Skip to main content

Verifying Linearisability with Potential Linearisation Points

  • Conference paper
Book cover FM 2011: Formal Methods (FM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6664))

Included in the following conference series:

Abstract

Linearisability is the key correctness criterion for concurrent implementations of data structures shared by multiple processes. In this paper we present a proof of linearisability of the lazy implementation of a set due to Heller et al. The lazy set presents one of the most challenging issues in verifying linearisability: a linearisation point of an operation set by a process other than the one executing it. For this we develop a proof strategy based on refinement which uses thread local simulation conditions and the technique of potential linearisation points. The former allows us to prove linearisability for arbitrary numbers of processes by looking at only two processes at a time, the latter permits disposing with reasoning about the past. All proofs have been mechanically carried out using the interactive prover KIV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amit, D., Rinetzky, N., Reps, T.W., Sagiv, M., Yahav, E.: Comparison under abstraction for verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 477–490. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Černý, P., Radhakrishna, A., Zufferey, D., Chaudhuri, S., Alur, R.: Model checking of linearizability of concurrent list implementations. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 465–479. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Colvin, R., Groves, L., Luchangco, V., Moir, M.: Formal verification of a lazy concurrent list-based set algorithm. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 475–488. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanizing a correctness proof for a lock-free concurrent stack. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 78–95. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanically verified proof obligations for linearizability. ACM Trans. Program. Lang. Syst. 33(1), 4 (2011)

    Article  Google Scholar 

  6. Derrick, J., Wehrheim, H.: Non-atomic refinement in Z and CSP. In: Treharne, H., King, S., Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 24–44. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Filipovic, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent objects. Theoretical Computer Science 411(51-52), 4379–4398 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Groves, L., Colvin, R.: Trace-based derivation of a scalable lock-free stack algorithm. Formal Aspects of Computing (FAC) 21(1–2), 187–223 (2009)

    Article  MATH  Google Scholar 

  9. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N., Shavit, N.: A lazy concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 305–309. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In: SPAA 2004, pp. 206–215. ACM Press, New York (2004)

    Google Scholar 

  11. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects. ACM TOPLAS 12(3), 463–492 (1990)

    Article  Google Scholar 

  12. Web presentation of linearizability theory and the lazy set algorithm (2010), http://www.informatik.uniaugsburg.de/swt/projects/possibilities.html

  13. Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model checking linearizability via refinement. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 321–337. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco (1996)

    MATH  Google Scholar 

  15. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking concurrent queue algorithms. In: Proc. 15th ACM Symp. on Principles of Distributed Computing, pp. 267–275 (1996)

    Google Scholar 

  16. O’Hearn, P.W., Rinetzky, N., Vechev, M.T., Yahav, E., Yorsh, G.: Verifying linearizability with hindsight. In: 29th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), pp. 85–94 (2010)

    Google Scholar 

  17. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and interactive proofs with KIV. In: Automated Deduction—A Basis for Applications, Interactive Theorem Proving, vol. II, ch. 1, pp. 13–39. Kluwer, Dordrecht (1998)

    Chapter  Google Scholar 

  18. Vafeiadis, V.: Modular fine-grained concurrency verification. PhD thesis, University of Cambridge (2007)

    Google Scholar 

  19. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-concurrent linearisable objects. In: PPoPP 2006, pp. 129–136. ACM, New York (2006)

    Google Scholar 

  21. Vafeiadis, V., Parkinson, M.: A marriage of rely/Guarantee and separation logic. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Derrick, J., Schellhorn, G., Wehrheim, H. (2011). Verifying Linearisability with Potential Linearisation Points. In: Butler, M., Schulte, W. (eds) FM 2011: Formal Methods. FM 2011. Lecture Notes in Computer Science, vol 6664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21437-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21437-0_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21436-3

  • Online ISBN: 978-3-642-21437-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics