Skip to main content

The Deep Coalescence Consensus Tree Problem is Pareto on Clusters

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6674))

Included in the following conference series:

Abstract

Phylogenetic methods must account for the biological processes that create incongruence between gene trees and the species phylogeny. Deep coalescence, or incomplete lineage sorting creates discord among gene trees at the early stages of species divergence or in cases when the time between speciation events was short and the ancestral population sizes were large. The deep coalescence problem takes a collection of gene trees and seeks the species tree that implies the fewest deep coalescence events, or the smallest deep coalescence reconciliation cost. Although this approach can to be useful for phylogenetics, the consensus properties of this problem are largely uncharacterized, and the accuracy of heuristics is untested. We prove that the deep coalescence consensus tree problem satisfies the highly desirable Pareto property for clusters (clades). That is, in all instances, each cluster that is present in all of the input gene trees, called a consensus cluster, will also be found in every optimal solution. We introduce an efficient algorithm that, given a candidate species tree that does not display the consensus clusters, will modify the candidate tree so that it includes all of the clusters and has a lower (more optimal) deep coalescence cost. Simulation experiments demonstrate the efficacy of this algorithm, but they also indicate that even with large trees, most solutions returned by the recent efficient heuristic display the consensus clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bansal, M., Burleigh, J.G., Eulenstein, O.: Efficient genome-scale phylogenetic analysis under the duplication-loss and deep coalescence cost models. BMC Bioinformatics 11(Suppl 1), S42 (2010)

    Article  Google Scholar 

  2. Bininda-Emonds, O.R.P.: Phylogenetic supertrees: combining information to reveal the Tree of Life. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  3. Bryant, D.: A classification of consensus methods for phylogenies. In: BioConsensus, DIMACS, pp. 163–184. AMS, Providence (2003)

    Google Scholar 

  4. Edwards, S.V.: Is a new and general theory of molecular systematics emerging? Evolution; International Journal of Organic Evolution 63(1), 1–19 (2009)

    Article  Google Scholar 

  5. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Systematic Zoology 28(2), 132–163 (1979)

    Article  Google Scholar 

  6. Guigo, R., Muchnik, I., Smith, T.F.: Reconstruction of ancient molecular phylogeny. Mol. Phylogenet. Evol. 6(2), 189–213 (1996)

    Article  Google Scholar 

  7. Heled, J., Drummond, A.J.: Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27(3), 570–580 (2010)

    Article  Google Scholar 

  8. Knowles, L.L.: Estimating species trees: Methods of phylogenetic analysis when there is incongruence across genes. Systematic Biology 58(5), 463–467 (2009)

    Article  Google Scholar 

  9. Kubatko, L.S., Carstens, B.C., Knowles, L.L.: STEM: species tree estimation using maximum likelihood for gene trees under coalescence. Bioinformatics 25(7), 971–973 (2009)

    Article  Google Scholar 

  10. Liu, L.: BEST: bayesian estimation of species trees under the coalescent model. Bioinformatics 24(21), 2542–2543 (2008)

    Article  Google Scholar 

  11. Maddison, W.P.: Gene trees in species trees. Systematic Biology 46(3), 523–536 (1997)

    Article  Google Scholar 

  12. Maddison, W.P., Knowles, L.L.: Inferring phylogeny despite incomplete lineage sorting. Systematic Biology 55(1), 21–30 (2006)

    Article  Google Scholar 

  13. Maddison, W.P., Maddison, D.: Mesquite: a modular system for evolutionary analysis (2001), http://mesquiteproject.org

  14. Pollard, D.A., Iyer, V.N., Moses, A.M., Eisen, M.B.: Widespread discordance of gene trees with species tree in drosophila: Evidence for incomplete lineage sorting. PLoS Genet. 2(10), e173 (2006)

    Article  Google Scholar 

  15. Rokas, A., Williams, B.L., King, N., Carroll, S.B.: Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425(6960), 798–804 (2003)

    Article  Google Scholar 

  16. Sanderson, M.J.: r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19(2), 301–302 (2003)

    Article  Google Scholar 

  17. Slowinski, J.B., Knight, A., Rooney, A.P.: Inferring species trees from gene trees: A phylogenetic analysis of the elapidae (Serpentes) based on the amino acid sequences of venom proteins. Molecular Phylogenetics and Evolution 8(3), 349–362 (1997)

    Article  Google Scholar 

  18. Than, C., Nakhleh, L.: Species tree inference by minimizing deep coalescences. PLoS Computational Biology 5(9), e1000501 (2009)

    Article  MathSciNet  Google Scholar 

  19. Than, C.V., Rosenberg, N.A.: Consistency properties of species tree inference by minimizing deep coalescences. Journal of Computational Biology 18(1), 1–15 (2011)

    Article  MathSciNet  Google Scholar 

  20. Wilkinson, M., Cotton, J.A., Lapointe, F., Pisani, D.: Properties of supertree methods in the consensus setting. Systematic Biology 56(2), 330–337 (2007)

    Article  Google Scholar 

  21. Wilkinson, M., Thorley, J., Pisani, D., Lapointe, F.-J., McInerney, J.: Some desiderata for liberal supertrees. In: Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 227–246. Springer, Dordrecht (2004)

    Chapter  Google Scholar 

  22. Zhang, L.: From gene trees to species trees II: Species tree inference in the deep coalescence model. IEEE/ACM Trans. Comput. Biol. Bioinformatics (forthcoming, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, H.T., Burleigh, J.G., Eulenstein, O. (2011). The Deep Coalescence Consensus Tree Problem is Pareto on Clusters. In: Chen, J., Wang, J., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2011. Lecture Notes in Computer Science(), vol 6674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21260-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21260-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21259-8

  • Online ISBN: 978-3-642-21260-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics