Skip to main content

Regene: Automatic Construction of a Multiple Component Dirichlet Mixture Priors Covariance Model to Identify Non-coding RNA

  • Conference paper
  • 1095 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6674))

Abstract

Non-coding RNA (ncRNA) molecules do not code for proteins, but play important regulatory roles in cellular machinery. Recently, different computational methods have been proposed to identify and classify ncRNAs. In this work, we propose a covariance model with multiple Dirichlet mixture priors to identify ncRNAs. We introduce a tool, named Regene, to derive these priors automatically from known ncRNAs families included in Rfam. Results from experiments with 14 families improved sensitivity and specificity with respect to single component priors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Infernal’s user guide, http://infernal.janelia.org/

  2. Arrial, R., Togawa, R., Brigido, M.: Screening non-coding RNAs in transcriptomes from neglected species using PORTRAIT: case study of the pathogenic fungus Paracoccidioides brasiliensis. BMC Bioinformatics 10, 239 (2009)

    Article  Google Scholar 

  3. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, Chichester (1973)

    MATH  Google Scholar 

  4. Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14(9), 755–763 (1998)

    Article  Google Scholar 

  5. Eddy, S.R.: A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure. BMC Bioinformatics 3, 18 (2002)

    Article  Google Scholar 

  6. Eddy, S.R., Durbin, R.: RNA sequence analysis using covariance models. Nucleic Acids Research 22(11), 2079–2088 (1994)

    Article  Google Scholar 

  7. Griffiths-Jones, S.: Annotating Noncoding RNA Genes. Annu. Rev. Genomics Hum. Genet. 8, 279–298 (2007)

    Article  Google Scholar 

  8. Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S.R., Bateman, A.: Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Research 33, D121–D124 (2005), http://www.sanger.ac.uk/Software/Rfam/

    Article  Google Scholar 

  9. Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. on Optimization 16(1), 170–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hofacker, I.L., Fekete, M., Stadler, P.F.: Secondary Structure Prediction for Aligned RNA Sequences. Journal of Molecular Biology 319(5), 1059–1066 (2002)

    Article  Google Scholar 

  11. Kong, L., Zhang, Y., Ye, Z.-Q., Liu, X.-O., Zhao, S.-O., Wei, L., Gao, G.: CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 35, 345–349 (2007)

    Article  Google Scholar 

  12. Liu, J., Gough, J., Rost, B.: Distinguishing protein-coding from non-coding RNAs through Support Vector Machines. PLoS Genet. 2(4), e29–e36 (2006)

    Article  Google Scholar 

  13. Mount, S.M., Gotea, V., Lin, C.F., Hernandez, K., Makalowski, W.: Spliceosomal Small Nuclear RNA Genes in Eleven Insect Genomes. RNA 13, 5–14 (2007)

    Article  Google Scholar 

  14. Nawrocki, E.P., Eddy, S.R.: Query-Dependent Banding (QDB) for Faster RNA Similarity Searches. PLoS Computational Biology 3(3), e56 (2007)

    Article  MathSciNet  Google Scholar 

  15. Nawrocki, E.P., Kolbe, D.L., Eddy, S.R.: Infernal 1.0: Inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009)

    Article  Google Scholar 

  16. Regene, http://regene.exatas.unb.br

  17. Silva, T.C., et al.: SOM-PORTRAIT: Identifying Non-coding RNAs Using Self-Organizing Maps. In: Guimarães, K.S., Panchenko, A., Przytycka, T.M. (eds.) BSB 2009. LNCS, vol. 5676, pp. 73–85. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Sjölander, K., et al.: Dirichlet mixtures: a method for improved detection of weak but significant protein sequence homology. Computer Applications in the Biosciences 12(4), 327–345 (1996)

    Google Scholar 

  19. Zucker, M., Matthews, D.H., Turner, D.H.: Algorithms and thermodynamics for RNA secondary structure prediction: A practical guide. In: RNA Biochemistry and Biotechnology. NATO ASI Series, pp. 11–43. Kluwer Academic, Dordrecht (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lessa, F., Neto, D.M., Guimarães, K., Brigido, M., Walter, M.E. (2011). Regene: Automatic Construction of a Multiple Component Dirichlet Mixture Priors Covariance Model to Identify Non-coding RNA. In: Chen, J., Wang, J., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2011. Lecture Notes in Computer Science(), vol 6674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21260-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21260-4_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21259-8

  • Online ISBN: 978-3-642-21260-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics