Skip to main content

An Integrative Approach for Genomic Island Prediction in Prokaryotic Genomes

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6674))

Included in the following conference series:

Abstract

A genomic island (GI) is a segment of genomic sequence that is horizontally transferred from other genomes. The detection of genomic islands is extremely important to the medical research. Most of current computational approaches that use sequence composition to predict genomic islands have the problem of low prediction accuracy. In this paper, we report, for the first time, that gene information and inter-genic distance are different between genomic islands and non-genomic islands. Using these two sources and sequence information, we have trained the genomic island datasets from 113 genomes, and developed a decision-tree based bagging model for genomic island prediction. In order to test the performance our approach, we have applied it on three genomes: Salmonella typhimurium LT2, Streptococcus pyogenes MGAS315, and Escherichia coli O157:H7 str. Sakai. The performance metrics have shown that our approach is better than other sequence composition based approaches. We conclude that the incorporation of gene information and intergenic distance could improve genomic island prediction accuracy. Our prediction software, Genomic Island Hunter (GIHunter), is available at http://www.esu.edu/cpsc/che_lab/software/GIHunter .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hacker, J., Kaper, J.B.: Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54, 641–679 (2000)

    Article  Google Scholar 

  2. Hacker, J., Bender, L., Ott, M., et al.: Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb. Pathog. 8(3), 213–225 (1990)

    Article  Google Scholar 

  3. Hacker, J., Blum-Oehler, G., Muhldorfer, I., et al.: Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23(6), 1089–1097 (1997)

    Article  Google Scholar 

  4. Lawrence, J.G., Ochman, H.: Amelioration of bacterial genomes: rates of change and exchange. J. Mol. Evol. 44(4), 383–397 (1997)

    Article  Google Scholar 

  5. Karlin, S., Mrazek, J., Campbell, A.M.: Codon usages in different gene classes of the Escherichia coli genome. Mol. Microbiol. 29(6), 1341–1355 (1998)

    Article  Google Scholar 

  6. Karlin, S.: Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes. Trends Microbiol. 9(7), 335–343 (2001)

    Article  Google Scholar 

  7. Hensel, M.: Genome-based identification and molecular analyses of pathogenicity islands and genomic islands in Salmonella enterica. Methods Mol. Biol. 394, 77–88 (2007)

    Article  Google Scholar 

  8. Cheetham, B.F., Katz, M.E.: A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol. Microbiol. 18(2), 201–208 (1995)

    Article  Google Scholar 

  9. Langille, M.G., Hsiao, W.W., Brinkman, F.S.: Detection of genomic islands using bioinformatics approaches. Nature Reviews Microbiology 8(5), 373–382 (2010)

    Article  Google Scholar 

  10. Langille, M.G., Hsiao, W.W., Brinkman, F.S.: Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinformatics 9, 329 (2008)

    Article  Google Scholar 

  11. Ou, H.Y., He, X., Harrison, E.M., et al.: MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands. Nucleic Acids Res. 35, W97–W104 (2007)

    Article  Google Scholar 

  12. Vernikos, G.S., Parkhill, J.: Resolving the structural features of genomic islands: a machine learning approach. Genome Res. 18(2), 331–342 (2008)

    Article  Google Scholar 

  13. Vernikos, G.S., Parkhill, J.: Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22(18), 2196–2203 (2006)

    Article  Google Scholar 

  14. Rajan, I., Aravamuthan, S., Mande, S.S.: Identification of compositionally distinct regions in genomes using the centroid method. Bioinformatics 23(20), 2672–2677 (2007)

    Article  Google Scholar 

  15. Hsiao, W., Wan, I., Jones, S.J., et al.: IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 19(3), 418–420 (2003)

    Article  Google Scholar 

  16. Tu, Q., Ding, D.: Detecting pathogenicity islands and anomalous gene clusters by iterative discriminant analysis. FEMS Microbiology Letters 221, 269–275 (2003)

    Article  Google Scholar 

  17. Waack, S., Keller, O., Oliver, A., et al.: Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics 7(1), 142 (2006)

    Article  Google Scholar 

  18. Karlin, S., Mrazek, J.: Predicted highly expressed genes of diverse prokaryotic genomes. J. Bacteriology 182(18), 5238–5250 (2000)

    Article  Google Scholar 

  19. Brieman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)

    MATH  Google Scholar 

  20. Che, D., Hockenbury, C., Marmelstein, R., Rasheed, K.: Classification of genomic islands using decision trees and their ensemble algorithms. BMC Genomics 11(Suppl 2), S1 (2010)

    Article  Google Scholar 

  21. Quinlan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)

    Google Scholar 

  22. Perna, N.T., Plunkett, G., Burland, V., et al.: Complete genome Sequence of Enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533 (2001)

    Article  Google Scholar 

  23. Beres, S.B., Sylva, G.L., Barbian, K.D., et al.: Genome Sequence of a serotype M3 strain of group A Sreptococcus: Phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proceedings of National Academy of Science 99, 10078–10083 (2002)

    Article  Google Scholar 

  24. McClelland, M., Sanderson, K.E., Spieth, J., et al.: Complete genome Squence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, H., Fazekas, J., Booth, M., Liu, Q., Che, D. (2011). An Integrative Approach for Genomic Island Prediction in Prokaryotic Genomes. In: Chen, J., Wang, J., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2011. Lecture Notes in Computer Science(), vol 6674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21260-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21260-4_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21259-8

  • Online ISBN: 978-3-642-21260-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics