
Software Certification: Is There a Case against

Safety Cases?

Alan Wassyng�, Tom Maibaum�, Mark Lawford�, and Hans Bherer�

McMaster Centre for Software Certification
Faculty of Engineering

McMaster University, Hamilton, Ontario, Canada L8S 4K1
{wassyng,lawford,bhererh}@mcmaster.ca, tom@maibaum.org

Abstract. Safety cases have become popular, even mandated, in a num-
ber of jurisdictions that develop products that have to be safe. Prior to
their use in software certification, safety cases were already in use in
domains like aviation, military applications, and the nuclear industry.
Argument based methodologies/approaches have recently become the
cornerstone for structuring justification and evidence to support safety
claims. We believe that the safety case methodology is useful for the soft-
ware certification domain, but needs to be tailored, more clearly defined,
and more appropriately structured in analogy with regulatory regimes
in classical engineering disciplines. This paper presents a number of rea-
sons as to why current approaches to safety cases do not satisfy essential
attributes for an effective software certification process and proposes im-
provements based on lessons learned from other engineering disciplines.
In particular, the safety case approach lacks the highly prescriptive and
domain specific nature that can be seen in other engineering specialities,
in terms of engineering and analysis methods to be applied in gener-
ating the relevant evidence. Safety case approaches and corresponding
methods should aim to achieve the levels of precision and effectiveness
of engineering methods underpinning regulatory regimes in other engi-
neering disciplines.

1 Introduction

Software certification is in the news; see, for example, [1] for an academic ac-
count, and the following online discussions for “popular” reaction: an infusion
pump that had to be removed from the U.S. market [2]; a software defect that
prevented the emergency stop on the Gamma-Knife [3]; and two instances in
which software failure resulted in horrific damage caused by radiation machines
[4,5]. From automotive recalls to radiation device malfunctions, actual and po-
tential deaths caused by faulty software have woken people up to the fact that
software embedded in devices of all kinds has the capability of both helping us

� Supported by the Ontario Research Fund, and the National Science and Engineering
Research Council of Canada.

R. Calinescu and E. Jackson (Eds.): Monterey Workshops 2010, LNCS 6662, pp. 206–227, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Is There a Case against Safety Cases? 207

and killing us, or, less dramatically, having serious consequences for individu-
als and the environment. It is quite obvious to many, if not most, people that
software is an incredible enabling technology. It is so good, in fact, that there
is now almost no new device/technology on the market that does not depend
on software in some way, either for its function or for its design. We have also
been remarkably successful in building huge numbers of software enabled devices,
with a rather limited number of known serious problems. However, this is quite
misleading, and has resulted in severe over-confidence, both on the part of man-
ufacturers and the public at large. As software and devices become increasingly
complex and safety features get further intertwined with functional features, the
chance of creating serious disasters also dramatically increases. Every now and
again, just to remind us, software faults in critical applications feature promi-
nently in the world’s news. In contrast, establishing software certification and
regulation as the norm is not on most people’s horizon, never mind establishing
real improvements in the regulation of software based devices.

Motivated by the developments above, we have become interested in pro-
moting the concept of licensing for software and systems containing software
in order to provide the public and governments with greater confidence in the
safety (and efficacy) of such products. We want to put software certification on
a proper engineering footing, analogous to other engineering domains. A reason-
able characterization of Software Certification, in the context we are referring
to, is that it is a demonstrated assurance that the system has met relevant tech-
nical standards and specifications designed to ensure it will not endanger the
public, that it can be depended upon to deliver its intended service safely and
securely and that it is effective [6]. We also contend that the goal of certification
is to systematically determine, based on the principles of science, engineering
and measurement theory, whether an artifact satisfies accepted, well defined
and measurable criteria [6].

Although there are some regulatory regimes applicable to software, experience
has shown that most of these regimes have struggled with how software can
and/or should be regulated. These existing regimes are often based on assuring
the quality and safety of the software based on the fact that the producer of
the software adheres to some defined process, often one that is realized in an
international standard for development processes. Recently, we have detected
growing awareness that this so-called process based software certification cannot
deliver the assurance we need, and product focused certification is viewed as a
significant advance.

In the past few years, we have seen safety cases assuming a more prominent
role in regulatory regimes for software based systems. They are touted as the way
to go for certifying the safety of systems, especially those enabled by software
[7]. A good introduction to safety cases, their structure and to a methodology
for their development can be found in [8]. Safety cases are touted as the way
to go for certifying the safety of systems, especially those enabled by software
[7]. Accordingly, recent years have seen tremendous effort expended on safety
cases. For example, a start has been made to develop systematic processes and

208 A. Wassyng et al.

formalisms that would help increase the level of confidence in the soundness
of a safety case [9]. There is also interesting work on how to characterize the
chain of evidence, and how to produce it, in making the argument in a safety
case [10]. Work is also being done to extend safety claims to more general software
properties [11], and a number of researchers have broadened the safety case into
an assurance case, see [12] as well. To complete this brief review, approaches for
using safety/assurance cases to certify adaptive systems [9], as well as generic
software based systems [13], have also emerged in recent years.

We were impressed by what we read about safety cases and started looking
for more information on them: theory as well as their application in practice.
While doing this we started developing some misgivings about them. This paper
re-examines the safety case approach, using lessons we should learn from other
engineering disciplines as a criterion for evaluation - and we take as our example,
Civil Engineering. This examination leads us to identify a number of potential
problems in the use of safety cases, so that we can make suggestions on how to
modify this approach so that it can be even more useful in certifying systems
containing software.

2 Software Certification Approaches

In many cases, when we speak about software certification, we often mean that,
in certifying the system behaviour of a software driven device, we need to pay
specific attention to the behaviour of the software components and their inter-
faces to the physical device. In other cases, it may be that the software to be
certified runs on generic hardware rather than embedded in a device.

Different software certification approaches exist and are usually character-
ized by their underlying philosophy as being either process oriented or product
oriented. Nevertheless, the process versus product classifications need not be
mutually exclusive, and attempts to partition software certification approaches
based solely on the two properties could be misleading. Nothing prevents the use
of both in a certification process. For example, the certification process could
check that an approved process was followed and also provide an argument based
on product evidence. Since process oriented certification regimes usually require
compliance with some set of established standards, they are sometimes referred
to as standards based approaches. Again, this could be misleading because noth-
ing precludes a standard from being product focused. Similarly, it is not unusual
to refer to product oriented certification regimes as argument based approaches
because one has to come up with a convincing argument about one’s product,
often in the context of an argumentation theory based framework for presenting
evidence; but, again, nothing a priori, excludes process considerations in the
arguments.

In the context of argument based approaches, the way to construct the argu-
ment is surely not unique and is still under intense debate. In this context, we
see recent proposals for goal oriented and template based presentations of ar-
guments [14] (methods for realizing argumentation based approaches). Whether

Is There a Case against Safety Cases? 209

the argument should be product focused, goal based, or evidence based is still
an open question and this issue has given rise to more specific argument based
approaches. In the balance between process and product emphasis in a given
certification approach, we believe that the certifying agent should increasingly
favour the product, as the criticality of the software increases, not because pro-
cesses are irrelevant for the development of the product, but because they are
not sufficient to prove anything definite about safety, effectiveness or correctness.

2.1 Process Based Approaches

Process based certification is common because we have been “able to do it”:
it gives us the illusion, rather than a guarantee, that we have produced a good
quality product and, therefore, a safe system. It is a lot easier to evaluate confor-
mance to a development process than it is to decide on attributes that distinguish
between dependable and unreliable software products and to be able to measure
the relevant attributes effectively. Because process based standards model the
products of the process superficially, if at all, it is impossible to characterize
properly the properties of the entity we are actually interested in, namely the
application we have built. Any process based definition of quality ends up guar-
anteeing only that certain steps and activities were undertaken, but does not offer
direct evidence of the presence of desirable properties. A high quality process is
not necessarily a reliable indication of a high quality product. Nevertheless, it is
important to note that we believe that it is essential that the product be built
by an organization that has excellent processes and excellent people, because
this is likely to result in good products. It follows that certifying agents will be
interested in these aspects, but they can usually be audited in a straightforward
manner, often by a third party with no specific knowledge about the products
developed by the audited organization, or its potential problems in relation to
safety. The fact that a process standard has been adopted by some regulators
may be evidence that the regulator believes that the standard is based on an
implicit (generic) safety case that justifies the quality attributes of products
produced using the process. However, the fact that this (generic) safety case is
implicit contributes directly to the problems regulators are experiencing in eval-
uating applications based on adherence to the process standard. The developer
and the regulator end up talking at cross purposes because of the lack of this
common understanding. See below for further discussion of this point.

As a result, because process based certification approaches are inherently un-
able to guarantee the quality (in many cases, safety) that a regulator requires
in the actual product, we need to focus on evaluating attributes of the product
itself. This has generated interest in product focused certification approaches.

2.2 Product Focused Approaches

We might characterise process based approaches as providing indirect justifica-
tion of a product’s required attribute values, as needed by regulators. In contrast

210 A. Wassyng et al.

to the indirect justification of process based standards, the product(s) of the
process contain the basis for the direct justification of claims to regulators. We
refer to this focus on the attributes of the product, providing the basis for the
direct justification of safety claims, as product focused, in contrast to the process
based approaches discussed above. After all, it is the safety of the final product
in which we are interested and not the efficacy or otherwise of the process used
to produce the product. A product focused approach requires that the relevant
attributes of the product can be modeled and that there are precisely defined
measurement procedures in place to determine the values of these attributes for
a specific instance. As we will see below, typical engineering domains have a very
product focused approach to regulation, concentrating on the product itself, or
on design artifacts directly related to the final product. This use of models and
other design artifacts is made possible by the direct relationship of such design
artifacts to the final product, underpinned by physical laws and the predictability
inherent in these laws, as well as by the predictability of engineering methods in
ensuring that crucial design properties are maintained.

It is often said that classical engineering is underpinned by the continuity
principle, enabling the predictability of the artifact’s properties from those of the
models and design artifacts. While this may well be the case, the predictability
of the typical engineering method is at least as crucial in ensuring that properties
predicted on the basis of design artifacts will be realized in the engineering prod-
uct. In this regard, the process standards often used in regulatory settings related
to software are not proper engineering methods. They do not have the required
detail and prescriptive qualities to support the requirement for maintaining es-
sential properties of design artifacts through to final product. (An international
process standard does not an engineering method make!)

3 What Do Civil Engineers Do?

For many years a debate has raged as to whether software engineering is really
engineering. That debate still continues. We are convinced that software engi-
neering should be a real engineering profession. It should be a speciality within
engineering. Why? To answer that we have to understand a little about the dif-
ferences between engineering and science - and the very practical reasons that
led to the creation of engineering.

There are a number of differences between science and engineering that are
of particular importance to any discussion related to software engineering [15].

• Scientists learn and/or discover what is true of our physical world. They
learn how to confirm that these truths are, indeed, valid. They also learn
how to extend this knowledge. Engineers also need to learn what is true
of our physical world. They often learn about this from scientists. They
learn how to apply that knowledge in the construction of artifacts that are
useful, effective and safe for the general population to use. This often requires
additional knowledge from many different domains. They also need to learn

Is There a Case against Safety Cases? 211

the engineering principles applicable to their speciality that then enables
them to build safe and effective products.

• Scientists have the validity of their work judged by their peers. Scientific
results may be used by other scientists or by engineers who use the results
to build something. The results on their own usually do not represent a
danger to the public. On the other hand, one of the primary roles of the
engineer is to build products that will be used by other people. In many
cases, these products have to be constructed so that they do not pose undue
risk to the public.

• A direct result of the danger inherently posed by the construction of engi-
neered artifacts was the idea of the licensed professional engineer. Society
recognized the problem of having unqualified people (people who did not
know enough about the specific engineering domain) build potentially dan-
gerous products. There is no similar regulation of scientific personnel.

• In many jurisdictions, not only are the people who build the products regu-
lated (by law), but the products themselves may be subject to regulation that
requires “proof” that the product is safe for its intended use. In addition,
some jurisdictions (such as medical device regulation in the United States)
require “proof” that the product is effective, i.e., it works as advertised.

It is also apparent that software products, both embedded in devices, and stan-
dalone applications, may pose significant risk to society. It is also obvious that
software is pervasive, and the modern world depends on software for the function-
ing of commerce, transportation, entertainment, medicine, and the generation of
electricity. Thus, an engineering speciality, called software engineering, built on
knowledge from computer science and other domains makes perfectly good sense.
So, why the debate? We believe that the debate is largely fuelled by our failure
to model software engineering on other engineering specialities. This is not sur-
prising since software engineering is relatively new, and the fundamental science
it is dependent on is also relatively new. However, we have managed to make
incredible progress in building software products that have literally changed the
world we live in. So, we should not use its “newcomer status” too much as a
reason not to have more consensus on the fundamentals of software engineering.

To help the discussion along, it will help to look at an engineering speciality
that has a long history of building artifacts that are useful/essential to society,
have to be built at reasonable cost, and have to be safe. We will regard this
engineering speciality as representative of other engineering domains. So, after
centuries of experience, how do Civil Engineers manage to build the modern in-
frastructure required by our civilization, protect us from environmental hazards,
and do this at reasonable cost with an excellent (modern) safety record?

Well, Civil Engineers are famous for their development and use of Engineer-
ing Codes. For example, the CSA Standard CAN3-A23.3, Design of Concrete
Structures for Buildings [16] (in conjunction with other standards) is used by
Civil Engineers to ensure that concrete structures are safe for use. Before we
look at some of the details regarding concrete structures, it is interesting and
important to note a reminder in Section 1, General Requirements: “(3) The

212 A. Wassyng et al.

National Building Code of Canada requires that certain reviews be carried out by
the designer or another suitably qualified person to determine conformance with
the design.” This is clearly a built-in certification/verification.

The following examples, taken from CAN3-A23.3, are instructive because they
enable us to highlight essential differences between typical engineering regulatory
practice (as exemplified by civil engineering) and typical software regulatory
practice.

Example 1 refers to Section 15 which relates to Footings. In particular, iso-
lated footings and (some) combined footings and mats. In Section 15.4.1 we
find guidance on loads and reactions, and details relating to shaped columns
and pedestals. Rules for determining the moment in footings are included. The
rules are clearly prescriptive, and have been calculated to be conservative. They
also allow for simplified calculations in the case of more complex shapes - also
pre-determined to be conservative. Section 15.3 is note worthy, in that it clearly
does not preclude a more specific analysis. A more specific analysis may be less
conservative and allow for a more “creative” approach. There are other examples
in which the more conservative approach is mandated, even if a more “accurate”
method is available. By comparison, software regulation is hardly ever prescrip-
tive with respect to analysis methods. This is partly due to the lack of consensus
with regard to standard analyses in software engineering.

Example 1

• Section 15.4.1 “The external moment on any section of a footing shall be
determined by passing a vertical plane through the footing and computing the
moment of the forces acting over the entire area of the footing on one side
of that vertical plane.”

• For example: 15.3 “In lieu of detailed analysis, circular or regular polygon
shaped concrete columns or pedestals may be treated as square members with
the same area, for the location of critical sections for moment, shear, and
development of reinforcement in the footings”. �

Example 2 refers to Section 19 which relates to Shells and Folded Plates. In-
terestingly, as we can see in this section, the standard is also prescriptive with
respect to the analysis assumptions that must be used. It also includes specific
requirements on materials. By comparison, if software regulation does not pre-
scribe analysis methods, it is certainly not likely to prescribe assumptions related
to analyses. There are a number of software analogies we could use that relate
to material. For instance, we could think of the programming language(s) used
in an application as a fundamental component in much the same way as mate-
rial may be thought of in constructing something physical. Using this analogy,
it may be surprising that although most software regulation may not prescribe
a programming language, many jurisdictions and manufacturers have imposed
restrictions on programming languages to protect against known unsafe pro-
gramming constructs.

Is There a Case against Safety Cases? 213

Example 2

• Section 19.2.1 “Elastic behaviour shall be an accepted basis for determin-
ing internal forces and displacements of thin shells. This behaviour may be
established by computations based on an analysis of the uncracked concrete
structure in which the material is assumed linearly elastic, homogeneous, and
isotropic. Poisson’s ratio of concrete may be assumed to be equal to zero.”

• 19.3.1 “The specified compressive strength of concrete, t′c, at 28 days shall be
not less than 20MPa”; and,

• 19.3.2 “For nonprestressed reinforcement the yield strength used in calcula-
tions shall not exceed 400 MPa.” �

Finally, Example 3 refers to Section 21 which relates to Special Provisions for
Seismic Design. This rather lengthy section starts with three columns of notation
and definitions, indicative of more complexity. Our motivation for selecting this
example is that one of the reasons given for treating software differently from
other engineering specialities, is the fact that software systems are typically quite
complex. In fact, software systems are frequently amongst the most complex of
human endeavours. Section 21 now reflects the additional complexity required to
deal with constructing buildings that can withstand seismic events. For example,
Section 21.4.4 deals with Transverse Reinforcement, and Section 21.4.4.2 speci-
fies very prescriptive compliance requirements, for a problem that is inherently
complex and could be solved in a large number of ways. In addition, the product
can be checked for compliance both during and after implementation.

Example 3
Section 21.4.4.2
Transverse reinforcement, specified as follows, shall be provided unless a larger
amount is required by Clause 21.7:

(a) the volumetric ratio of spiral or circular hoop reinforcement, ρs, shall not be
less than given by

ρs = (0.12f ′
c/fyh) (21-2)

and shall not be less than that required by Equation (10-7);
(b) the total cross sectional area of the rectangular hoop reinforcement shall not

be less than the larger of the amounts given by Equations (21-3) and (21-4)

Ash = 0.3
shcf′c
fyh

(
Ag

Ach
− 1

)
(21-3)

Ash = 0.12
(

shcf′c
fyh

)
(21-4)

(c) transverse reinforcement may be provided by single or overlapping hoops.
Cross ties of the same bar sizing and spacing as the hoops may be used; and

(d) if the factored resistance of the member core is greater than the factored
load effect including earthquake, then Equations (10-7) and (21-3) need not
be satisfied outside the joint.” �

214 A. Wassyng et al.

The above examples show that CAN3-A23.3, like most engineering standards,
imposes constraints and requirements on the product, and is prescriptive on
the analysis process too. In comparison, most standards found in the soft-
ware engineering domain adopt a risk-based approach and define a process-
based generic approach for the software development lifecycle phases. One such
standard that is emerging as a key standard for the functional safety of elec-
trical/electronic/electronic programmable (E/E/EP) safety-related systems is
IEC-61508, specifically parts 3 and 7, which relate to software requirements and
techniques, respectively [17]. This standard assumes that it is not possible to
prescribe techniques and measures that will be correct for any given application.
It does, however, state that a primary objective of the IEC 61508 series is to fa-
cilitate the development of product and application focused standards, perhaps
quite similar to Engineering Codes such as the one discussed above. Since testing
is the most common way in which software engineers evaluate their products,
let us examine what IEC 61508 says regarding the Requirement for Software
module testing (IEC 61508-3, Section 7.4.7), which is part of the Software design
and development phase (IEC 61508-3, Section 7.4). First, outputs of the given
phase (or activity) are identified, such as the test result. Second, properties are
identified:

(1) completeness of testing with respect to the software design specification;
(2) correctness of testing with respect to the software design specification;
(3) repeatability;
(4) precisely defined testing configuration.

Next, a list of techniques is proposed. For example, dynamic analysis and testing
(DAT) is proposed. Then, the links between the technique and the properties
are highlighted. In this case, it identifies that DAT will positively contribute to
properties (1) and (2) but not to properties (3) and (4). This is followed by a
more detailed description of suggested techniques related to DAT. For example,
test case execution from boundary value analysis is proposed. Finally, specific
guidelines drawn from experience, are given in Part 7 of IEC 61508. For example,
”the use of the value zero, in a direct as well as in an indirect translation, is
often error-prone and demands special attention to zero divisor, blank ASCII
characters, empty stack or list element, full matrix, or zero table entry.” As
this example shows, the evolution of IEC 61508 is a small step towards more
prescriptive and product focused standards or codes. However, as can be seen in
the above discussion, even though this modern software standard sets out to be
product and application focused, it falls far short of the type of prescription we
see in other engineering disciplines.

The next section stresses some lessons we can learn from these examples.

4 What Can We Learn from Civil Engineering?

The kind of domain specific, tightly prescribed standard described above is es-
sentially unfamiliar territory for software engineers and regulators working in

Is There a Case against Safety Cases? 215

the area of software. We want to understand why analogous standards do not
exist for software and we want to make the case that they should.

The following points relate directly to lessons we can learn from: i) the
standard described in the previous section (and whenever the “standard” is
mentioned in this section, it is that CSA standard on concrete design that we
are referring to); and ii) civil engineering practice in general. In many cases
throughout this discussion, Civil Engineering simply stands as an example of
typical engineering disciplines. We also include a brief but pointed comparison
with software engineering practice. The point of the comparison is to promote
the idea that we can do better in the software domain and that, if we really want
to have proper safety standards in software engineering, we should do better.

• In the balance between safety and creativity/efficacy, safety always wins.
Architects and engineers are constrained, generally by statute, in what they
are allowed to do. This is simply accepted as a way of life for everyone in the
profession. This prescriptive regulation is also updated frequently to keep up
with advances in the field. We should not underestimate the positive effect of
smart prescriptive regulation. To comply with Canadian nuclear regulations,
developers have to separate control and safety functions. The safety system
must be completely independent of the control system. This has the effect of
severely constraining the complexity of the safety system, leading to systems
that can be mathematically defined and analysed. Contrast this with the
almost complete absence of control of creativity in software and in safety
cases! (See Bloomfield in Section 5.1.)

• The standard imposes constraints and requirements on the product. Com-
pliance with these constraints and requirements can be determined objec-
tively during and after completion of the implementation. This is because
“compliance” is defined in the context of the standard scientific/engineering
measurement framework (i.e., the MKS system of measures). There are well
defined measurement procedures that can be used to determine whether or
not some constraint or requirement has been met. Engineers typically do use
them. Software professionals typically do not. More importantly, software
standards impose much more stringent requirements on the development
process than they do on the product.

• Although the standard is predominantly product focused, it is sometimes
unashamedly prescriptive on the analysis process as well. In software we
seldom encounter anything similar. There are some exceptions, as usual. For
example, Modified Decision/Condition Coverage testing is mandated by a
civil aviation software standard.

• The standard applies to all (concrete) products.
• Although this is not obvious from the referenced standard, Civil Engineer-

ing (like other engineering disciplines, e.g., Electrical Engineering) defines
very limited interfaces. Even when very general interfaces are quite possi-
ble, standard interfaces cut the complexity of designs and implementations
tremendously. Those simple interfaces allow technicians to assemble prod-
ucts without full-time guidance of the engineers. Software Engineering has

216 A. Wassyng et al.

done almost nothing to limit our freedom to create interfaces. There has
been excellent work done to cope with the complexity of software interfaces,
but it may have been wiser to look also for ways of defining more standard
interfaces. This may still be worth examining.

To some degree, in contrast to the lessons we have been trying to learn from
the classical engineering disciplines, safety (and assurance) cases have been put
forward as a kind of panacea for software engineering. We look more closely at
safety cases in the next section.

5 Safety Cases

One approach that exhibits elements of both process based and product focused
certification, depending on the nature of the evidence being adduced in the case,
is that of the safety case. A safety case provides a structure in which the producer
makes claims related to the safety of the product, and presents a justification as
to why the claims are valid, using evidence related to and/or derived from the
product. Latterly, argumentation theory has been proposed as a way of better
presenting/structuring the safety case. This may make the safety case more com-
prehensible, but there is no reason to believe that it adds anything to its success
in demonstrating safety or efficacy. This last claim requires justification. Before
going any further, we should clarify what we mean by safety case (or assurance
case, as for the moment we will not distinguish them). The literature on safety
cases unfortunately exhibits a confused usage of the phrase. A safety case can
obviously refer to an artifact, or product in the sense we use it in this article,
namely the document containing the safety claims and the justification of those
claims. The phrase can also be used as a name for an approach to demonstrating
safety claims, as in the “safety case approach”. This usage refers to a methodol-
ogy, i.e., a set or system of methods, principles, and rules for regulating a given
discipline, as in the arts or sciences. For the safety case approach, the elements
include hazard analysis, the use of claims, adducing evidence, argumentation
principles, and so on. Finally, a well defined and prescriptive engineering method
for constructing a safety case in a well defined domain may qualify as a method
that falls within the safety case approach. An example of this usage could be
the method of goal structured argumentation using argument templates, were
it not for the fact that we do not believe that the existing literature describes
anything amounting to a proper engineering method.

The certification goal in the Introduction points to what is missing from safety
cases at all levels. The safety case approach, i.e., the methodology, is not suffi-
ciently clear on the scientific and measurement foundations of the methods and
principles of safety cases. The specific goal structured, argumentation method
for safety cases is also not well founded in terms of scientific and measurement
principles. Furthermore, it is not an effective engineering method, whose aim
is to engineer safety cases in a reliable and predictable manner. Of course, the
safety case artifact is itself deficient as it will not contain the relevant mea-
surements and scientifically based justifications required to make the safety case

Is There a Case against Safety Cases? 217

“sound”. It is this lack of proper scientific and measurement principles underly-
ing safety cases, at all three levels, which justify our scepticism about efficacy of
safety cases as noted above. We would make the same comments about assurance
cases, which subsume safety cases and address issues other than just the safety
of the system under consideration.

5.1 Why Safety Cases?

In stark contrast to the evidence from the classical engineering disciplines, Bloom-
field and Bishop present five points as to why their notion of the safety case
approach is to be preferred to more prescriptive regulation [13]:

• To prevent safety from being seen as the responsibility of the regulator rather
than the service provider.

• Prescriptive regulation typically comes from past experience and this may
be inappropriate in technically innovative industries.

• Prescriptive regulation encodes best practice at the time it was written, and
may eventually prevent developers from adopting best practice.

• Overly restrictive regulation may be viewed as a barrier to open markets.
• Prescriptive regulation can adversely affect the cost and technical quality of

products developed to comply with that regulation.

We will consider these points in turn.
“To prevent safety from being seen as the responsibility of the regulator rather

than the service provider.” We have no quarrel with the first point at all! It is
absolutely clear to us that the developer of a safety critical artifact must take
responsibility for its safety. In fact, legally the developer has no choice, whether
regulated or not. However, we do have a quarrel with the role that this statement
plays in support of the argument against overly prescriptive standards. Prescrip-
tive standards are perfectly consistent with developers taking responsibility for
the safety of their product. We do not see why this is different for software
compared with other specialties. Regulation occurs in all disciplines (and it is
the system that gets certified, not the software). Prescription should cover a
minimum safe set deemed necessary for ensuring the safety of the product.

“Prescriptive regulation typically comes from past experience and this may
be inappropriate in technically innovative industries.” Most engineers would be
offended at the accusation that, just because they have highly prescriptive regu-
latory regimes, they do not innovate. However, as Vincenti points out [18], there
is innovation, and then there is innovation. In the distinction he makes between
normal design and radical design, we see an inherent distinction between con-
trolled and predictable innovation in normal design, and some or all bets are
off innovations in radical design. Normal design embodies the experience based
prescriptive design principles beloved of engineers. They are beloved exactly be-
cause they are reliable and predictable. However, as Vincenti points out, Just
because they are prescriptive does not mean that innovation is stifled. The kind
of innovation that is well supported in normal design is incremental, controlled
innovation. For example, improving engine performance in a car or an airplane

218 A. Wassyng et al.

by 2% is almost always an example of such controlled innovation. Replacing the
usual car engine with a Wankel engine is not. This is an example of radical de-
sign and the predictability of the innovation’s properties is much lower than for
normal design.

So, in actual fact, engineers should avoid innovation, at least of a certain kind,
exactly because they want predictability and safety. Radical innovation should
have a very high price attached to it and should be stifled to some degree so as
to prevent tragic accidents.

“Prescriptive regulation encodes best practice at the time it was written, and
may eventually prevent developers from adopting best practice.” The remarks
made above about technical innovation in products apply equally to the en-
gineering methods used to produce them. The guarantees offered by normal
engineering methods are well worth their value in providing support for safety
engineering and do not prevent normal design innovation in the method. The
engineering ethos encourages such improvement. However, the price of radical
innovation in engineering methods is made clear; the burden of responsibility for
radical changes, with respect to safety properties of systems, is clearly placed on
the innovator. As it should be.

“Overly restrictive regulation may be viewed as a barrier to open markets.” As
argued above, there should be some restrictions and barriers on open markets to
make sure that the chances of damage to individuals and society are minimised.
One has only to point to financial regulation, or the lack thereof, that was
the major contributor to the world’s recent economic catastrophes. The whole
purpose of certification is to prevent the open markets from foisting dangerous
products on us.

“Prescriptive regulation can adversely affect the cost and technical quality of
products developed to comply with that regulation.” In the interest of keeping
our response polite, we will only say that safety trumps productivity, and that
prescriptive regulation does not automatically imply bad or overly prescriptive
regulation. Also, as noted often, other engineering specialities are usually regu-
lated through much more prescriptive standards than is software.

5.2 Some Weaknesses of Safety Cases

The freedom inherent in safety cases is appealing to software experts. It is ap-
pealing for exactly those reasons we believe that software engineering has re-
sisted the constraints and discipline imposed in other engineering domains. As
Vincenti [18] points out, engineers classically rely on established and recognised
methods for designing artifacts, as the established method offers certain assur-
ances about efficacy and safety. These assurances are backed up by standard
analyses and measurement procedures associated with the relevant, specific en-
gineering method being used for the design Vincenti calls this normal design, in
contrast to radical design, where some element of a normal design method is ab-
sent, say because untried technology is being used. Software engineers have made
very little attempt to develop a normal design culture, valuing their freedom to
make the same errors over and over again! And to not learn from other software

Is There a Case against Safety Cases? 219

engineers’ experiences! From the regulators’ point of view, this also makes their
job well nigh impossible. Every submission is different, and so very difficult to
evaluate in a systematic way. Regulators also need “normal evaluation” meth-
ods to work effectively and efficiently. Just as manufacturers have to use normal
design principles for predictability of design, so regulators need to be able to
apply normal evaluation procedures to reach reliable evaluation outcomes. It is
not that radical designs cannot be submitted, but the evaluation process is then
much more complicated and less certain in its judgement (see the discussion on
stifling innovation in [13]). There is an obvious and important role for the safety
case approach to play. In fact, we believe that safety cases should play this role
in the certification of all products, be they software-enabled or not. This role is
primarily as an overseer and organizer of safety-related principles and methods
relating evidence and artifacts. Individual components within the safety case
method should be domain specific and prescriptive certification strategies. For
example, a safety case document for a medical device is likely to contain compo-
nents that are software certification specific, electronic certification specific, etc.

A typical safety case document would be extremely time and resource con-
suming and potentially costly for certifying agents to evaluate. The fact that
each safety case may be a one-off example means that certifiers would have
to spend considerable time understanding the evidence and the importance of
the evidence in each individual case. That is, the certifiers are left with the
problem of rationally reconstructing the safety case method and the methodol-
ogy/approach used in creating the safety case document. So, each safety case
presents the certifier with a double scientific induction problem: one from safety
case document to safety case method and the other from safety case method to
safety case approach. This kind of induction problem is one of the most difficult
kinds of problems for scientists to solve! They also have to spend significant
amounts of time understanding the safety case structure, in each individual sub-
mission. Although ideas from argumentation theory have been proposed as a
way of structuring safety cases, this does not actually address the issue at hand,
as there is no concept of a “normal” or standard argumentation structure for
a particular class of safety cases, domain specific or not. This may also result
in an unpredictable submission process, much as we have at this time in many
regulatory regimes. This difficulty may be ameliorated somewhat, but not com-
pletely, with the advent of safety case templates [19,13]. One might add that in
those cases where a regulator relies on a process or quality standard, or both,
as in the EU and Canada for medical devices, there is a third scientific induc-
tion problem faced by developers and regulators. The process/quality standard
used is a stand in for a safety justification that motivated the structure and
content of the standard. The idea is that if the standard is followed, then all the
requirements of this implicit safety justification would be met. However, both
the developer and the regulator have to guess why elements of the standard are
required in relation to this unstated safety justification. This results in the need
for the implicit safety justification to be induced by the developer and the reg-
ulator separately, possibly resulting in diverging interpretations of the implicit

220 A. Wassyng et al.

case. This may explain to some degree the need for regulators, e.g., the U.S.
FDA, to issue guidelines to accompany these standards - one can interpret the
role of the guidelines as narrowing the gap between the interpretations of devel-
oper and regulator in relation to the implicit safety case. However, the present
process/quality standards based approaches leave both regulator and developer
with a triple scientific induction problem! How bad is that?

It is not good enough that the producer of the product supplies the evidence
and the argument(s) in the safety case. What does matter is that the certifying
agent cannot expect the same type of evidence and the same type of argument
each time. The certifying agent thus has less chance of building expertise that
will help in future submissions. This lack of expertise, or lack of appreciation
of some of the finer points perhaps in the argument, may easily lead to the
certifying agent not detecting a subtle flaw. Again, safety case templates could
help alleviate this problem .

Argumentation frameworks, suggested for use in presenting safety cases, have
some inherent flaws. An argument is not a derivation, as in logic. Hence, the
methods of logic cannot be used, on their own, to decide whether an argument
“demonstrates” its intended result. An argument has to be refined from its in-
formal presentation in the safety case into a form that can be formally analysed
[20]. There may be several or even many such refinements - there are inher-
ent ambiguities in natural language based presentations of arguments. Does one
check all of these refinements for “soundness” of the argument? If not all, then
how do we choose which one? If we manage to analyse the refinement(s) and
determine that we have a sound argument, how can we be sure that the argu-
ment formulation is appropriate to support the guarantee of safety? How do we
judge that the safety of the artifact has been established by the argument? It
seems to us that argumentation is essentially value free; here “value” is used in
the moral or subjective sense. It may be that the concept of “explanation” from
the epistemology of science may be a better basis for presenting safety cases. In
scientific explanation, the issue is how to present a case for establishing in a sci-
entific manner that some observed phenomenon can be logically demonstrated
by certain known assumptions, certain scientific laws and scientifically under-
stood procedures. On the other hand, a scientific explanation can also be used
predictively. This may be the role related to safety cases - predicting a signifi-
cant property of our software artifact and relying only on scientific/engineering
principles.

Safety cases were designed to present compelling evidence of safety. In many
instances, efficacy is also extremely important. The U.S. FDA, requires medical
devices not just to be safe, but at least as effective as a similar device already
on the market. The initial such device has to demonstrate, through clinical tri-
als, that it does what it claims to do. The relationship between demonstrating
these two properties is an interesting issue. There is almost always some tension
between efficacy and safety, and safety cases were not designed to deal explicitly
with this complication. In developing the shutdown systems for the Darlington
Generating Station, demonstrating both properties was aided tremendously by

Is There a Case against Safety Cases? 221

the separation of safety and control functions, significantly reducing the com-
plexity of the safety system.

5.3 Standards Combining Process and Product Focus with Implicit
Safety Cases

Another example that exhibits elements of both a process based and a product
focused approach is the Common Criteria [21], developed for security certifica-
tion. In the Common Criteria approach there are product definitions of varying
degrees of exactitude. There are also definitions of measurement and evaluation
procedures. What is missing is a proper product focus, due care and attention to
the demands of measurement theory, and the demands of scientific explanation.
Taking into consideration its included evaluation methodology [22], it may be
regarded as an implicit safety case approach. However, the Common Criteria is
more prescriptive than a typical assurance case approach, in that it specifies what
products have to be produced for certification at a particular level, and provides
the certifier with an evaluation methodology in [22] as part of the standard. Un-
like engineering standards though, the evaluation methodology states that the
“target audience . . . is primarily evaluators applying the CC [Common Criteria]
and certifiers confirming evaluator actions; . . . developers . . . may be a secondary
audience.” The developer can infer from [22] what evidence to produce, though
not necessarily how it should be produced. To the developer, the safety case for
the product behind the standard remains implicit and is effectively done by the
evaluator as part of the evaluation process.

An approach that we have championed is an extension of some of the ideas
and approaches used in licensing the Darlington Nuclear Generating Station’s
Shutdown Systems in Ontario, Canada. The work done on the Darlington Shut-
down Systems has actually been quoted as an example for what safety cases are
designed to prevent [13]. In reality, the Darlington licensing activity that Bloom-
field and Bishop refer to, was the original licensing of the systems in 1989/90.
The licensing process was difficult for many reasons. Prime amongst these was
that this was the first software based nuclear safety system to be built and li-
censed in Canada, and that both the regulators and the manufacturer had not
developed a plan to deal explicitly with software issues. It thus transpired that
regulator involvement in the software verification activities started after the sys-
tem, including all the software, had already been developed. This initial licensing
of the Darlington Shutdown Systems was described from the point of view of the
regulators [23], and also by some of the team who performed the verification [24].
Our contention is that a safety case approach introduced at that stage would
have fared no better. In fact, this is a good example of why we believe that of
all the safety case approaches we have seen, the assurance based approach ad-
vocated by Graydon, Knight and Strunk [12] is likely to be the most successful.
The difference here is that the safety case is used to drive development as well as
build the safety argument. Nowadays, when we refer to the Darlington approach,
it is to the methodology that was researched and implemented subsequent to the
original verification. The software development (and verification) approach was

222 A. Wassyng et al.

described briefly in [25]. As that approach was developed, it was discussed in de-
tail with the regulatory authority in Canada. The resulting methodology enabled
the regulators to conduct audits of evidence produced during the development
process, significantly simplifying the certification process, and making it much
more predictable for the manufacturer.

The foundations of that approach were laid in a standard, called the “Stan-
dard for Software Engineering of Safety Critical Software” [26]. This standard is
reasonably prescriptive in defining the (quality) attributes that must be present
in each of the major software documents that are mandated. This effectively
defines what major steps in the software development process must occur, as
well as how to judge whether the required attributes are present in the specified
documents. Although it does not specify/mandate the actual process to be used,
it does mandate that specific processes must be described in lower-level process
documents. For example, [26] has a list of process documents that must be pro-
duced, that then govern the production of a specific project output. A small
sampling of these includes: the Software Requirements Specification (SRS), the
Software Design Description (SDD), the Design Review Report (DRR) and the
Design Verification Report (DVR). Each of these lower-level “standards” then
mandates both a process to be followed, as well as the documentation that has
to be produced. The lower-level standards were created so that the relevant soft-
ware document governed by that standard would possess the quality attributes
described in [26]. All of these standards together embodied an implicit safety
case approach, although it was not viewed that way at the time.

The implicit safety case approach for the development of safety-critical soft-
ware at Ontario Power Generation and AECL, in this case, is as follows:

1. The requirements are specified mathematically and checked for completness
and consistency. A hazards analysis is required to document risks and espe-
cially to identify sources of single point failures. These hazards have to be
mitigated in the specified requirements.

2. Compliance between requirements and software design is mathematically
verified. This includes a software design review, that evaluates how well the
design exhibits mandated attributes. A prime example of such a design at-
tribute is that of maintainability. Specific criteria are used to evaluate this,
based on information hiding. This means that designers have to be able to
demonstrate why they think that anticipated changes will be accomplished
by changes to single design modules.

3. Compliance between the code and software design is verified through both
mathematical verification and testing. Compliance between code and re-
quirements is shown explicitly through testing. However, there is an implicit
argument of compliance between code and requirements through the transi-
tive closure of the mathematical verification - code to design, and design to
requirements.

It should be noted though that the Darlington Shutdown System was a safety
system that under normal circumstances did not intervene in operation of the
plant. The system’s safe operation is a substantial part of its efficacy. The other

Is There a Case against Safety Cases? 223

part of its efficacy is related to providing acceptable production, i.e. not inter-
vening unless it is really required. It is also important to note that the implicit
safety case approach actually includes more goals than does a typical safety
case approach. The CANDU standard [26] was designed to demonstrate cor-
rectness of the implementation with respect to its requirements. In the example
of the Shutdown Systems, we believe that demonstrating correctness is manda-
tory, since the complete system is a safety system. The modern movement away
from trying to show correctness (primarily because we know that it cannot be
achieved 100%) disturbs us. It is still not a bad goal!

5.4 Safety Case Improvements

As Bloomfield and Bishop [13] point out, there are a number of directions for the
future development and improvement of safety cases. Mainly, they have identified
the following directions:

• Safety Case Methodology Enhancement;
• Extension to Other Areas;
• Safety Case Structuring;
• Confidence.

Regarding methodology enhancement, we believe that the emphasis should be
on prescriptive engineering methods that are domain specific, on domain and
method specific analysis methods, and on well defined methods for combining
analyses, i.e., the result of the combination defines some enhanced level of confi-
dence over and above that engendred by the parts. Moreover, we need to exam-
ine how to strike an appropriate balance between analysis methods of different
strengths/forms of guarantee, on the one hand, and a balance between direct
product based evidence versus process based evidence, on the other hand. An-
other important issue is the problem of incremental certification, of which the
COTS problem is just one instance. For safety case structuring, Bloomfield and
Bishop [13] have identified interesting future directions. One of them is the use
of diverse arguments and evidence. We believe that the diverse arguments idea
is a mistake if it means that we should provide multiple arguments related to
the same evidence: it confuses defence in depth within the system with different
ways of arguing about the system. The latter is just confusing to the evalua-
tor; it is demonstrating something by the bludgeon method!. If what was meant
was, in reality, defence in depth, so that multiple justifications and evidence are
provided to back up a single claim, then we agree wholeheartedly.

Different structuring methods for safety cases will certainly be appropriate in
different domains and for differing levels of criticality. In each case, the struc-
turing of the case must be derived from the requirements of a safety case for
the combination of domain and level of criticality. This question of structure
should be decided once and for all by the regulator so that there is a uniform
understanding by applicants of what is required in an application for a licence.

Establishing levels of confidence goes to the very heart of the problems with
safety cases as they are currently defined. The key ingredient missing, as noted

224 A. Wassyng et al.

above, is the ability to make an objective, repeatable assessment of the confi-
dence one should have in the safety of the system. The assessment procedure
for determining one’s confidence in a product’s safety is no more and no less
than a proper engineering method. This means that the main attribute we are
interested in, the product’s safety, must be a measurement based result, derived
from directly measurable attributes by well defined functions appropriate for the
purpose, i.e., the function is the result of a scientific analysis of the value to be
attached to the various forms of evidence and to the functions used to combine
them. This issue of determining levels of confidence in safety cases is “arguably”
the most important issue for future investigation.

Early gains in improving safety cases could be made by removing the guess-
work in using process based standards and actually reverse engineering the im-
plicit safety case behind the use of the standard. Presumably, the regulators
“trust” the process standard because they feel that it implicitly supports some
sort of safety case; making this explicit would help all parties in standardiz-
ing requirements and expectations. The result will not be the ideal regime, but
will be a big step towards it. At the very least, it removes one of the induction
exercises identified in Section 5.2.

6 Conclusion

The safety case approach, and safety cases in particular, will probably play an
important role in software certification. A concern is that current safety case
approaches lack proper scientific and measurement principles, and it seems that
many proponents of safety cases are overselling the method and its tools. One
can look at our concerns and point to specific instances where the safety case will
drill down to a level at which domain specific certification results are used, and
quote these as an indication that safety cases do not preclude other certification
processes at various steps in the safety case argument. However, if the safety case
approach does not impose more prescriptive software dependent requirements
for certification, we are not solving the basic software certification problem, or
for that matter, the problem for embedded devices. It will still be possible, and
maybe easy, for people to present apparently convincing arguments to substanti-
ate their claims using evidence that they are free to choose. Of course, certifying
authorities do not have to accept the validity of the evidence or of the argument
- but that is no better, and in fact no different, from many certification regimes
in existence today. Most of the arguments for less prescriptive regulation, some
of which are presented in Section 5.1, seem unconvincing to us - and reminiscent
of similar arguments over the years regarding software. Most of the arguments
tend to favour creativity and “progress” over safety, which is exceedingly strange
for safety cases. Nevertheless, an argument that seems to have some real merit is
the one concerning responsibility. However, that has been dealt with adequately
in other engineering jurisdictions and we see no reason why it should not be
possible in software certification as well.

Moreover, the name safety case indicates the focus of the approach. However,
in many domains it is not enough to produce a safe product. Other product

Is There a Case against Safety Cases? 225

characteristics may compete with safety and therefore should be addressed in
the certification process. For example, the FDA regulations explicitly state that
medical devices must be proven to be both safe and effective and there seems
always to be a tension between safety and efficacy. Another example comes from
the nuclear industry where the nuclear power plant has to be proven productive
in the sense that the generating station must not only be safe but it must also be
cost effective in producing power. Therefore, concentrating on only one aspect
certainly gets easier but it is also not realistic. If we take that thought to its
logical extreme, the shutdown system for a nuclear generating station would be
trivial to construct. It should always just shut down the plant. So, how do safety
cases help us determine that the system is both safe and effective? We are not
convinced that they can do this effectively.

Under the safety case approach, different improvements have been proposed
recently. One of them is the generalization of safety cases to assurance cases
where the latter can consider claims that not only relate to safety but could, for
example, address effectiveness or productiveness. We believe that it is a step in
the right direction, however, their scientific and measurement principles are, as
in the case of safety cases, an open issue.

In conclusion, we believe that, in the future, an efficient certification process
could be based on argument based evidence like safety cases or more generally
assurance cases. But, similar to what is found in Civil Engineering, a “code”
for building them must be defined. This code should be prescriptive, product
focused, and should not only help and guide the product developers, but should
also focus, reduce and clarify the audit process for the regulators.

References

1. Kornecki, A., Zalewski, J.: Certification of software for real-time safety-
critical systems: state of the art. Innovations in Systems and Software En-
gineering 5, 149–161 (2009), http://dx.doi.org/10.1007/s11334-009-0088-1,
doi:10.1007/s11334-009-0088-1

2. CBC Staff: Infusion pumps recalled in U.S. but not Canada. CBC News Online
(May 2010),
http://www.cbc.ca/news/health/story/2010/05/04/con-baxter-pump.html

3. Poulson, K.: Known software bug disrupts brain-tumor zapping. Wired (October
2009), http://www.wired.com/threatlevel/2009/10/gamma

4. Bogdanich, W.: Radiation offers new cures, and ways to do harm. The New York
Times Online (January 2010),
http://www.nytimes.com/2010/01/24/health/24radiation.html

5. Bogdanich, W., Rebelo, K.: A pinpoint beam strays invisibly, harming instead of
healing. The New York Times Online (December 2010),
http://www.nytimes.com/2010/12/29/health/29radiation.html

6. Software Certification Consortium: Software Certification Consortium Charter
(Draft) (2010)

7. Jackson, D., Bloch, J., Dewalt, M., Gardner, R., Lee, P., Lipner, S.B., Perrow, C.,
Pincus, J., Rushby, J., Sha, L., Thomas, M., Wallsten, S., Woods, D.: Software for
Dependable Systems: Sufficient Evidence? National Academies Press, Washington
(2007)

http://dx.doi.org/10.1007/s11334-009-0088-1
http://www.cbc.ca/news/health/story/2010/05/04/con-baxter-pump.html
http://www.wired.com/threatlevel/2009/10/gamma
http://www.nytimes.com/2010/01/24/health/24radiation.html
http://www.nytimes.com/2010/12/29/health/29radiation.html

226 A. Wassyng et al.

8. Bishop, P., Bloomfield, R.: A methodology for safety case development. In: Red-
mill, F., Anderson, T. (eds.) Industrial Perspectives of Safety-critical Systems:
Proceedings of the Sixth Safety-critical Systems Symposium, Birmingham, UK,
pp. 194–203. Springer, Heidelberg (1998)

9. Rushby, J.: A safety-case approach for certifying adaptive systems. In: Proceedings
of AIAA Infotech@Aerospace, Seattle, WA, American Institute of Aeronautics and
Astronautics (April 2009)

10. Panesar-Walawege, R., Sabetzadeh, M., Briand, L., Coq, T.: Characterizing the
chain of evidence for software safety cases: A conceptual model based on the IEC
61508 standard. In: 2010 Third International Conference on Software Testing, Ver-
ification and Validation, pp. 335–344. IEEE, Los Alamitos (2010)

11. Fong, E., Kass, M., Rhodes, T., Boland, F.: Structured assurance case methodology
for assessing software trustworthiness. In: 2010 Fourth International Conference on
Secure Software Integration and Reliability Improvement Companion (SSIRI-C),
pp. 32–33. IEEE, Los Alamitos (2010)

12. Graydon, P.J., Knight, J.C., Strunk, E.A.: Assurance based development of critical
systems. In: DSN 2007: Proceedings of the 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pp. 347–357. IEEE Computer
Society, Washington, DC, USA (2007)

13. Bloomfield, R., Bishop, P.: Safety and assurance cases: Past, present and possible
future - an adelard perspective. In: Dale, C., Anderson, T. (eds.) Making Systems
Safer, Proceedings of the Eighteenth Safety-Critical Systems Symposium, Bristol,
UK, pp. 51–67 (February 2010)

14. FDA Staff: Guidance for Industry and FDA Staff Total Product Life Cycle: Infu-
sion Pump - Premarket Notification [510(k)] Submissions DRAFT GUIDANCE.
U.S. Department Of Health and Human Services: Food and Drug Administration,
Center for Devices and Radiological Health (April 2010)

15. Parnas, D.L.: Software engineering programs are not computer science programs.
IEEE Software 16(6), 19–30 (1999)

16. Canadian Portland Cement Association Ottawa, Ontario, Canada: CSA CAN3
A23.3 M94 Concrete Design Handbook (1994)

17. IEC 61508: Functional safety of electrical/electronic/programmable electronic
(E/E/EP) safety-related systems: Parts 3 and 7, International Electrotechnical
Commission (IEC) (2010)

18. Vincenti, W.G.: What Engineers Know and How They Know It: Analytical Studies
from Aeronautical History. The Johns Hopkins University Press, Baltimore (1993)

19. High, K.M., Kelly, T.P., Mcdermid, J.A.: Safety case construction and reuse using
patterns. In: 16th International Conference on Computer Safety and Reliability
(SAFECOMP 1997), pp. 55–69. Springer, Heidelberg (1997)

20. Parsons, T.: What is an argument? The Journal of Philosophy 93(4), 164–185
(1996)

21. Common Criteria for Information Technology Security Evaluation: Part 1: Intro-
duction and general model. CSE, SCSSI, BSI, NLNCSA, CESG, NIST, NSA, Ver-
sion 3.1 Revision 3 (July 2009)

22. Common Criteria for Information Technology Security Evaluation: Evaluation
methodology, Version 3.1, Revision 3 (July 2009)

23. Parnas, D.L., Asmis, G.J.K., Madey, J.: Assessment of safety-critical software in
nuclear power plants. Nuclear Safety 32(2), 189–198 (1991)

Is There a Case against Safety Cases? 227

24. Archinoff, G.H., Hohendorf, R.J., Wassyng, A., Quigley, B., Borsch, M.R.: Ver-
ification of the shutdown system software at the Darlington nuclear generating
station. In: International Conference on Control and Instrumentation in Nuclear
Installations, Glasgow, UK, The Institution of Nuclear Engineers (May 1990)

25. Wassyng, A., Lawford, M.: Lessons learned from a successful implementation of
formal methods in an industrial project. In: Araki, K., Gnesi, S., Mandrioli, D.
(eds.) FME 2003. LNCS, vol. 2805, pp. 133–153. Springer, Heidelberg (2003)

26. Joannou, P., et al.: Standard for Software Engineering of Safety Critical Software.
CANDU Computer Systems Engineering Centre of Excellence Standard CE-1001-
STD Rev. 1 (January 1995)

	Software Certification: Is There a Case against Safety Cases?
	Introduction
	Software Certification Approaches
	Process Based Approaches
	Product Focused Approaches

	What Do Civil Engineers Do?
	What Can We Learn from Civil Engineering?
	Safety Cases
	Why Safety Cases?
	Some Weaknesses of Safety Cases
	Standards Combining Process and Product Focus with Implicit Safety Cases
	Safety Case Improvements

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

