Skip to main content

Long Term Modulation and Control of Neuronal Firing in Excitable Tissue Using Optogenetics

  • Conference paper
Foundations on Natural and Artificial Computation (IWINAC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6686))

  • 1180 Accesses

Abstract

Since the initial demonstration of nerve excitation and the subsequent action potential generation by Hodgkin and Huxley in 1952, most efforts in modulating or restoring neural activity to cure diseases or injury have concentrated on using neural interfaces for electrical stimulation with electrodes. However, it was soon appreciated that repeated chronic stimulations necessary for lasting rehabilitation could have its drawbacks. Namely, the eventual degradation of tissue and electrodes, issues of biocompatibility and immune responses to foreign objects. Nevertheless, new innovative methods are emerging which can improve the quality and duration of neural stimulations. Here we review and suggest an alternative approach to modulate activity using optogenetics in therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Normann, R.A., Greger, B.A., House, P., Romero, S.F., Pelayo, F., Fernandez, E.: Toward the development of a cortically based visual neuroprosthesis. J. Neural Eng. 6(3). 35001 (2009)

    Article  Google Scholar 

  2. Fernandez, E., Pelayo, F., Romero, S., Bongard, M., Marin, C., Alfaro, A., Merabet, L.: Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity. J. Neural Eng. 2(4), R1–R12 (2005)

    Article  Google Scholar 

  3. Fallon, J.B., Irvine, D.R., Shepherd, R.K.: Cochlear implants and brain plasticity. Hear. Res. 238(1–2), 110–117 (2008)

    Article  Google Scholar 

  4. Awan, N.R., Lozano, A., Hamani, C.: Deep brain stimulation: current and future perspectives. Neurosurg. Focus 27(1), 2 (2009)

    Article  Google Scholar 

  5. Marin, C., Fernandez, E.: Biocompatibility of intracortical microelectrodes: current status and future prospects. Front Neuroengineering 3, 8 (2010)

    Article  Google Scholar 

  6. Cogan, S.F., Troyk, P.R., Ehrlich, J., Gasbarro, C.M., Plante, T.D.: The influence of electrolyte composition on the in vitro charge-injection limits of activated iridium oxide (AIROF) stimulation electrodes. J. Neural Eng. 4(2), 79–86 (2007)

    Article  Google Scholar 

  7. Hascup, E.R., af Bjerken, S., Hascup, K.N., Pomerleau, F., Huettl, P., Stromberg, I., Gerhardt, G.A.: Histological studies of the effects of chronic implantation of ceramic-based microelectrode arrays and microdialysis probes in rat prefrontal cortex. Brain Res. 1291, 12–20 (2009)

    Article  Google Scholar 

  8. McCreery, D.B., Yuen, T.G., Agnew, W.F., Bullara, L.A.: Stimulus parameters affecting tissue injury during microstimulation in the cochlear nucleus of the cat. Hear Res. 77(1-2), 105–115 (1994)

    Article  Google Scholar 

  9. Matthew, G., Burrone, J.: Activity-dependant relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465 (2010)

    Google Scholar 

  10. Goold, C.P., Nicoll, R.A.: Single-cell optogenetic excitation drives homeostatic synaptic depression. Neuron 68(3), 512–528 (2010)

    Article  Google Scholar 

  11. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K.: Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8(9), 1263–1268 (2005)

    Article  Google Scholar 

  12. Grossman, N., Poher, V., Grubb, M.S., Kennedy, G.T., Nikolic, K., McGovern, B., Berlinguer Palmini, R., Gong, Z., Drakakis, E.M., Neil, M.A., Dawson, M.D., Burrone, J., Degenaar, P.: Multi-site optical excitation using ChR2 and micro-LED array. J. Neural Eng. 7(1), 16004 (2010)

    Article  Google Scholar 

  13. Ranganathan, R., Harris, W.A., Zuker, C.S.: The Molecular Genetics of Invertebrate Phototransduction. Trends in Neuroscience 14, 486–493 (1991)

    Article  Google Scholar 

  14. Zemelman, B.V., Lee, G.A., Ng, M., Miesenbock, G.: Selective Photostimulation of Genetically ChARGed Neurons. Neuron 33, 15–22 (2002)

    Article  Google Scholar 

  15. Nagel, G., Ollig, D., Fuhrmann, M., Kateriya, S., Musti, A.M., Bamberg, E., Hegemann, P.: Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae. Science 296, 2395–2398 (2002)

    Article  Google Scholar 

  16. Suzuki, T., Yamasaki, K., Fujita, S., Oda, K., Iseki, M., Yoshida, K., Watanabe, M., Daiyasu, H., Toh, H., Asamizu, E., Tabata, S., Miura, K., Fukuzawa, H., Nakamura, S., Takahashia, T.: Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. Biochemical and Biophysical Research Communications 301, 711–717 (2003)

    Article  Google Scholar 

  17. Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., Bamberg, E.: Channelrhodopsin-2, a directly light-gatedcation-selective membrane channel. PNAS 100(24), 13940–13944 (2003)

    Article  Google Scholar 

  18. Ishizuka, T., Kakuda, M., Araki, R., Yawo, H.: Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci. Res. 54(2), 85–94 (2006)

    Article  Google Scholar 

  19. Schroll, C., Riemensperger, T., Bucher, D., Ehmer, J., Voller, T., Erbguth, K., Gerber, B., Hendel, T., Nagel, G., Buchner, E., Fiala, A.: Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae. Current Biology 16, 1741–1747 (2006)

    Article  Google Scholar 

  20. Nagel, G., Brauner, M., Liewald, J.F., Adeishvili, N., Bamberg, E., Gottschalk, A.: Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses. Current Biology 15, 2279–2284 (2005)

    Article  Google Scholar 

  21. Bi, A., Cui, J., Ma, Y.-P., Olshevskaya, E., Pu, M., Dizhoor, A.M., Pan, Z.-H.: Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration. Neuron 50, 23–33 (2006)

    Article  Google Scholar 

  22. Aravanis, A.M., Wang, L.-P., Zhang, F., Meltzer, L.A., Mogri, M.: An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, 143–156 (2007)

    Article  Google Scholar 

  23. Hägglund, M., Borgius, L., Dougherty, K.J., Kiehn, O.: Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nature neuroscience 13(2) (2010)

    Google Scholar 

  24. Wang, H., Peca, J., Matsuzaki, M., Matsuzaki, K., Noguchi, J., Qiu, L., Wang, D., Zhang, F., Boyden, E., Deisseroth, K., Kasai, H., Hall, W.C., Feng, G., Augustine, G.J.: High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 104(19), 8143–8148 (2007)

    Article  Google Scholar 

  25. Godley, B.F., Shamsi, F.A., Liang, F.Q., Jarrett, S.G., Davies, S., Boulton, M.: Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J. Biol. Chem. 280(22), 21061–21066 (2005)

    Article  Google Scholar 

  26. Diester, I., Kaufman, M.T., Mogri, M., Pashaie, R., Goo, W., Yizhar, O., Ramakrishnan, C., Deisseroth, K., Shenoy, K.V.: An optogenetic toolbox designed for primates. Nature Neuroscience 14(3), 387–397 (2011)

    Article  Google Scholar 

  27. Gunaydin, L.A., Yizhar, O., Berndt, A., Sohal, V.S., Deisseroth, K., Hegemann, P.: Ultrafast optogenetic control. Nat. Neurosci. 13(3), 387–392 (2010)

    Article  Google Scholar 

  28. Berndt, A., Yizhar, O., Gunaydin, L.A., Hegemann, P., Deisseroth, K.: Bi-stable neural state switches. Nature Neuroscience 12(2) (February 2009)

    Google Scholar 

  29. Llewellyn, M.E., Thompson, K.R., Deisseroth, K., Delp, S.L.: Orderly recruitment of motor units under optical control in vivo. Nature Medicine 16(10) (October 2010)

    Google Scholar 

  30. Zhang, F., Wang, L.-P., Brauner, M., Liewald, J.F., Kay, K., Watzke, N., Wood, P.G., Bamberg, E.: Multimodal fast optical interrogation of neural circuitry. Nature 446 (April 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Humphreys, L., Ferrández, J.M., Fernández, E. (2011). Long Term Modulation and Control of Neuronal Firing in Excitable Tissue Using Optogenetics. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) Foundations on Natural and Artificial Computation. IWINAC 2011. Lecture Notes in Computer Science, vol 6686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21344-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21344-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21343-4

  • Online ISBN: 978-3-642-21344-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics