Skip to main content

Von Neumann Normalisation and Symptoms of Randomness: An Application to Sequences of Quantum Random Bits

  • Conference paper
Book cover Unconventional Computation (UC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6714))

Included in the following conference series:

Abstract

Due to imperfections in measurement and hardware, the flow of bits generated by a quantum random number generator (QRNG) contains bias and correlation, two symptoms of non-randomness. There is no algorithmic method to eliminate correlation as this amounts to guaranteeing incomputability. However, bias can be mitigated: QRNGs use normalisation techniques such as von Neumann’s method—the first and simplest technique for reducing bias—and other more efficient modifications.

In this paper we study von Neumann un-biasing normalisation for an ideal QRNG operating ‘to infinity’, i.e. producing an infinite bit-sequence. We show that, surprisingly, von Neumann un-biasing normalisation can both increase or decrease the (algorithmic) randomness of the generated sequences. The impact this has on the quality of incomputability of sequences of bits from QRNGs is discussed.

A successful application of von Neumann normalisation—in fact, any un-biasing transformation—does exactly what it promises, un-biasing, one (among infinitely many) symptoms of randomness; it will not produce ‘true’ randomness, a mathematically vacuous concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, A.A., Calude, C.S.: Von Neumann normalisation of a quantum random number generator. Report CDMTCS-392, Centre for Discrete Mathematics and Theoretical Computer Science, University of Auckland, Auckland, New Zealand (2010)

    Google Scholar 

  2. Abbott, A.A., Calude, C.S., Svozil, K.: Unpublished work on the incomputability of quantum randomness (in preparation)

    Google Scholar 

  3. Abbott, A.A., Calude, C.S., Svozil, K.: A quantum random number generator certified by value indefiniteness. CDMTCS Research Report, 396 (2010)

    Google Scholar 

  4. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics 38(3), 447–452 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  5. Billingsley, P.: Probability and Measure. John Wiley & Sons, New York (1979)

    MATH  Google Scholar 

  6. Born, M.: Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik 38, 803–837 (1926); English translation by Wheeler, J. A., Zurek, W.H.: Quantum Theory and Measurement, ch. I.2. Princeton University Press, Princeton (1983)

    Article  MATH  Google Scholar 

  7. Calude, C.S.: Information and Randomness: An Algorithmic Perspective, 2nd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  8. Calude, C.S., Hertling, P., Jürgensen, H., Weihrauch, K.: Randomness on full shift spaces. Chaos, Solutions & Fractals 12(3), 491–503 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calude, C.S., Svozil, K.: Quantum randomness and value indefiniteness. Advanced Science Letters 1, 165–168 (2008)

    Article  Google Scholar 

  10. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Theory and Applications of Computability. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  11. Halmos, P.R.: Measure Theory. Springer, New York (1974)

    MATH  Google Scholar 

  12. Heywood, P., Redhead, M.L.G.: Nonlocality and the Kochen-Specker paradox. Foundations of Physics 13(5), 481–499 (1983)

    Article  MathSciNet  Google Scholar 

  13. id Quantique. Quantis—quantum random number generators (12/08/2009), http://idquantique.com/products/quantis.htm

  14. Jauch, J.M.: Foundations of Quantum Mechanics. Addison-Wesley, Reading (1968)

    MATH  Google Scholar 

  15. Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H., Zeilinger, A.: A fast and compact quantum random number generator. Review of Scientific Instruments 71, 1675–1680 (2000)

    Article  Google Scholar 

  16. Kac, M.: Statistical Independence in Probability, Analysis and Number Theory. The Carus Mathematical Monographs. The Mathematical Association of America (1959)

    Google Scholar 

  17. Kochen, S., Specker, E.: The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics 17, 59–87 (1967); Reprinted in Specker, E.: Selecta. Brikhäuser, Basel (1990)

    Google Scholar 

  18. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. John Wiley & Sons, New York (1974)

    MATH  Google Scholar 

  19. Kwon, O., Cho, Y., Kim, Y.: Quantum random number generator using photon-number path entanglement. Applied Optics 48(9), 1774–1778 (2009)

    Article  Google Scholar 

  20. Ma, H., Wang, S., Zhang, D., Change, J., Ji, L., Hou, Y., Wu, L.: A random-number generator based on quantum entangled photon pairs. Chinese Physics Letters 21(19), 1961–1964 (2004)

    Google Scholar 

  21. Martin-Löf, P.: The definition of random sequences. Information and Control 9(6), 602–619 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peres, Y.: Iterating von Neumann’s procedure for extracting random bits. The Annals of Statistics 20(1), 590–597 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pironio, S., Acín, A., Massar, S., de la Giroday, A.B., Matsukevich, D.N., Maunz, P., Olmchenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by Bell’s theorem. Nature 464(09008) (2010)

    Google Scholar 

  24. Schmidt, H.: Quantum-mechanical random-number generator. Journal of Applied Physics 41(2), 462–468 (1970)

    Article  Google Scholar 

  25. Shen, Y., Tian, L., Zou, H.: Practical quantum random number generator based on measuring the shot noise of vacuum states. Physical Review A 81(063814) (2010)

    Google Scholar 

  26. Stefanov, A., Gisin, N., Guinnard, O., Guinnard, L., Zbinden, H.: Optical quantum random number generator. Journal of Modern Optics 47(4), 595–598 (2000)

    Google Scholar 

  27. Svozil, K.: The quantum coin toss – testing microphysical undecidability. Physics Letters A 143(9), 433–437 (1990)

    Article  MathSciNet  Google Scholar 

  28. Svozil, K.: Quantum information via state partitions and the context translation principle. Journal of Modern Optics 51, 811–819 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Svozil, K.: Three criteria for quantum random-number generators based on beam splitteres. Physical Review A 79(5), 054306 (2009)

    Article  Google Scholar 

  30. Vadhan, S.: Pseudorandomness. Foundations and Trends in Theoretical Computer Science. Now publishers (to appear, 2011)

    Google Scholar 

  31. von Neumann, J.: Various techniques used in connection with random digits. National Bureau of Standards Applied Math Series 12, 36–38 (1951); In: Traub, A.H. (ed.) John von Neumann, Collected Works, pp. 768–770. MacMillan, New York (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abbott, A.A., Calude, C.S. (2011). Von Neumann Normalisation and Symptoms of Randomness: An Application to Sequences of Quantum Random Bits. In: Calude, C.S., Kari, J., Petre, I., Rozenberg, G. (eds) Unconventional Computation. UC 2011. Lecture Notes in Computer Science, vol 6714. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21341-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21341-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21340-3

  • Online ISBN: 978-3-642-21341-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics