Skip to main content

The Only Way Is Up

  • Conference paper
FM 2011: Formal Methods (FM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6664))

Included in the following conference series:

Abstract

We draw an analogy between biology and computer hardware systems and argue for the need of a tower of abstractions to tame complexity of living systems. Much like in hardware design, where engineers use a tower of abstractions to produce the most complex man-made systems, we stress that in reverse engineering of biological systems; only by using a tower of abstractions we would be able to understand the “program of life”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abott, R.: Emergence explained-abstractions. Complexity 12(1), 13–26 (2006)

    Article  MathSciNet  Google Scholar 

  2. Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster. J. Theor. Biol. 223(1), 1–18 (2003)

    Article  MathSciNet  Google Scholar 

  3. Bai, F., Branch, R.W., Nicolau Jr., D.V., Pilizota, T., Steel, B.C., Maini, P.K., Berry, R.M.: Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch. Science 327(5966), 685–689 (2010)

    Article  Google Scholar 

  4. Bornholdt, S.: Systems biology. less is more in modeling large genetic networks. Science 310(5747), 449–451 (2005)

    Article  Google Scholar 

  5. Brandman Jr., O., Ferrell, J.E., Li, R., Meyer, T.: Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 310(5747), 496–498 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, S.: Sequences and consequences. Philos. Trans. R Soc. Lond. B Biol. Sci. 365(1537), 207–212 (2010)

    Article  Google Scholar 

  7. Chaves, M., Albert, R., Sontag, E.D.: Robustness and fragility of boolean models for genetic regulatory networks. J. Theor. Biol. 235(3), 431–449 (2005)

    Article  MathSciNet  Google Scholar 

  8. Csete, M.E., Doyle, J.C.: Reverse engineering of biological complexity. Science 295(5560), 1664–1669 (2002)

    Article  Google Scholar 

  9. Endy, D.: Foundations for engineering biology. Nature 438(7067), 449–453 (2005)

    Article  Google Scholar 

  10. Fisher, J., Henzinger, T.A.: Executable cell biology. Nat. Biotechnol. 25(11), 1239–1249 (2007)

    Article  Google Scholar 

  11. Grant, B.D., Wilkinson, H.A.: Functional genomic maps in caenorhabditis elegans. Curr. Opin. Cell Biol. 15(2), 206–212 (2003)

    Article  Google Scholar 

  12. Gunawardena, J.: Systems biology. biological systems theory. Science 328(5978), 581–582 (2010)

    Article  Google Scholar 

  13. Hardin, P.E.: The circadian timekeeping system of drosophila. Curr. Biol. 15(17), R714–R722 (2005)

    Article  Google Scholar 

  14. Harel, D.: On comprehensive and realistic modeling: some ruminations on the what, the how and the why. Clin. Invest. Med. 28(6), 334–337 (2005)

    Google Scholar 

  15. Horikawa, K., Ishimatsu, K., Yoshimoto, E., Kondo, S., Takeda, H.: Noise-resistant and synchronized oscillation of the segmentation clock. Nature 441(7094), 719–723 (2006)

    Article  Google Scholar 

  16. Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs. Proc. Natl. Acad. Sci. U S A 102(39), 13773–13778 (2005)

    Article  Google Scholar 

  17. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  18. Kitano, H.: Biological robustness. Nat. Rev. Genet. 5(11), 826–837 (2004)

    Article  Google Scholar 

  19. Klemm, K., Bornholdt, S.: Topology of biological networks and reliability of information processing. Proc. Natl. Acad. Sci. U S A 102(51), 18414–18419 (2005)

    Article  Google Scholar 

  20. Long, F., Peng, H., Liu, X., Kim, S.K., Myers, E.: A 3d digital atlas of c. elegans and its application to single-cell analyses. Nat. Methods 6(9), 667–672 (2009)

    Article  Google Scholar 

  21. Nurse, P.: Life, logic and information. Nature 454(7203), 424–426 (2008)

    Article  Google Scholar 

  22. Oltvai, Z.N., Barabasi, A.L.: Systems biology. life’s complexity pyramid. Science 298(5594), 763–764 (2002)

    Article  Google Scholar 

  23. Perus, M.: Multi-level synergetic computation in brain. Nonlinear Phenomena in Complex Systems 4(2), 157–193 (2001)

    MathSciNet  Google Scholar 

  24. Priami, C.: Algorithmic systems biology. Communications of the ACM 52(5), 80–88 (2009)

    Article  Google Scholar 

  25. Rao, C.V., Kirby, J.R., Arkin, A.P.: Design and diversity in bacterial chemotaxis: a comparative study in escherichia coli and bacillus subtilis. PLoS Biol. 2(2), E49 (2004)

    Article  Google Scholar 

  26. Rudy, V.B.: Rucker and Copyright Paperback Collection (Library of Congress). Wetware. Avon Books, New York (1988)

    Google Scholar 

  27. Sternberg, P.W., Felix, M.A.: Evolution of cell lineage. Curr. Opin. Genet. Dev. 7(4), 543–550 (1997)

    Article  Google Scholar 

  28. Sulston, J.E.: C. elegans: the cell lineage and beyond. Biosci. Rep. 23(2-3), 49–66 (2003)

    Article  Google Scholar 

  29. Wakerly, J.F.: Digital Design: Principles and Practices, 4th edn. Pearson Education, London (2008)

    MATH  Google Scholar 

  30. Wang, M., Sternberg, P.W.: Pattern formation during c. elegans vulval induction. Curr. Top Dev. Biol. 51, 189–220 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fisher, J., Piterman, N., Vardi, M.Y. (2011). The Only Way Is Up. In: Butler, M., Schulte, W. (eds) FM 2011: Formal Methods. FM 2011. Lecture Notes in Computer Science, vol 6664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21437-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21437-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21436-3

  • Online ISBN: 978-3-642-21437-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics