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Abstract:

Amorphous computers are systems that derive their computational capability from the operation of vast
numbers of simple, identical, randomly distributed and locally communicating units. The wireless com-
munication ability and the memory capacity of the computational units is severely restricted due to their
minimal size. Moreover, the units originally have no identifiers and can only use simple communication
protocols that cannot guarantee a reliable message delivery. In this work we concentrate on a so-called
flying amorphous computer whose units are in a constant motion. The units are modelled by miniature
RAMs communicating via radio. We design a distributed probabilistic communication protocol and an
algorithm enabling a simulation of a RAM in finite time. The underlying algorithms make use of a number
of original ideas having no counterpart in the classical theory of distributed computing. Our result is the
first one showing computational universality of a flying amorphous computer.
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1 Introduction

Amorphous computing systems are a relatively recent phenomenon. Apart from the sci-fi literature
where various forms of such systems have been envisaged in various futuristic scenarios (cf. an inter-
stellar intelligent mobile cloud in [5], or a mentally controlled flying dust serving as an extension of
human senses and as an interface to a very distant offspring of today’s Internet in [10]), amorphous
computing systems as a subject of scientific research emerged by the end of the 1990s.

In 1999 a project appeared at MIT giving the field its name: Amorphous Computing Project. This
project assumed a vast number of identical computational elements randomly placed in a bounded
volume. The goal was to construct these elements in such a way that they can self-organize into a
prescribed shape, mimicking thus the growth of organic tissues or even of the entire organs, or to
perform certain coordinated actions (cf. [1], [2], [3]).

Almost simultaneously engineering efforts for constructing such systems have materialized, e.g., in
the 2001 project of a smart dust by K. S. J. Pister (University of California) (cf. [6], [7], [11], [12]).
The idea of the smart dust project was to form an ad-hoc network made from micro-electronic devices
of an approximatively several cubic mm size or smaller. The long-term goal was to reach the size of
a dust mote (cf. the survey article [9]).

The prevailing focus of both previously mentioned projects was on engineering or technological
aspects of amorphous computing systems, almost completely ignoring theoretical questions related
to computational power and efficiency of such systems. Obviously, without knowing their theoretical
limits, one cannot have a complete picture of the potential abilities and limitations of such systems.
This was the starting point of the project of the present authors devoted to studies of theoretical issues
in amorphous computing initiated in 2004. Since that time various models of amorphous systems have
been investigated, roughly in the order of their increased generality.

In [13], [15] amorphous computing systems consisting of identical (with no identifiers) simple
asynchronous computational processors (typically RAMs with a small number of registers), equipped
by a single channel radio communicators with a limited range and a random number generator, were
considered. Such processors were randomly placed in a closed area or volume, and the task was
to design a randomized communication protocols leading to a self-organization of a communication
network that would enable, with a high probability, to perform universal computations. For the
static, non-movable processors this task was solved in [13] and [15]. Later on, in [14] it was shown
that similar protocols also work on the level of molecular communication in an aqueous environment
(e.g., in a bloodstream); the corresponding processors can take a form of mobile nanomachines capable
of performing simple tasks, such as actuation and sensing. The computational part of nanomachines
was modeled by variants of finite automata. Recently, a similar result was shown for nanomachines
whose communication was inspired by so-called quorum sensing used by real bacteria [16]. The latter
two results have been shown by simulating a counter automaton, probably computationally the least
efficient universal computing device since it performs its computations using a unary representation
of numbers.

The present paper makes a further step towards more general and computationally more efficient
amorphous systems: we will consider amorphous systems with motile processors communicating via a
radio. The processors take a form of miniature finite-memory RAMs. The transition from systems with
a static communication pattern to systems with an unpredictably changing communication pattern
brings a number of new problems that have been encountered formerly neither in the classical theory of
distributed systems nor in the previous models of amorphous systems. Namely, the situation is further
complicated by a continuously changing communication topology in which new communication paths
keep emerging while the old ones keep vanishing. Moreover, some processors may become temporarily
unaccessible leading to problems with data consistency maintenance over the entire system at times
when the nodes become again accessible. These changes call for novel approaches in the design of
communicating protocol resulting in unusual time complexity estimation of the simulation algorithm:
without additional assumptions on the nature of processor movements one cannot come with a better
than a finite upper bound on the the time complexity of this algorithm.

In its class of minimalist amorphous systems communicating over radio, our model of a flying
amorphous computer presents the first model for which the computational universality in the efficient
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sense has been proven. Namely, when compared with the simulations from [14] and [16], where
counter automata have been simulated, the current simulation deals with a simulation of a RAM
which is a far more efficient universal computer than a counter automaton. From a (future) practical
viewpoint, the model opens a door for exploitation of relatively efficient amorphous computing systems
communicating via radio in an airborne medium or in a vacuum.

