Skip to main content

Doman’s Inclined Floor Method for Early Motor Organization Simulated with a Four Neurons Robot

  • Conference paper
Foundations on Natural and Artificial Computation (IWINAC 2011)

Abstract

Early motor organization using the Domans inclined floor method is simulated with a four neurons robot. A LEGO robot controlled by a biologically plausible neural network performs the same kind of “inclined floor” training that is given by parents to young babies for early motor organization. When the inclined floor training is applied to the robot, it organizes its motor behavior in a manner that is analogous to the motor organization seen in babies. In this way the simulation with the robot could help to understand the kind of neural processes that are involved in early motor organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Desai, N.S., Rutherford, L.C., Turrigiano, G.G.: Plasticity in the Intrinsic Excitability of Cortical Pyramidal Neurons. Nature Neurosciences 2(6), 515–520 (1999)

    Article  Google Scholar 

  2. Desai, N.: Homeostatic Plasticity in the CNS: Synaptic and Intrinsic Forms. Journal of Physiology 97, 391–402 (2003)

    Google Scholar 

  3. Doman, G.: What to do about your brain-injured child. In: Or your brain-damaged, mentally retarded, mentally deficient, cerebral-palsied, emotionally disturbed, spastic, flaccid, rigid, epileptic, autistic, athetoid, hyperactive, downs child. The Better Baby Press, Philadelphia (1990)

    Google Scholar 

  4. Doman, G., Doman, D., Hagy, B.: How To Teach Your Baby To Be Physically Superb: From Birth To Age Six; The Gentle Revolution. Square One Publishers (2006)

    Google Scholar 

  5. Haykin, S.: Neural Networks: a comprehensive foundation. Prentice Hall, Inc., Englewood Cliffs (1999)

    MATH  Google Scholar 

  6. Hebb, D.O.: The organization of behaviour. Wiley, New York (1949)

    Google Scholar 

  7. Manabe, T., Shinoe, T., Matsui, M., Taketo, M.: Modulation of Synaptic Plasticity by Physiological Activation of M1 Muscarinic Acetylcholine Receptors in the Mouse Hippocampus. The Journal of Neuroscience 25(48), 11194–11200 (2005)

    Article  Google Scholar 

  8. Peláez, F.J.R., Simões, M.G.: A computational model of synaptic metaplasticity. In: Proceedings of the IJCNN 1999 International Joint Conference of Artificial Neural Networks, Washington D.C (1999)

    Google Scholar 

  9. Peláez, J.R., Piqueira, J.R.C.: Biological clues for up-to-date artificial neurons. In: Andina, D., Phan, D.T. (eds.) Computational Inteligence: for Engineering and Manufacturing, 1st edn., vol. 1, pp. 1–19. Springer-Verlag, Berlin (2006)

    Google Scholar 

  10. Takeda, N., Horii, A., Mochizuki, T., Okakura-Mochizuki, K., Yamatodani, A.: Effects of vestibular stimulation on acetylcholine release from rat hippocampus: an in vivo microdialysis study. Journal of Neurophysiology 72, 605–611 (1994)

    Google Scholar 

  11. Wiener, N.: Cybernetics: or control and communication in the animal and the machine. MIT Press, Cambridge (1948)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ropero Peláez, F.J., Santana, L.G.R. (2011). Doman’s Inclined Floor Method for Early Motor Organization Simulated with a Four Neurons Robot. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) Foundations on Natural and Artificial Computation. IWINAC 2011. Lecture Notes in Computer Science, vol 6686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21344-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21344-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21343-4

  • Online ISBN: 978-3-642-21344-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics