
Specifying Confidentiality in Circus

Michael J. Banks and Jeremy L. Jacob

Department of Computer Science, University of York, UK
{Michael.Banks,Jeremy.Jacob}@cs.york.ac.uk

Abstract. This paper presents an approach for extending the Circus
formalism to accommodate information flow security concerns. Working
with the semantics of Circus, we introduce a notation for specifying which
aspects of Circus processes are confidential and should not be revealed
to low-level users. We also describe a novel procedure for verifying that
a process satisfies its confidentiality properties.
Keywords: Circus, information flow security, confidentiality properties,
unifying theories of programming, verifying security

1 Introduction

How can software engineers obtain robust assurances that a system does not
leak secret data to its users (and other entities) who lack an appropriate security
clearance? We say that information flows from a system to a user if that user
can analyse its interactions with the system to deduce details about the system’s
behaviour. The study of techniques for measuring and regulating information
flow is a central topic in theoretical studies of computer security [1,2].

When building a system that handles secret data — such as cryptographic
keys or classified documents — it is vital to ensure the system’s design does not
induce undesirable information flows about that data to low-level (untrusted
or unprivileged) users. A confidentiality property prescribes an upper bound
on information flow from a system to a low-level user, to prevent that user
from deducing secret information from its interactions with the system. These
properties are inherently non-functional, and so they cannot be specified using
the facilities provided by conventional formal methods.

The rationale for combining functionality and confidentiality requirements
within a formal framework is to simplify the task of building systems that are
“secure by construction”. Without systematic support for modelling confiden-
tiality properties alongside functional specifications, we can argue that a system
satisfies a given confidentiality property only by resorting to ad hoc reasoning.
In this paper, we outline how the Circus formalism [3,4,5] can be extended with
facilities for specifying the confidentiality properties that a system should satisfy,
in addition to a specification of the system’s desired behaviour.

The contributions of this paper are as follows. First, in Section 3, we present
a syntax for specifying confidentiality properties over Circus processes and de-
fine its semantics in Section 4. Second, in Section 5, we describe a method for
verifying that a Circus process satisfies the confidentiality properties encoded in

its specification. Third, in Section 6, we identify how Circus processes can be
refined while preserving confidentiality properties. In Section 7, we compare our
approach with existing frameworks for integrating confidentiality properties into
formal software development. We summarise our work in Section 8.

2 Circus

Circus is a formal specification language which integrates the CSP process algebra
with the state-based specification facilities of Z to achieve a cohesive framework
for modelling state-rich concurrent and reactive systems.

A Circus process specifies an internal (private) state, a state invariant and
a collection of named actions, which can be grouped into Z schema expressions
and guarded commands (representing operations on the state), invocations of
other actions (by name) and CSP constructs (modelling interaction with the
environment). The behaviour of a Circus process is defined by a distinguished
nameless main action, which follows the declarations of the other actions.

Example 1. The following Circus process, Cell , represents a memory cell that
stores an integer value from the hin channel and broadcasts it on the hout
channel. The cell can be switched between two modes. In public mode, the value
currently stored in the cell is also broadcast on the lout channel; whereas in
private mode, an arbitrary value is broadcast on lout .

MODE == {PUB ,PRV }
channel on, off
channel hin, hout : N
channel lout : MODE × N
process Cell , begin

state Mem , [val : N,m : MODE]

Init , [Mem ′ | val ′ = 0 ∧ m ′ = PUB]

Read ,

 m = PUB & lout !(PUB , val)→ Skip
2 m = PRV & u

n∈N lout !(PRV ,n)→ Skip

2 hout !val → Skip


Write , hin?n → val := n?

Switch , (on → m := PRV) 2 (off → m := PUB)
• Init ; µX • (Read 2 Write 2 Switch) ;X

end

The denotational semantics of Circus is defined using Hoare and He’s Unifying
Theories of Programming (UTP) [6]. We describe this semantics here briefly, but
we encourage the reader to consult the definitive account by Oliveira et al. [5].

Each Circus action A is defined as a reactive design of the form R(Pre `
Post), where Pre is a condition over the state variables that must hold for A
to commence proper execution; and Post describes a relation between initial
states of A (satisfying Pre) and all later states that A may reach at a stable
intermediate or final point in its execution.

In addition to the state variables of A, Circus features eight distinguished
observational variables to model the behaviour of A as visible to the environment:
ok records that A has been properly started; ok ′ records that A has reached a
stable (observable) intermediate or final state; wait records that A is waiting
to commence its execution; wait ′ indicates that A is awaiting interaction with
the environment, while ¬wait ′ indicates that A has terminated; tr records the
process trace up to the point when A is started; tr ′ records the trace up to the
intermediate or final state reached by A; ref ′ gives the set of events refused by
A at the state it has reached; and ref is included for consistency.

3 Specifying Confidentiality Properties

In this section, we outline a lightweight notation for specifying confidentiality
properties over Circus processes; we formalise its semantics in the next section.

Consider a Circus process P which interacts with a low-level user Low. We
assume that Low may possess two sources of information about the behaviour
of P : namely, (i) its own interactions with P (constituting partial observations
of P ’s behaviour); and (ii) its a priori knowledge of P ’s design.

We model Low’s interface to P in terms of the observational variables of P .
We expect that Low can perceive whether the process is running normally (the
ok and ok ′ variables) and whether the process is waiting for interaction with the
environment (the wait and wait ′ variables). However, Low cannot observe P ’s
state variables, because they are hidden from the environment [4].

We define Low’s window, L, to be the set of events communicated by P to the
environment that are visible to Low through its interface. We model each event
in L as a pair (c, i), where c is the channel name and i is the value transmitted
on the channel [5]. The portion of the process trace tr ′ − tr that is visible to
Low is given by (tr ′− tr) �L. Moreover, the set of events refused by P that Low
may perceive is given by ref ′ ∩ L.

We say that two behaviours of a process P are Low-indistinguishable if their
valuations of ok , ok ′ and wait ,wait ′ are equal, the projections of their respective
traces through L are identical and, if these behaviours are non-terminating, the
projections of their refusal sets through L are identical.

Definition 1 (Indistinguishability). The UTP predicate I (L) captures the

indistinguishability of two behaviours Φ and Φ̃ of P — where Φ̃ is expressed over
a renaming of P’s observational variables — as viewed through window L:

I (L) ,

(
ok = õk ∧ ok ′ = õk ′ ∧ (tr ′ − tr) � L = (t̃r ′ − t̃r) � L
∧ wait = w̃ait ∧ wait ′ = w̃ait ′ ∧ (wait ′ ⇒ ref ′ ∩ L = r̃ef ′ ∩ L)

)
(1)

The notion of Low-indistinguishable behaviours is central to our formulation of
confidentiality. A confidentiality property stipulates that, for each behaviour Φ
of P involving a confidential activity ψ, it must be possible for P to exhibit
alternative “cover story” behaviours that are Low-indistinguishable to Φ but do

not involve ψ. The purpose of these non-confidential cover stories is to conceal
occurrences of ψ from Low. If P may exhibit these cover story behaviours, then
Low cannot deduce from its interaction with P that ψ has occurred, because
Low is unable to rule out the possibility that any of the cover story behaviours
associated with Φ may have occurred instead.

We introduce a confidentiality annotation, or κ-annotation for short, as our
template for specifying confidentiality properties over Circus processes.

Definition 2 (κ-annotation). A κ-annotation is a tuple 〈C ,O ,L,D〉, where
L denotes the window of Low, C and D are Circus actions and O is a set of Z
schemata known1 as obligations.

The C action represents activities of the process over which a confidentiality
property applies. Each obligation θ ∈ O is used in combination with C to specify
— in terms of the initial and final states of C — which C activities of a process
are classed as confidential and which C activities serve as cover stories for those
confidential activities. θ is composed of two parts:

– The declaration part of θ specifies a frame of initial and final state variables
of C (and their types), together with any input or output variables associated
with events performed by C . These variables are partitioned into two classes:
the confidential variables are denoted by v and v ′; while the cover story
variables are denoted using a renaming (ṽ , ṽ ′) of v and v ′.

– The predicate part of θ describes a relation between activities of C : for each
confidential C activity expressed in terms of v and v ′, a range of cover story
C activities are expressed using the ṽ and ṽ ′ variables.

An obligation expresses a closure condition over the behaviours of P . For each
behaviour Φ of P featuring a C activity ψ that θ marks as confidential, θ de-
mands that P exhibits at least one alternative Low-indistinguishable behaviour
Φ̃ featuring a C activity ψ̃ that is marked as a cover story for ψ by θ. Since θ
may offer multiple cover stories, the designer of P has the flexibility to choose
which of those cover story activities are exhibited by P .

Given two obligations θ1 and θ2 with the same frame, we say θ2 is at least as
strong as θ1 if and only if (i) every activity ψ marked as confidential by θ1 is also
marked as confidential in θ2; and (ii) every cover story activity for ψ required
by θ2 is also required by θ1. Formally:

θ1 ≤ θ2 , [conf(θ1)⇒ conf(θ2)] ∧ [(conf(θ1) ∧ θ2)⇒ θ1] (2)

where conf(θ) is defined to be (∃ ṽ , ṽ ′ • θ) and [X] denotes the universal closure
of X over all variables [6].

The D parameter of a κ-annotation is a Circus action specifying activities of P
that serve to declassify any confidential C activities that took place previously
in P ’s execution. Hence, a κ-annotation becomes active when a C activity is

1 The term “obligation” is borrowed from Seehusen and Stølen [7].

performed and then persists until it expires when a D activity is completed. To
specify that declassification does not takes place, we can write D = Stop, since
the Stop action (representing deadlock) never completes [5].

Example 2. Suppose we insist that whenever the Cell process (from Example 1)
is operating in private mode, no information about the value written to the cell
may be revealed to Low, until the cell reverts to public mode. We can specify a
κ-annotation κpr = 〈Cpr ,Opr ,L,Dpr 〉 to capture this requirement, where:

Cpr = hin?n → Skip
Dpr = off → Skip

Opr =
⋃

x∈N

{
[m, m̃ : {PRV } , ñ? : N | ñ? = x]

}
L = ({on, off } × {Sync}) ∪ ({lout} × (Mode × N))

By selecting the parameters of a κ-annotation carefully, we can encode a wide
range of security requirements over the state and behaviour of Circus processes.

We can compare the strength of κ-annotations by lifting the ≤ ordering
over their sets of obligations. Given two κ-annotations κ1 = 〈C ,O1,L,D〉 and
κ2 = 〈C ,O2,L,D〉 over the same window, we write κ1 � κ2 if and only if each
obligation θ1 ∈ O1 can be matched by an obligation θ2 ∈ O2 such that θ1 ≤ θ2.

Definition 3 (κ-ordering). κ2 is at least as strong as κ1 if and only if:

κ1 � κ2 , ∀ θ1 ∈ O1 • ∃ θ2 ∈ O2 • θ1 ≤ θ2 (3)

4 The Semantics of κ-Annotations

In previous work, we have described a generic framework for expressing confi-
dentiality properties over models of systems in the UTP [8]. We now adapt this
framework to define the semantics of κ-annotations over Circus processes.

The observational variables of a Circus process model the process’s behaviour
in terms of all interactions that it may make with its environment. However, these
variables do not record the multiple intermediate states that the process may
pass through during its execution. We need to extend the semantics of Circus
actions to capture these details.

A snapshot of an action A records the values of the observational variables
of a process (abbreviated to x) immediately prior to an invocation of A at some
point in the process’s execution, together with the values of the observational
variables of the process (abbreviated to x ′) at the intermediate or final state
reached by A. We record each snapshot i ≥ 1 by extending the alphabet of A
with new lists of (fresh) observational variables xi and x ′i that are isomorphic
to x and x ′ respectively. We define a UTP healthiness condition Si to extend
Circus actions with the semantics of snapshots:

Si(A) ,

(
A ∧ (si ⇒ s ′i) ∧ (x ′i = xi C s ′i = si B x ′i = x ′ ∧ xi = x)
∧ (s ′i ∧ i > 1⇒ s ′i−1) ∧ (s ′i ∧ wait ⇒ si)

)
(4)

The Boolean variables si and s ′i are used to record whether snapshot i is triggered
by the action. Each Si -healthy action triggers snapshot i only if si is unset and
s ′i is set. Otherwise, the xi and x ′i variables are kept constant by the action.

The order in which snapshots are triggered is monotonically increasing: for
each i > 1, a Si -healthy action does not trigger snapshot i before snapshot i −1
is triggered. Finally, the (s ′i ∧ wait ⇒ si) condition ensures that an action does
not trigger a snapshot if the action is waiting to commence execution.

At the level of Circus processes, we write Pk to denote the process P , where
each action of P is made Si -healthy for each i ∈ 1..k . We restrict Pk to exactly
k snapshots by specifying ¬ si ∧ s ′i for each i ∈ 1..k and hiding those variables
from the environment:

P+
k , ∃ s1, s

′
1, . . . , sk , s

′
k • Pk ∧ ok ∧ (∀ i ∈ 1..k • ¬ si ∧ s ′i) (5)

In addition, the ok variable ensures that P+
k is properly started.

Given a κ-annotation 〈C ,O ,L,D〉, let θ denote an obligation in O and ψ de-
note an activity of C marked as confidential by conf(θ). Suppose that Low makes
an interaction φ with P that is consistent with a behaviour Φ of P featuring an
instance of ψ. The predicate encoding all such behaviours of P is:

Sec(P ,C , θ) , P+
2 ∧ (C ∧ ¬C f

f ∧ ¬wait ′ ∧ conf(θ))[x1, x
′
2/x , x ′] (6)

where C ∧ ¬C f
f ∧ ¬wait ′ ∧ conf(θ) denotes all non-diverging2 and terminating

activities of C that involve an activity described by conf(θ). The x1 and x ′2
variables of P+

2 record the state of P before and after such activities.
We say that Φ fulfils θ if ψ also corresponds to at least one alternative Low-

indistinguishable behaviour Φ̃ of P featuring a cover story ψ̃ given by θ that
is related to ψ by θ. In other words, Φ fulfils θ if Low cannot establish that ψ
must have occurred from its observation of Φ, because Low cannot distinguish
Φ from Φ̃ and so cannot rule out that ψ̃ may have occurred instead. For this to
be the case, each confidential behaviour of P encoded by Sec must also satisfy
the predicate ∃ x̃ , x̃ ′ • Cov(P ,L,C , θ):

Cov(P ,L,C , θ) ,

(
∃ x̃1, x̃ ′1, x̃2, x̃

′
2 • P̃+

2 ∧ I (L) ∧ J (L)

∧ (C̃ ∧ ¬ C̃ f
f ∧ ¬ w̃ait ′ ∧ θ)[x1, x ′2, x̃1, x̃ ′2/x , x ′, x̃ , x̃ ′]

)
(7)

where Ã = A[x̃ , x̃ ′, x̃1, x̃2/x , x ′, x1, x2] and J (L) is a predicate over the tr1, tr
′
2

and t̃r1, t̃r ′2 snapshot trace variables that is satisfied only if the confidential and
cover story activities of C take place at the same point of P ’s execution, as
observed through the L window. J (L) is defined as:

J (L) , (tr1 − tr) � L = (t̃r1 − t̃r) � L ∧ (tr2 − tr1) � L = (t̃r2 − t̃r1) � L (8)

Alternatively, Φ fulfils θ if Φ also features a declassification activity encoded by
D that takes place in Φ after ψ is performed:

Dec(P ,D) , ∀ x3, x
′
4 • (D ∧ ¬D f

f ∧ ¬wait ′)[x3, x
′
4/x , x ′]⇒ ∃ x ′3, x

′
4 • P+

4 (9)

2 Ab
c denotes A[b, c/ok ′,wait] [5]. For each Circus action A we have A = R(¬Af

f ` At
f)

[5,6], so A ∧ ¬Af
f denotes all behaviours of A where A’s precondition is met.

A process P satisfies a κ-annotation κ = 〈C ,O ,L,D〉 if and only if, for each
obligation θ ∈ O , each behaviour of P conforming to Sec(P ,C , θ) fulfils θ.

Definition 4 (Satisfaction). P satisfies κ if and only if P |= κ holds:

P |= 〈C ,O ,L,D〉 , ∀ θ ∈ O •
[
Sec(P ,C , θ) ∧ ¬ Dec(P ,D)

⇒ ∃ x̃ , x̃ ′ • Cov(P ,L,C , θ)

]
(10)

Example 3. The Cell process satisfies the κpr property. Informally, each be-
haviour of Cell featuring a hin event when m = PRV cannot be distinguished
by Low from every other hin event, so Low cannot rule out any of the cover
stories specified by κpr until after the declassification event off takes place.

Lemma 1 states that the condition for verifying that P satisfies a κ-annotation
is monotonic with respect to the κ-ordering; that is, if P satisfies κ, then it also
satisfies all κ-annotations weaker than κ.

Lemma 1 (Monotonicity of |=). If P |= κ2 holds, then P |= κ1 also holds
for all κ1 such that κ1 � κ2.

5 Propagation: Divide and Conquer!

Since the |= condition is defined over the whole space of a process’s behaviours,
applying it to any non-trivial process could be extremely difficult in practice.
In this section, we describe a procedure for verifying κ-annotations against a
restricted, but useful, class of Circus processes.

This procedure requires a process’s main action to consist of an initialisation
action followed by a recursive loop over a generalised external choice of labelled
guarded compound actions that we call blocks. Henceforth, we say that a process
following this form is a block-structured process (BSP). We can divide a BSP into
its component blocks and then identify proof obligations over individual blocks
that imply the |= condition.

Definition 5 (Block-structured process). The main action of a Circus BSP
with label set L is structured as follows:

Init ;
(
µX • 2

l∈L(g .l & A.l) ;X
)

(11)

where the Init action initialises the process state and, for each l ∈ L, g .l is a
guard (on the v variables) and A.l is a divergence-free (compound) Circus action.
Each block B .l behaves as (g .l ∧ A.l) if g .l holds and as Stop otherwise [5].

If process P is block-structured, we can safely assume (by Definition 5) that each
block B .l of P may only be started in states satisfying g .l .

Let δ ⊆ L× L denote a relation between block labels that maps i to j if and
only if P may perform B .j immediately following B .i ; that is, P may invoke B .i
in a state such that B .i terminates in a state that satisfies B .j ’s guard:

δ ,

{
i 7→ j

∣∣∣∣∃ x , x ′ •
(

Init ; µX •
(

2
l∈L B .l ;X

2 (B .i ∧ ¬wait ′)

))
∧ g .j [v ′/v]

}
(12)

In addition, let AllDec(B .l ,D) denote a predicate that holds only if every termi-
nating behaviour of B .l started from a state satisfying g .l involves a declassifi-
cation activity specified by D :

AllDec(B ,D) ,

(
∀ x , x ′ • B ∧ ¬B f

f ∧ ¬wait ′

⇒ ∃ x1, x
′
1, x2, x

′
2 • B+

2 ∧ (D ∧ ¬D f
f)[x1, x

′
2/x , x ′]

)
(13)

5.1 Block-Level Verification

Given a BSP P and a κ-annotation κ, we analyse each block of P individually
to verify that no sequence of blocks that P may perform can leak confidential
information to Low. In effect, this analysis assumes that Low is able to observe
the block sequence performed by P . This assumption is pessimistic but it is
sound — as it over-approximates Low’s observational abilities — and it enables
us to reason about information flow to Low on a block-by-block basis.

Throughout this section, we assume that C and D actions specified by κ are
enclosed by the blocks of P .

Definition 6 (Enclosure). An action A is enclosed by a BSP P if and only

if, whenever P can perform an activity described by A ∧ ¬ Af
f ∧ ¬ wait ′, that

activity is performed within a single block of P.

For each block B .l of P , we need to identify all behaviours of B .l featuring
confidential activities that are not subsequently declassified (as specified by D)
within B .l . These behaviours are given by the predicate R(κ, θ,B .l):

R(κ, θ,B) , ∃ x1, x
′
1, x2, x

′
2 • Sec(B ,C , θ) ∧ ¬ Dec(B ,D) (14)

For each of these behaviours of B .l featuring a confidential activity ψ, the pred-
icate Q(κ, θ,B .l) relates that behaviour to all Low-indistinguishable behaviours
of B .l featuring cover story activities related to ψ by θ:

Q(κ, θ,B) , ∀ x1, x
′
1, x2, x

′
2 •
(
Sec(B ,C , θ) ∧ ¬ Dec(B ,D)

⇒ Cov(B ,L,C , θ)

)
(15)

Observe that, if no C activity conforming to conf(θ) can take place within B .l ,
then R(κ, θ,B .l) will yield false.

It follows from the semantics of |= that, in order for each behaviour Φ of
B .l given by R(κ, θ,B .l) to fulfil θ within the context of B .l , there must exist

at least one behaviour Φ̃ of B̃ .l that Q(κ, θ,B .l) associates with Φ. We define a
proof obligation po to capture this requirement:

po(B , (R,Q)) ,
[

B ∧ R ⇒ ∃ x̃ , x̃ ′ • B̃ ∧ Q
]

(16)

po(B .l , (R(κ, θ,B .l),Q(κ, θ,B .l)) treats B .l in isolation from the other blocks
of P . Hence, discharging this proof obligation does not guarantee that all be-
haviours of P fulfil θ, because Low may analyse its full interaction with P to
obtain knowledge about the state of P before and after an invocation of B .l .

To ascertain that each P behaviour as a whole fulfils θ, we also need to
verify that all sequences of blocks that P can perform do not reveal confidential
information to Low about the behaviour of B .l . Hence, we introduce a procedure
for propagating the R and Q predicates across the blocks of P , to enable us to
verify in a piece-wise fashion that no possible execution of P can violate θ.

5.2 Forwards Propagation

Given a block B .i where R.i = R(κ, θ,B .i) and Q .i = Q(κ, θ,B .i), we can
calculate a pair of predicates (R′,Q ′) = fw (B .i , (R.i ,Q .i)) encoding all final
states of B .i that can be reached by all terminating behaviours of B .i classed
as confidential by R.i , together with the final states of all Low-indistinguishable
(and terminating) behaviours of B .i classed as cover stories by Q .i :

fw (B , (R,Q)) ,

(
(∃ x • B ∧ R ∧ ¬wait ′)[x/x ′],

(∃ x , x̃ • B ∧ B̃ ∧ Q ∧ I ∗(L) ∧ ¬wait ′)[x , x̃/x ′, x̃ ′]

)
(17)

The I ∗(L) predicate denotes I (L) extended with Low’s ability to perceive dead-
lock of P when B .i terminates, which arises only if B .i reaches a final state in
which none of the guards of the blocks of P are enabled. Hence, if a behaviour of
B .i involving a confidential activity terminates in a deadlocking state, then the
associated cover story behaviours of B .i should also terminate in a deadlocking
state, to preserve Low-indistinguishability:

I ∗(L) , I (L) ∧ (¬wait ′ ∧ ∀ l ∈ L • ¬g .l [v ′/v]⇒ ¬ ∀ l ∈ L • ¬ g̃ .l [ṽ ′/ṽ]) (18)

We have I ∗(L) = I (L) if every final state that a block of P may reach enables
one or more guards of P .

For each block B .j where i 7→ j ∈ δ, we need to verify that Low’s interactions
with B .j do not provide Low with information about the behaviour of B .i that
allows Low to retrospectively rule out all cover stories given by Q .i . This is
guaranteed by po(B .j , fw (B .i , (R.i ,Q .i))), which implies that if B .j is started
from any final state of B .i marked as confidential, then each interaction with
B .j that Low may make could have instead been generated by B .j started from
any final state of B .i marked as a cover story.

Moreover, we need to prove that each sequence of blocks that P can perform
following B .i does not leak confidential information to Low. This can be done
by verifying the last block in the sequence against the (R,Q) pair obtained by
recursively propagating (R.i ,Q .i) forwards through each block in the sequence.

We can incorporate declassification into forwards propagation by altering the
δ relation. For each block B .t where AllDec(B .t ,D) holds, we need not propagate
a confidentiality requirement further than B .t , because it is relaxed when B .t
terminates. Thus, we can remove from δ all transitions leading from B .t :

δD , δ \ {t 7→ j | t , j ∈ L ∧ AllDec(B .t ,D)} (19)

We now formulate a verification condition for the forwards propagations of κ over
all blocks of a process. For each block B .l , the set of all forwards propagations

of the obligations contained within κ of all blocks of P that may lead to an
invocation of B .l is given by −→ρ (κ, l):

−→ρ (κ, l) , {ρ | i ∈ L ∧ θ ∈ O ∧ (l , ρ) ∈ fwds({(i ,RQ(κ, θ,B .i))})} (20)

fwds(K) , K ∪ fwds ({(j , fw (B .i , ρ)) | i 7→ j ∈ δD ∧ (i , ρ) ∈ K}) (21)

where ρ denotes (R,Q) and RQ(κ, θ,B) is shorthand for (R(κ, θ,B),Q(κ, θ,B)).
We calculate fwds(K) by iterating until a fixed point is reached.

The set −→ρ (κ, l) contains all forwards propagations of κ through all sequences
of blocks from B .i up to B .l . This set represents a sound approximation of κ
through the blocks of the process up to B .l . Hence, it is sufficient to discharge
po(B .l , ρ) for each ρ ∈ −→ρ (κ, l) in order to verify that B .l does not reveal in-
formation about the state of P to Low that could violate any instance of κ
applicable to the blocks that may take place prior to B .l .

5.3 Backwards Propagation

Forwards propagation is capable of verifying that confidential information about
the behaviour of each block B .i is not disclosed by any sequence of blocks that
may follow B .i . However, this procedure leaves open the possibility that a process
may have performed a sequence of blocks leading up to a state in which B .i
may perform a confidential activity but cannot instead perform the requisite
cover story activities required by κ. Again, it may be possible for Low to infer
confidential information about the behaviour of B .i by analysing its interaction
with the process to identify information about the initial state of B .i .

To ensure that Low cannot rule out cover stories for B .i based on its knowl-
edge about the behaviour of the previous blocks executed by a process, it suffices
to propagate each RQ(κ, θ,B .i) pair backwards to all blocks that may precede
B .i . The confidentiality requirement on the process state immediately prior to
an invocation of B .i is given by bw (B .i ,RQ(κ, θ,B .i)):

bw (B , (R,Q)) ,

(
(∃ x ′ • B ∧ R ∧ ¬wait)[x ′/x],

(∃ x ′, x̃ ′ • B ∧ B̃ ∧ Q ∧ I (L)) ∧ ¬wait)[x ′, x̃ ′/x , x̃]

)
(22)

←−ρ (κ, l) , {ρ | j ∈ L ∧ θ ∈ O ∧ (l , ρ) ∈ bwds({(j ,RQ(κ, θ,B .j))})} (23)

bwds(K) , K ∪ bwds ({(i , bw (B .j , ρ)) | i 7→ j ∈ δ ∧ (j , ρ) ∈ K}) (24)

←−ρ (κ, l) gives the set of all backwards propagations of κ from the blocks of the
process to B .l . Again, discharging po(B .l , ρ) for each ρ ∈ ←−ρ (κ, l) suffices to
establish that B .l does not reveal information about the state of P to Low that
may violate the κ-annotations of the blocks following B .l .

It is also necessary to verify that all initial states of P satisfy the backwards-
propagated κ-annotations of the blocks that may be performed immediately after
Init . This is assured by discharging po(Init ,←−ρ (κ, Init)), where:

←−ρ (κ, Init) ,
⋃
l∈L

{bw(B .l , ρ) | ρ ∈ ←−ρ (κ, l) ∧ (∃ x , x ′ • Init ∧ g .l [v ′/v])} (25)

5.4 Verifying Confidentiality

Forwards and backwards propagation can be applied together to a BSP P to
verify each block of P against κ. We now sketch a proof that this procedure —
with one important caveat — is sufficient to demonstrate that P satisfies κ.

First, we relate the po proof obligation to the |= condition. Given a κ-
annotation 〈C ,O ,L,D〉 and an individual block B , if we can demonstrate that
each behaviour of B conforming to Sec(B ,C , θ) fulfils θ for each θ ∈ O , then we
can conclude that B satisfies κ in isolation. This is formalised in Lemma 2.

Lemma 2 (po entails |=). For any block B and κ-annotation κ = 〈C ,O ,L,D〉:

∀ θ ∈ O • po(B ,RQ(κ, θ,B)) implies B |= κ (26)

We now extend the scope of Lemma 2 to enclose multiple blocks. Consider any
two blocks B .i and B .j of P where i 7→ j ∈ δ and B .i or B .j may exhibit an
activity marked as confidential by κ. To justify that (B .i ;B .j) |= κ holds, we
need to discharge four proof obligations over B .i and B .j for each θ ∈ O :

po(B .i ,RQ(κ, θ,B .i)) po(B .j ,RQ(κ, θ,B .j))

po(B .j , fw (B .i ,RQ(κ, θ,B .i))) po(B .i , bw (B .j ,RQ(κ, θ,B .j)))

Together, these four proof obligations imply that each behaviour of (B .i ;B .j)
marked as confidential by C and θ is concealed by at least one alternative Low-
indistinguishable behaviour of (B .i ;B .j) marked as a cover story.

In order to generalise this result to arbitrary sequences of blocks, we need to
restrict our attention to κ-annotations where each obligation features exactly one
cover story activity for each confidential activity. (This restriction ensures the
same cover story is propagated forwards and backwards through the process.)

Definition 7 (κ̂-annotation). A κ̂-annotation 〈C ,O ,L,D〉 is a κ-annotation

where the condition ∀ v , v ′ • conf(θ)⇒ ∃1 ṽ , ṽ ′ • θ holds for each θ ∈ O.

Naturally, a κ̂-annotation can always be obtained from a κ-annotation κ by
strengthening each obligation of κ.

We say that P is κ̂-safe if we can prove the blocks of P uphold the respective
forwards and backwards propagations of κ̂ through P .

Definition 8 (κ̂-safety). A BSP P is safe w.r.t. κ̂ = 〈C ,O ,L,D〉 if and only
if P encloses C and D; po(Init ,←−ρ (κ̂, Init)) holds and, for each l ∈ L, we have:

po(B .l ,RQ(κ̂, θ,B .l)) and ∀ ρ ∈ −→ρ (κ̂, l) ∪←−ρ (κ̂, l) • po(B .l , ρ) (27)

If process P is κ̂-safe, then no sequence of blocks that P may perform may leak
confidential information to Low. It follows that, if P is κ̂-safe, then P must
satisfy κ. This result is encapsulated by Theorem 1.

Theorem 1. If a BSP P is κ̂-safe, then P |= κ̂ holds.

A trivial consequence of Theorem 1 and Lemma 1 that, if P is κ̂-safe and κ � κ̂
holds, then P must satisfy κ as well as κ̂.

6 Confidentiality-Preserving Refinement

Behavioural refinement maintains the functionality of Circus processes, but may
not preserve confidentiality properties [9]. This so-called “refinement paradox”
arises because näıvely refining away non-determinism within a process P may
remove behaviours from P that are required as cover stories by the κ-annotations
of P , without also removing the associated confidential behaviours. Such refine-
ment steps violate the |= condition.

Example 4. Consider the following refinement of the Read block of Cell :

Read ,

 m = PUB & lout !(PUB , val)→ Skip
2 m = PRV & lout !(PRV , val mod 2)→ Skip
2 hout !val → Skip


This refinement is manifestly insecure with respect to κpr specified in Example 2,
because if Low observes a lout event when m = PRV , it can deduce one bit of
information about the value of val , in violation of half of the obligations of κpr .

When developing a process by stepwise refinement, it would be wasteful to reach
a concrete process design that violates its κ-annotations. This problem can be
overcome by strengthening process refinement in Circus to uphold κ-annotations.

Definition 9 (Secure process refinement). For processes P1 and P2 we say
that P2 is a secure refinement of P1 w.r.t. a κ-annotation κ — written P1 vκ

P P2

— if P2 is a process refinement of P1 and P2 satisfies κ.

Observe that P1 vκ
P P2 requires only that P2 satisfies κ, whereas P1 itself need

not be secure. However, an insecure refinement may result in a process that
cannot be refined securely, so we propose that a BSP should be verified to satisfy
its κ-annotations by applying propagation at an early stage of its development.
Thereafter, each refinement step should maintain those κ-annotations. This can
be achieved by retaining the −→ρ and ←−ρ sets generated by propagation and re-
using them at each refinement step to verify that it preserves κ̂-safety.

Consider a BSP P that has been proved to be κ̂-safe. By Definition 8, we
know that each block B .l of P upholds each member of −→ρ (κ̂, l) and ←−ρ (κ̂, l), as
well as RQ(κ, θ,B .l). Suppose we refine P to obtain a BSP P ′ by replacing B .l
in P with B .l ′, where B .l v B .l ′. If we have g .l = g .l ′, then P ′ can only feature
transitions between blocks that are possible for P (i.e. δP ′ ⊆ δP). In Theorem 2,
we present conditions on B .l ′ that are sufficient to establish that P ′ is κ̂-safe.

Theorem 2. If P is κ̂-safe and P ′ equals P except with B .l ′ in place of B .l
(where g .l = g .l ′ and B .l v B .l ′), then P ′ is κ̂-safe if for every cover story
behaviour of B .l specified by RQ(κ̂, θ,B .l) and each member of −→ρ (κ̂, l)∪←−ρ (κ̂, l)
where B .l ′ features an associated confidential behaviour, the same cover story
behaviour is present in B .l ′. These conditions are formalised as follows:

∀(R,Q) ∈ {RQ(κ̂, θ,B .l)} ∪ −→ρ (κ̂, l) ∪←−ρ (κ̂, l) • saferef(B .l ,B .l ′, (R,Q))

where saferef(B ,B ′, (R,Q)) ,
[

B ′ ∧ R ∧ B̃ ∧ Q ⇒ B̃ ′
]

7 Related Work

In software engineering, it is conventional to implement security policies by build-
ing access control into the system design. However, the notion of information
flow security is more generally applicable than access control: while confiden-
tiality properties specify what information should not be disclosed to low-level
users, access control mechanisms describe how that information should be pro-
tected. Furthermore, access control does not account for Low inferring secret
information indirectly from its interaction with a system [1].

Our κ-annotations share the spirit of Jacob’s security specifications [9,10],
which are functions from low-level observations of a system to the minimal set
of system behaviours that a low-level user must be unable to distinguish from
those observations. The same idea underlies our earlier work on encoding confi-
dentiality properties in the UTP [8], where we define an abstract formulation of
confidentiality properties across the spectrum of UTP theories. By specialising
this formulation to the semantics of Circus, we have achieved a framework where
these properties can be integrated directly into formal software developments.

In many of the existing frameworks for expressing confidentiality properties,
such as Mantel’s MAKS [11], the occurrence (or non-occurrence) of particular
high-level events is taken to be confidential. We abstract from this event-centric
style by taking Circus actions over the state of processes as the basis of our
confidentiality encoding. In addition, our model of Low’s observational abilities
is based on the failures-divergences semantics of CSP — as encoded in the UTP
semantics of Circus — and is therefore richer than the trace-based models of
Low’s observations frequently employed in these frameworks.

The confidentiality properties encoded by our κ-annotations are (in general)
weaker than the noninterference property, which stipulates that no input from a
high-level user can influence any output to a low-level user [12]. We contend that
a more fine-grained approach to specify limits on information flow to low-level
users is beneficial to software engineers, because it affords greater flexibility in
designing systems to meet their functionality and security requirements.

Unlike noninterference, our notion of confidentiality does not stop a trusted
(yet treacherous) high-level user from actively leaking secrets to low-level users
by influencing their interactions with the system using a pre-arranged signalling
protocol. While deliberate disclosure of secret data by malicious high-level users
is troublesome in security-critical environments, we contend that no technical
measures can prevent such users from leaking data outside the system domain.

Our propagation procedure is related to the unwinding technique [12], which
aims to simplify the task of verifying a system against a confidentiality property.
Unwinding transforms a global confidentiality property (typically expressed in
terms of trace sets) over a system into conditions over its individual state tran-
sitions, which can then be discharged using traditional proof methods [11].

Our work shares some ideas with Morgan’s recent shadow semantics [13,14],
which extends the refinement calculus for sequential programs to ensure that
refinement does not introduce new information flows about secret data to Low.
The shadow semantics assumes that Low can observe a program’s control flow;

likewise, we assume that Low can deduce the sequence of blocks performed by
a process. However, the shadow semantics goes a step further, by distinguishing
between atomic and composite non-determinism and allowing Low to monitor
how composite non-determinism is resolved in a program’s execution. This means
that refinement of composite non-determinism is security-preserving. We do not
grant Low that ability, because κ-annotations do not cleanly partition the whole
process state into secret and non-secret variables. Moreover, applying the shadow
semantics for refinement in our framework would require Circus to be extended
with an alternative semantics for non-determinism.

We have covered many of the topics discussed here in greater depth in earlier
work [8]. A fuller survey of the various approaches for formalising and reasoning
about information flow security can be found elsewhere [1,2].

8 Conclusions

In this paper, we have presented a framework for specifying confidentiality prop-
erties over Circus processes and a procedure for verifying that a Circus process
satisfies those properties. The close integration of our framework with the spec-
ification facilities of Circus is original and is supported by the UTP foundations
of Circus. While we have taken Circus as the formal foundation of our framework,
the underlying principles are general and could be translated to other formalisms
besides Circus (especially those with a UTP semantics).

Our ongoing research aims to elevate confidentiality properties to the sta-
tus of “first-class citizens” in Circus developments, with suitable techniques and
automated tools to support the verification of process designs against confi-
dentiality properties and for checking the correctness of refinement steps. We
hypothesise that the work presented in this paper, together with the underlying
Circus platform, may provide the foundations of a viable engineering approach
for developing software in tandem with information flow security concerns. We
are currently working on a case study project to evaluate this hypothesis.

We have left several pertinent topics unexplored in this paper, such as the
consequences of concurrency and probabilistic behaviour for information flow
and confidentiality. We leave the investigation of these topics to future work.

Finally, taking a formal approach to security engineering can increase confi-
dence that a system does not leak secrets to low-level users, but it is unwise to
assume that any system implementation is secure in all circumstances. In partic-
ular, our framework does not address sources of information leakage that arise
at the hardware level, such as its responsiveness or power consumption [15].
The task of extending formal methods to address these factors is likely to be
challenging, but would be a significant step towards engineering secure systems.

Acknowledgements. Michael Banks is supported by a UK EPSRC DTA stu-
dentship. We are grateful to the anonymous referees for their helpful comments
and to Matthew Naylor for proofreading.

References

1. McLean, J.: Security models. In Marciniak, J., ed.: Encyclopedia of Software
Engineering. Volume 2. John Wiley & Sons, Inc. (1994) 1136–1145

2. Ryan, P.: Mathematical models of computer security. In: Foundations of Security
Analysis and Design. Volume 2171 of Lecture Notes in Computer Science., Springer
Berlin / Heidelberg (2001) 1–62

3. Cavalcanti, A., Sampaio, A., Woodcock, J.: A refinement strategy for Circus.
Formal Aspects of Computing 15(2-3) (November 2003) 146–181

4. Oliveira, M.V.: Formal Derivation of State-Rich Reactive Programs using Circus.
PhD thesis, Department of Computer Science, University of York (2005)

5. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Aspects of Computing 21(1) (February 2009) 3–32

6. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall Interna-
tional Series in Computer Science. Prentice Hall Inc. (1998)

7. Seehusen, F., Stølen, K.: Information flow security, abstraction and composition.
IET Information Security 3(1) (2009) 9–33

8. Banks, M.J., Jacob, J.L.: Unifying theories of confidentiality. In Qin, S., ed.:
3rd International Symposium on Unifying Theories of Programming (UTP 2010).
Volume 6445 of Lecture Notes in Computer Science., Springer Berlin / Heidelberg
(2010) 120–136

9. Jacob, J.L.: On the derivation of secure components. In: Proceedings of the 1989
IEEE Symposium on Security and Privacy, IEEE Computer Society (1989) 242–247

10. Jacob, J.L.: Security specifications. In: Proceedings of the 1988 IEEE Symposium
on Security and Privacy. (1988) 14–23

11. Mantel, H.: A Uniform Framework for the Formal Specification and Verification
of Information Flow Security. PhD thesis, Universität Saarbrücken (July 2003)

12. Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: Proceedings
of the 1984 IEEE Symposium on Security and Privacy, IEEE Computer Society
(1984) 75–86

13. Morgan, C.: The shadow knows: Refinement and security in sequential programs.
Science of Computer Programming 74(8) (June 2009) 629–653

14. Morgan, C.: Compositional noninterference from first principles. Formal Aspects
of Computing (To appear).

15. Clark, J.A., Stepney, S., Chivers, H.: Breaking the model: Finalisation and a
taxonomy of security attacks. Electronic Notes in Theoretical Computer Science
137(2) (July 2005) 225–242

A Proofs

Formal proofs of the theorems and lemmas presented in this paper are available
from http://www-users.cs.york.ac.uk/~mbanks/.

http://www-users.cs.york.ac.uk/~mbanks/

