related through the proposed affine transformation between Φ(x) ≥ 0 and
φ̃α(x) ≥ 0. Moreover, both of them use the same statistical data improving the
algorithm.

4.1 Numerical algorithms

In this subsection, we show the numerical algorithms for minimizing the function-
als presented. We can not guarantee that our functionals are convex. Therefore,
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gradient descent process stops at a local minima. One challenge is tracking down
the significant minimum. This is done by initializing the active contour near of
the object of interest. Following these observations, we propose a method of
two main stages: (i) an initial segmentation is generated using a combination
of traditional techniques, and (ii) we deform locally this initial solution using
a level set approach which combines edge alignment, homogeneity terms and
shape dissimilarity measures.

The level set evolution algorithm uses an efficient distance preserving the
narrow band technique[10]. The reinitialization of the level set is not longer
necessary. The algorithm is implemented using a simple finite difference scheme.
It is based on the following internal energy term: γ

∫
Ω

1
2 (‖∇Φ(x)‖− 1)2dx. Here

γ > 0 is a parameter that controls the effect of penalizing the deviation of Φ
from a signed distance function. Finally, the global functional is a weighted sum
of the above functionals. The resulting evolution of the level set function is the
gradient flow that minimizes the overall energy functional:

∂tΦ(x) = δ(Φ(x))
[
%1 · log

pin(u(x))
pout(u(x))

+ %1 · ν · div
(

∇Φ(x)
‖∇Φ(x)‖

)
− %2 · uηη(x)

]
+ %3 · (Φ(x)− φ̃α(T (x))) + γ ·

(
∆Φ(x)− div

(
∇Φ(x)
‖∇Φ(x)‖

))
(11)

where uηη is the second derivative of u in the gradient direction. Recall that
the affine transformation T (x) is defined by the pose parameter. It has con-
nected the pose from the normalized shape model to the target Φ(x) ≥ 0. This
property makes more efficient the algorithm since it allows to pre-load φ̃0(x) and
ψ̃(x)i=1,...,k. Moreover, φ̃α(x) is calculated using the above data about pin(u(x))
and pout(u(x)). Gradient descent method is now used to find the shape parameter
α that minimizes E(α) in equation (6):

∂tα =
∫

Ω

δ(φ̃(x))ψ̃(x)
[
log

pin(u(T−1(x)))
pout(u(T−1(x)))

]
dx+

∑N
i=1(αi −α)Ki

σ2
∑N

i=1Ki

(12)

with Ki = K(α−αi

σ ) and ψ̃ = {ψ̃1, ψ̃2, ..., ψ̃k}.

5 Liver segmentation from 3D CT Images

Liver segmentation from 3D CT images is usually the first step in the computer-
assisted diagnosis and surgery systems for liver diseases. Algorithms relying
solely on image intensities or derived features usually fail. To deal with missing
or ambiguous low-level information, shape prior information has been success-
fully employed. However, the lack of knowledge about the location, orientation
and deformation of the liver, due to diseases or different acquisition procedures,
adds another major challenge to any segmentation algorithm. In order to ad-
dress these problems, we have applied our framework to liver segmentation. The
proposed method has been trained on 20 patient CT slice set, and tested on an-
other 10 specified CT datasets. The shape model is composed of 20 segmented
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livers. The segmented livers are aligned by the proposed procedure. In this case,
each principal axis is adjusted to the reference. Experimentally, Sref has been

tuned by minimizing (1). Using Similarity Index,
(
SI = 1

N

∑
i

(Si◦T−1
i )∩Sref

(Si◦T−1
i )∪Sref

)
,

our approach gets a SI of 0.66 while variational method of (1) gives 0.54 over
the training set. From aligned training set, we calculate and save the mean level
set function φ̃0(x), the first k eigenvectors ψ̃(x) and the shape parameter αi, for
each sample. In this application, we use k = 10. Our approach starts filtering the
CT image by a nonlinear diffusion filter with selection of the optimal stopping
time. Once the image has been processed, an intensity model is built, pin(u) and
pout(u). We also calculate uηη. We load the mean level set function φ̃0(x), the
first eigenvectors ψ̃(x) and the shape parameter αi, i = 1, . . . , 20. Then, region
growing and 3D edge detector are applied to the filtered image. Morphological
post-processing merges the previous steps, giving the initial solution and ini-
tializing the contour. The zero level of Φ is employed as the starting surface.
The evolution of Φ(x) follows (11) and α is calculated as (12). The constant
parameters of the active contour were tuned to segmentation scores using the
leave-one-out technique. The pose parameter is calculated with the moments of
Φ(x) ≥ 0 and φ̃α(x) ≥ 0. Fig. 1 shows slices from two cases, drawing the result of
the method (in blue) and the reference (in red). The quality of the segmentation
and its scores are based on the five metrics[11]. Each metric was converted to
a score where 0 is the minimum and 100 is the maximum. Using this scoring
system one can loosely say that 75 points for a liver is comparable to human
performance. Table 1 lists the average values of the metrics and their scores over
the test data set.

Table 1. Average values of the metrics and scores for all ten test case: volumetric
overlap error (m1), relative absolute volume difference (m2), average symmetric sur-
face distance (m3), root mean square symmetric surface distance (m4) and maximum
symmetric surface distance (m5).

Type m1 m2 m3 m4 m5

metrics 12.6% 4.7% 1.84 mm 3.86 mm 21.9 mm

scores 51 75 54 46 71

6 Conclusion

We have presented two main contributions. Firstly, the shape alignment has
been solved using an image normalization procedure. An advantage is that the
proposed affine transformation is defined by closed-form expressions involving
only geometric moments. No additional optimization over pose parameters is
necessary. This procedure has been applied both to the training shapes and to
the problem of aligning the active contour. Secondly, we have proposed a level
set based variational approach that incorporates shape priors into edge-based
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Fig. 1. From left to right, a sagittal, coronal and transversal slice for an easy case (a)
and a difficult one (b). The outline of the reference standard segmentation is in red,
the outline of the segmentation of the method described in this paper is in blue.

and region-based models. Using the Cremers’ shape model, we have integrated
a shape dissimilarity measure, a piecewise smooth region-based model and an
edge alignment model. For each boundary pixel, our approach calculates its
dynamic according to its gray level, the neighborhood and geometric properties
established by training shapes.
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