The structure of the paper is as follows. In Section 2 the definition of the flying amorphous
computer is given along with the scenario of its use. In Section 3 we sketch the main ideas of simulation
of a RAM computer without yet giving the details of a so-called setup phase in which the amorphous
computer is preprocessed in order to be able to perform a simulation, and under the assumption that
there is a rudimentary broadcast protocol available enabling a probabilistic communication among
the nearest processors. The setup phase itself is described in Section 4, while the broadcast protocol
in Section 5. Conclusions are in Section 6.

2 Flying amorphous computer

Definition 1 A flying amorphous computer is a septuple C = [N,A, P, r, s, T, v]. The model has the
following properties:

∙ The computer consists of N nodes; there is one distinguished node called the base node.

∙ Each node is modeled as a point in a square target area A. The initial positions of nodes in A
are determined by a process P assigning a random position independently to each node.

∙ The nodes are not synchronized but they operate at nearly the same clock speed. An operation
taking time T on the fastest node takes at most T (1+"T ) on the slowest node, for a fixed "T > 0.

Node properties:

∙ A node has a fixed number of memory registers of size s bits; initially, all registers contain zeros.
There is a fixed subset of so-called input and output registers enabling message transmission
among a node’s neighbors. There also is a single register providing a real random number
(truncated to s bits) between 0 and 1 upon request.

∙ In each node there is a control unit operating over all registers. The control unit operates
according to a fixed program.

Movement:

∙ Initially, a non-zero random direction vector u is assigned to each node. Thereafter, each node
moves with a constant speed v in the direction of its vector u. A node does not know and cannot
influence its direction vector.

∙ If a node is about to leave the target area A, then its direction vector is mirrored as if a billiard
ball would bounce off a wall.

Communication properties:

∙ Each node is equipped with a radio transceiver by which it communicates with other nodes up to
the distance r (called communication radius) using a shared radio channel; such nodes are called
the neighbors of the node at hand.

∙ One message transmission takes time T .

∙ A node receives a message if exactly one of its neighbors sends that message during transmission
time T. While sending, a node cannot receive a message. If two or more neighbors of a node are
simultaneously sending a message, a collision occurs and the node receives no message.

∙ A node cannot detect a collision, the radio receiver cannot distinguish the case when multiple
neighbors send messages from the case when no neighbor sends a message.
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The communication properties of a node are among the weakest possible and are enforced by
requirements of the maximal technological simplicity of the underlying receiver.

In order to solve a computational task a flying amorphous computer operates according to the
following scenario in which we assume the existence of an external operator. The scenario consists of
three subsequent phases.

First, the operator deploys the nodes in the target area and in some way powers on the computer
so that the nodes start moving.

In the second phase, the operator performs a setup of the computer. During the setup a unique
address is assigned to each node and the input data of the computational task are loaded into the
computer.

After the setup is finished, the computer’s own computation can start. At that time, the operator
may disconnect from the computer and the computer carries out the computation autonomously.
After a sufficient time, the operator may reconnect to check the outcome of the computation.

3 Simulation

In order to prove the versatility of our model we prove its universality by showing that it can simulate
a computation of a bounded RAM machine. We shall be using the standard model of a unit cost
RAM, cf. [4] with registers of the same size s as the registers of our flying computer. The program,
the input and the output data are also stored in these registers.

For the sake of clarity of our exposition, we first sketch the details of the simulation algorithm
postponing the details how the previous phases of the computational scenario are implemented. We
will merely assume that the computer has been properly formed in the setup phase and that there is
a broadcast algorithm guaranteeing a message delivery between two concrete nodes in a finite time.

In order to start a simulation of a RAM with M registers we will require that the simulating flying
amorphous computer also have at least M registers loaded with the same initial data as the RAM.
This will happen in the setup phase to be described in Section 4.

Definition 2 We say that a flying amorphous computer A is set up with respect to a RAM R with
initial configuration i1, i2, . . . , iM of R if A contains at least M nodes with unique addresses in the
range 1 to M and if the j-th node of A contains the same data ij as the register j in R does, for
j = 1, 2, . . . ,M.

The nodes of a flying amorphous computer communicate using broadcast from one node to its
neighbors within their communication radius thus forming a multi-hop communication network. A
broadcast operation is started at one node and delivers the message, possibly using several hops, to
all nodes in a connected communication component. However, as the nodes are moving, not all nodes
may be connected (perhaps through several intermediary nodes) to the originating node at times when
needed. The message cannot be delivered to such nodes. We assume that such a situation can never
occur for an infinitely long time. We will suppose that the nodes are moving in a such a way that it
will never happen that two nodes remain forever in different connected components of the underlying
communication graph.

Definition 3 Let A be a flying amorphous computer, B a broadcasting protocol, and n1, n2 two nodes
of A. Assume that in A message m is being repeatedly broadcast from node n1 until it is successfully
delivered to node n2. We say that flying amorphous computer A with protocol B is lively flying if m
is eventually delivered to n2 after a finite amount of broadcast attempts.

Note that in a lively flying computer the similar process of message delivery from n1 to n2 works
also in the reverse direction, from n2 to n1. This can be used for a message delivery acknowledging.

We are ready to show how the simulation proceeds.

Theorem 1 Let R be a RAM with M registers of size s. Let I = i1, i2, . . . iM be the input data in
R’s registers. Let C be a computation on R taking time T1 on input data I. Let A be a lively flying
amorphous computer with broadcasting protocol B. Let the nodes of A except of the base node have
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memory capacity of at least O(log2 M + log2 N + s) bits. Let A be set up with initial configuration I.
Then A can simulate computation C in a finite time.

Proof: Let us start with the memory requirements. Any node must hold an address in the range
[1..M ] requiring ⌈log2 M⌉ bits. Such a node must also hold a parameter k of a broadcasting protocol
(cf. Section 5), which is of size O(N) and, therefore, requires O(log2 N) bits. The register also holds
data of the same size as in R, requiring again s bits. In total, the space complexity of a node is
O(log2 M + log2 N + s) bits. Obviously, for a successful simulation it suffices if N = M + 1.

Now the amorphous computer can simulate the computation of R by simulating the individual
instructions one after the other. During the simulation, the base node controls the computation and
plays the role of the control unit of R. The values of registers of R are stored in other nodes of A.

For simulating an instruction the base node must be able to perform two kinds of operations. First,
it must be able to simulate reading from and writing to memory registers what it does by commu-
nicating with the other nodes using broadcasts. Second, it has to simulate arithmetic computations,
branching, and choosing of the next instruction to be processed. These operations are encoded in the
internal fixed program of the base node.

For example, if A simulates instruction A[1] +A[2] → A[10], the base node firsts fetches the value
of register 1 by communicating with a node with address 1, then the value of register 2. Then, it
computes the addition and finally simulates storing of the result to register 10 by sending its contents
to the node with address 10.

Obviously, a broadcast to some node may fail due to a temporary inaccessibility of that node.
If, within a certain a priori given time interval, the base node does not receive an acknowledgement
from the target note, the broadcast is repeated until an acknowledgement is received. Thanks to the
amorphous computer being lively flying, at most a finite number of retries is required. It follows that
one instruction can be simulated in finite time and, therefore, any finite computation can be simulated
in finite time, too.

The computation ends with the HALT instruction in which case the base node enters a special
halt state and stops processing of further instructions. The results are stored in the prescribed output
nodes.

□ □

If the simulated program is too long to fit into the base node’s memory, one can simulate a RASP
machine (cf. [4]) in which the program is a part of the input data. The simulation is then similar
to the previous RAM simulation, but now there is an extra read from a register in order to fetch the
next instruction, which is then simulated.

Finally, note that a given instance of an amorphous computer has but a fixed number of nodes
and so all computations performed on it are necessarily space-limited. Some constants used in the
broadcast protocol (cf. Section 5) also depend on the size of the target area. Therefore, an amorphous
computer presents a non-uniform computing model. However, the previous result shows that an
infinite family of flying amorphous computers of increasing sizes has a universal computing power.

4 Setup

The setup has two phases: address assignment and input data loading.

Address assignment. The purpose of the address assignment process is to allocate unique addresses
to the nodes of amorphous computer which are initially indistinguishable, all having zeroed memory.
This process is controlled by the base node using the following program.

for a = 1 to M

PickSingleNode()

AssignAddress(a, h)

To pick a single node, the base node makes use of the following algorithm.
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procedure PickSingleNode()

broadcast(Initialize, 0)

for i = 1 to h

broadcast(RandomGroup, i)

broadcast(WhichGroup?)

g = receive()

broadcast(Choose, g)

In this algorithm, procedure broadcast() represents a call of the broadcast protocol of the flying
amorphous computer, which is described in the next section. In general, a broadcast can fail, but
for the moment let us assume that the broadcast messages are always successfully delivered to all
nodes. Namely, under this assumption it easier to describe procedure PickSingleNode which makes
use of the well-known method of probabilistic halving the set of candidates until a single one remains.
The general case counting on the possibility of broadcast procedure failure is substantially more
complicated since it must also handle the cases of temporary inaccessibility of some nodes and the
problems of data consistency maintenance after the return of such nodes. This more involved case
will be described later.

Procedure PickSingleNode initializes the nodes via the Initialize message. After receiving this
message, all nodes still without an allocated address participate in the node selection procedure. In
this procedure, the base node performs ℎ so-called splitting rounds. During each round, all nodes
randomly choose number 0 or 1 assigning themselves in this way to either of the two groups, 0 or 1.
Then, all such nodes broadcast the number of the group they selected. From the received answers
the base node randomly picks one group number and reports it back to all nodes. Only nodes that
are in the selected group participate in the forthcoming round. It is expected that by each such split
the number of candidate nodes is roughly halved. If value ℎ is sufficiently high this algorithm selects
exactly one node with high probability.

Theorem 2 Let there be N nodes participating in the PickSingleNode() algorithm. The probability
of selecting more than one node after ℎ splitting rounds at is at most N/2ℎ.

Proof: Consider the cardinality of the set of nodes after the last splitting round. After each round
for each node the probability that an other node remained in the same group is 1/2. The probability
that after ℎ rounds a node still participates in the algorithm is 1/2ℎ; therefore for all N nodes the
probability that the cardinality of the remaining set is greater than 1 is, at most, N/2ℎ.

□ □

Now we return to the rather peculiar general case in which broadcasts in the address assignment
phase can fail.

Recall that our goal selection of exactly one node with high probability is now complicated by the
fact that there is no guarantee that a message sent to a certain subset of nodes will always reach all
its members. However, for the correctness of the PickSingleNode algorithm it has been necessary
that a single node is picked from among the nodes that have passed all splitting rounds.

For instance, if a node participating in a splitting round would not receive the RandomGroup

message, then answering the subsequent WhichGroup? message that the node might later obtain
would spoil the correctness of the entire algorithm. Namely, such a node could only provide an old
value of g, not the current one. Thus, should a node miss a message, which is important for the
correctness of selection process and which is addressed specifically to that node, the node must no
longer participate in the algorithm.

In order to enable for a node to detect whether it has missed some round we make use of parameter
i in RandomGroup message that was not important in the previous non-failing communication case.
This parameter gives the number of the current splitting round. A node is allowed to participate in
round i + 1 if and only if the node has already passed successfully round i, i.e., if and only if it had
first received message (RandomGroup,i) followed by (Choose,g), with g being the same as was the
number of the node’s chosen splitting group. In order to implement this idea it is enough for each
node to remember the number of the last round in which it has participated. Then, upon receiving
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a (RandomGroup,i) message it can discover whether it has missed the previous message (i.e., the
previous round) or not.

Upon detecting a missed message, the node at hand acts as if it was in the group that was not
chosen, i.e., it stops participating in the next rounds of the splitting algorithm. This puts us on the
safe side as far as the probability of selecting more than one node is concerned.

However, a premature termination of a node’s further participation in the selection process could
lead to an extreme case when all nodes stop participating eventually. Then, we end up with an empty
set from which no node can be selected. In order to recognize this situation we introduce a mechanism
of message acknowledgements. After performing a step in a computation, a node expected to perform
such a step sends an acknowledging OK message back to the base node. The base node proceeds to
the next step if and only if it hears at least one acknowledgement. Otherwise it repeats the current
step. Technically, instead of performing, for example, a simple broadcast(RandomGroup,i), the base
node makes use of the following code:

repeat

broadcast(RandomGroup,i)

m = receive()

until m not empty

With these changes, the probability of selecting exactly one node holds as in Theorem 2.

Input data loading. After the addresses were assigned to nodes but before starting the RAM simulation
the input data must be stored into the respective nodes. The base node stores data x to a node with
address a using the following algorithm:

repeat

broadcast(Write, a, x)

m = receive()

until m not empty

Upon receiving this message, a node with address a stores x in its memory and responds with OK

message.

5 Communication

The communication capabilities of the individual nodes are as simple as possible. For instance, when
a node transmits a message, it cannot determine if there are none, one, or several other nodes around
it which might hear its message. Neither can a node determine if the sent message was successfully
received by an other node. However, if the nodes adhere to a communication protocol providing a
kind of coordination of the nodes’ actions, a message can be transmitted from one node to other nodes
with high probability even under these restrictive conditions.

The nodes communicate using broadcasting. A message originates in one node and is later broad-
cast to (potentially) all other nodes of the computer. The algorithm is relatively simple. The first
node sends a message which is received by the node’s immediate neighbors. These neighbors again
send the message so that their neighbors receive it, etc. Note that whenever several nodes share a
common neighbor, they should not send the message simultaneously since in such a case the message
could not be delivered due to the collisions. In order to minimize the probability of collisions each
node establishes a periodic sequence of time slots in which it sends the message randomly with a fixed
probability p..

The protocol used by the nodes (the base node included) is described by the following code.

procedure broadcast(m,k)

while k <= B

if random() < p then

send(m,k+1)

wait(2T)

k := k+2
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In the above procedure, calling send(m,k+1) causes one-shot sending of both message m and
parameter k + 1 from the node at hand. Parameter k of broadcast procedure keeps track of how
many “hops” message m have made so far, in multiples of T, until the current moment. For the
node where the message originates the starting value of k is 0. For other nodes, the current value
of k is derived from the corresponding value in the lastly received message. That is, the value of k
is incremented by 1 upon each re-transmission of m. Hencefore, all nodes stop broadcasting when k
reaches the value of B, which is a global constant known in advance to all nodes of the whole flying
amorphous computer. This will happen at about the same time; some small variation due to different
clock speeds are possible.

The value of B influences how far from the originating node the message will spread. If the selected
value is too small, the message will not reach the nodes that are far from the originating node. If
the value is too large, an excessive message sending after all nodes have already received the message
means just a waste of time and energy.

We assume that the external operator is able to choose a reasonable value of constant B. Such
a value should be selected, taking into account the number of nodes and their density in the target
area. Asymptotically, the value rises as O(

√
N). In other words, it rises as the distance between the

opposite corners of the target area if measured in units of r (the size of the communication radius).
The operator can find a reasonable value either by using a computer simulation of the system or by
trying out several values on the actual flying amorphous computer.

Theorem 3 Let all nodes of an amorphous computer be in a quiet state (i.e. not sending anything).
Let X be a node that starts broadcasting a message using procedure broadcast at time t. Then, at
time t+B(1 + "T ) all nodes are again in a quiet state.

Proof: The first node runs procedure broadcast with parameter k initially equal to 0. Each time
through the loop the node waits for time 2T and the value of k is increased by 2. So, at most after
time B(1+ "T ) the node stops re-sending the message at hand. Transmitting a message takes time T .
Therefore, whenever a neighbor node receives a message, value k+1 corresponds to the running time
of the procedure up to now, and hence also this node ends transmitting after at most (k− 1)(1 + "T )
time steps. By induction, all nodes end in time B(1 + "T ).

□ □

Note that in order to start a new broadcast it is necessary for all nodes to wait until the current
broadcast ends. Namely, should a broadcast of two different messages have started simultaneously,
then we cannot be sure which of the two messages would be delivered first. Therefore, the end of a
current call to broadcast must be known to all nodes.

In order to guarantee the condition of non-concurrent broadcasts after the base node has started
broadcasting a message, all other nodes must wait for time B"T to be sure that in total time B(1+"T )
has passed. Only thereafter a node can broadcast another message.

It is interesting to observe that there might be specific cases where a simultaneous broadcast cannot
do any harm. For instance, in the address assignment protocol, when we wanted to know to which
group some nodes belong, two different messages were sent at the same time from both groups. We
did not care which one of the two messages was delivered since the groups had originally been selected
randomly, anyway.

6 Conclusion

We have shown a computational universality of our model of flying amorphous computer. The nature
of our results is quite unusual. In principle, a computation of a flying amorphous computer consists
of two phases — of the preparation phase in which the computer is setup for the simulation, and the
simulation proper.

The setup phase is of a probabilistic nature. As seen from Theorem 2, there is (a vanishing)
probability that address allocation procedure will not end correctly, and there might appear the nodes
with the same addresses. This will spoil the subsequent simulation. However, with overwhelming
probability such a case will not happen and then the subsequent simulation algorithm will, in fact, be
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a deterministic algorithm: the result delivered by this algorithm will be correct with probability one.
Once a flying amorphous computer is properly formed, it can be used for performing any simulation
with the given number of nodes and its results will always be correct.

The next oddity of the simulation algorithm is its time complexity estimation in terms of finite
time. This is due to the unpredictability of the communication paths formation. Interestingly, real
computer simulations have revealed that within a flying amorphous computer a message is delivered
to all nodes quite efficiently, in a wide range of velocities of node movements and parameters of the
broadcast algorithm. The simulations have also confirmed intuition that there is a tradeoff between
the amount of nodes’ mixing in a flying amorphous computer and the frequency of message repetition
sendings in the broadcast protocol.

More research is needed in order to better understand and exploit the respective phenomena. Our
results present but the first steps in this direction.
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