Unique perfect phylogeny is $N P$-hard

Michel Habib ${ }^{1}$ and Juraj Stacho ${ }^{2}$
${ }^{1}$ LIAFA - CNRS and Université Paris Diderot - Paris VII, Case 7014, 75205 Paris Cedex 13, France (habib@liafa.jussieu.fr)
${ }^{2}$ Caesarea Rothschild Institute, University of Haifa Mt. Carmel, 31905 Haifa, Israel (stacho@cs.toronto.edu)

Abstract

We answer, in the affirmitive, the following question proposed by Mike Steel as a $\$ 100$ challenge: "Is the following problem NPhard? Given a ternary phylogenetic X-tree \mathcal{T} and a collection \mathcal{Q} of quartet subtrees on X, is \mathcal{T} the only tree that displays \mathcal{Q} ?" $25 \mid 27$

1 Introduction

One of the major efforts in molecular biology has been the computation of phylogenetic trees, or phylogenies, which describe the evolution of a set of species from a common ancestor. A phylogenetic tree for a set of species is a tree in which the leaves represent the species from the set and the internal nodes represent the (hypothetical) ancestral species. One standard model for describing the species is in terms of characters, where a character is an equivalence relation on the species set, partitioning it into different character states. In this model, we also assign character states to the (hypothetical) ancestral species. The desired property is that for each state of each character, the set of nodes in the tree having that character state forms a connected subgraph. When a phylogeny has this property, we say it is perfect. The Perfect Phylogeny problem [15] then asks for a given set of characters defining a species set, does there exist a perfect phylogeny? Note that we allow that states of some characters are unknown for some species; we call such characters partial, otherwise we speak of full characters. This approach to constructing phylogenies has been studied since the 1960s [4|19|20|21|30] and was given a precise mathematical formulation in the 1970s 9|10|11|12. In particular, Buneman [3] showed that the Perfect Phylogeny problem reduces to a specific graph-theoretic problem, the problem of finding a chordal completion of a graph that respects a prescribed colouring. In fact, the two problems are polynomially equivalent [17. Thus, using this formulation, it has been proved that the Perfect Phylogeny problem is $N P$-hard in [2] and independently in [28]. These two results rely on the fact that the input may contain partial characters. In fact, the characters in these constructions only have two states. If we insist on full characters, the situation is different as for any fixed number r of character states, the problem can be solved in time polynomial [1] in the size of the input

[^0](and exponential in r). In fact, for $r=2$ (or $r=3$), the solution exists if and only if it exists of every pair (or triple) of characters 1218. Also, when the number of characters is k (even if there are partial characters), the complexity [22] is polynomial in the number of species (and exponential in k).

Another common formulation of this problem is the problem of a consensus tree 7/14|28, where a collection of subtrees with labeled leaves is given (for instance, the leaves correspond to species of a partial character). Here, we ask for a (phylogenetic) tree such that each of the input subtrees can be obtained by contracting edges from the tree (we say that the tree displays the subtree). It turns out that the problem is equivalent [25] even if we only allow particular input subtrees, the so-called quartet trees which have exactly six vertices and four leaves. In fact, any ternary phylogenetic tree can be uniquely described by a collection of quartet trees [25]. However, a collection of quartet trees does not necessarily uniquely describe a ternary phylogenetic tree.

This leads to a natural question: what is the complexity of deciding whether or not a collection of quartet trees uniquely describes a (ternary) phylogenetic tree? This question was posed in [25], later conjectured to be $N P$-hard and listed on M. Steel's personal webpage [27] where he offers $\$ 100$ for the first proof of $N P$ hardness. In this paper, we answer this question by showing that the problem is indeed $N P$-hard. In particular, we prove the following theorem.

Theorem 1. It is NP-hard to determine, given a ternary phylogenetic X-tree \mathcal{T} and a collection \mathcal{Q} of quartet subtrees on X, whether or not \mathcal{T} is the only phylogenetic tree that displays \mathcal{Q}.

We prove the theorem by describing a polynomial-time reduction from the uniqueness problem for ONE-IN-THREE-3SAT, which is $N P$-hard by the following result of [16]. (Note that [16] gives a complete complexity characterization of uniqueness for boolean satisfaction problems similar to that of Shaefer [26].)

Theorem 2. 16] It is NP-hard to decide, given an instance I to ONE-IN-THREE-3SAT, and a truth assignment σ that satisfies I, whether or not σ is the unique satisfying truth assignment for I.

Our construction in the reduction is essentially a modification of the construction of [2] which proves $N P$-hardness of the Perfect Phylogeny problem. Recall that the construction of [2] produces instances \mathcal{Q} that have a perfect phylogeny if and only if a particular boolean formula φ is satisfiable. We immediately observed that these instances \mathcal{Q} have, in addition, the property that φ has a unique satisfying assignment if and only if there is a unique minimal restricted chordal completion of the partial partition intersection graph of \mathcal{Q} (for definitions see Section (2). This is precisely one of the two necessary conditions for uniqueness of perfect phylogeny as proved by Semple and Steel in [24] (see Theorem (4). Thus by modifying the construction of [2] to also satisfy the other condition of uniqueness of [24, we obtained the construction that we present in this paper. Note that, however, unlike [2] which uses 3sAT, we had to use a different $N P$-hard problem in order for the construction to work correctly. Also,
to prove that the construction is correct, we employ a variant of the characterization of [24] that uses the more general chordal sandwich problem [13] instead of the restricted chordal completion problem (see Theorem[7). In fact, by way of Theorems 5and 6, we establish a direct connection between the problem of perfect phylogeny and the chordal sandwich problem, which apparently has not been yet observed. (Note that the connection to the (restricted) chordal completion problem of coloured graphs as mentioned above 317] is a special case of this.) Using this result, we are able to present a much simplified proof of Theorem 1

Finally, as a corollary, we obtain the following result.
Corollary 1 (Chordal sandwich). The Unique chordal sandwich problem is $N P$-hard. Counting the number of minimal chordal sandwiches is $\# P$-complete.

The first part follows directly from Theorems 2 and 8 while the second part follows from Theorem 8 and [5]. (Note that 5] gives a complete complexity characterization for the problem of counting satisfying assignments for boolean satisfaction problems, just like [16 gives for uniqueness as mentioned above).

The paper is structured as follows. First, in Section 2, we describe some preliminary definitions and results needed for our construction of the reduction. In particular, we describe, based on [24], necessary and sufficient conditions for the existence of a unique perfect phylogeny in terms of the minimal chordal sandwich problem (cf. [613]). The proof of this characterization is postponed until Section 5. In Section 3, we describe the actual construction and state one of the two uniqueness conditions (Theorem8) relating minimal chordal sandwiches to satisfying assignments of an instance I of ONE-IN-THREE-3sAT. The proof is presented later in Section6 In Section4 we describe and prove the other uniqueness condition (Theorem (9) relating satisfying assignments of I to phylogenetic trees. In Section 7, we put these results together to prove Theorem 1 ,

2 Preliminaries

We mostly follow the terminology of 24|25] and graph-theoretical notions of [29].
Let X be a non-empty set. An X-tree is a pair (T, ϕ) where T is tree and $\phi: X \rightarrow V(T)$ is a mapping such that $\phi^{-1}(v) \neq \emptyset$ for all vertices $v \in V(T)$ of degree at most two. An X-tree (T, ϕ) is ternary if all internal vertices of T have degree three. Two X-trees $\left(T_{1}, \phi_{1}\right),\left(T_{2}, \phi_{2}\right)$ are isomorphic if there exists an isomorphism $\psi: V\left(T_{1}\right) \rightarrow V\left(T_{2}\right)$ between T_{1} and T_{2} that satisfies $\phi_{2}=\psi \circ \phi_{1}$.

An X-tree (T, ϕ) is a phylogenetic X-tree (or a free X-free in [24]) if ϕ is bijection between X and the set of leaves of T.

A partial partition of X is a partition of a non-empty subset of X into at least two sets. If $A_{1}, A_{2}, \ldots, A_{t}$ are these sets, we call them cells of this partition, and denote the partition $A_{1}\left|A_{2}\right| \ldots \mid A_{t}$. If $t=2$, we call the partition a partial split. A partial split $A_{1} \mid A_{2}$ is trivial if $\left|A_{1}\right|=1$ or $\left|A_{2}\right|=1$.

A quartet tree is a ternary phylogenetic tree with a label set of size four, that is, a ternary tree \mathcal{T} with 6 vertices, 4 leaves labeled a, b, c, d, and with only one non-trivial partial split $\{a, b\} \mid\{c, d\}$ that it displays. Note that such a tree
is unambiguously defined by this partial split. Thus, in the subseqent text, we identify the quartet tree \mathcal{T} with the partial split $\{a, b\} \mid\{c, d\}$, that is, we say that $\{a, b\} \mid\{c, d\}$ is both a quartet tree and a partial split.

Let $\mathcal{T}=(T, \phi)$ be an X-tree, and let $\pi=A_{1}\left|A_{2}\right| \ldots \mid A_{t}$ be a partial partition of X. We say that \mathcal{T} displays π if there is a set of edges F of T such that, for all distinct $i, j \in\{1 \ldots t\}$, the sets $\phi\left(A_{i}\right)$ and $\phi\left(A_{j}\right)$ are subsets of the vertex sets of different connected components of $T-F$. We say that an edge e of T is distinguished by π if every set of edges that displays π in \mathcal{T} contains e.

Let \mathcal{Q} be a collection of partial partitions of X. An X-tree \mathcal{T} displays \mathcal{Q} if it displays every partial partition in \mathcal{Q}. An X-tree $\mathcal{T}=(T, \phi)$ is distinguished by \mathcal{Q} if every internal edge of T is distinguished by some partial partition in \mathcal{Q}; we also say that \mathcal{Q} distinguishes \mathcal{T}. The set \mathcal{Q} defines \mathcal{T} if \mathcal{T} displays \mathcal{Q}, and all other X-trees that display \mathcal{Q} are isomorphic to \mathcal{T}. Note that if \mathcal{Q} defines \mathcal{T}, then \mathcal{T} is necessarily a ternary phylogenetic X-tree, since otherwise "resolving" any vertex either of degree four or more, or with multiple labels results in a non-isomorphic X-tree that also displays \mathcal{Q} (also, see Proposition 2.6 in [24]).

The partial partition intersection graph of \mathcal{Q}, denoted by $\operatorname{int}(\mathcal{Q})$, is a graph whose vertex set is $\{(A, \pi) \mid$ where A is a cell of $\pi \in \mathcal{Q}\}$ and two vertices (A, π), $\left(A^{\prime}, \pi^{\prime}\right)$ are adjacent just if the intersection of A and A^{\prime} is non-empty.

A graph is chordal if it contains no induced cycle of length four or more. A chordal completion of a graph $G=(V, E)$ is a chordal graph $G^{\prime}=\left(V, E^{\prime}\right)$ with $E \subseteq E^{\prime}$. A restricted chordal completion of $\operatorname{int}(\mathcal{Q})$ is a chordal completion G^{\prime} of $\operatorname{int}(\mathcal{Q})$ with the property that if A_{1}, A_{2} are cells of $\pi \in \mathcal{Q}$, then $\left(A_{1}, \pi\right)$ is not adjacent to $\left(A_{2}, \pi\right)$ in G^{\prime}. A restricted chordal completion G^{\prime} of $\operatorname{int}(\mathcal{Q})$ is minimal if no proper subgraph of G^{\prime} is a restricted chordal completion of $\operatorname{int}(\mathcal{Q})$.

The problem of perfect phylogeny is equivalent to the problem of determining the existence of an X-tree that display the given collection \mathcal{Q} of partial partitions. In [3], it was given the following graph-theoretical characterization.
Theorem 3. 3|25|28] Let \mathcal{Q} be a set of partial partitions of a set X. Then there exists an X-tree that displays \mathcal{Q} if and only if there exists a restricted chordal completion of $\operatorname{int}(\mathcal{Q})$.

Of course, the X-tree in the above theorem might not be unique. For the problem of uniqueness, Semple and Steel [24|25] describe necessary and sufficient conditions for when a collection of partial partitions defines an X-tree.
Theorem 4. [24] Let \mathcal{Q} be a collection of partial partitions of a set X. Let \mathcal{T} be a ternary phylogenetic X-tree. Then \mathcal{Q} defines \mathcal{T} if and only if:
(i) \mathcal{T} displays \mathcal{Q} and is distinguished by \mathcal{Q}, and
(ii) there is a unique minimal restricted chordal completion of $\operatorname{int}(\mathcal{Q})$.

In order to simplify our construction, we now describe a variant of the above theorem that, instead, deals with the notion of chordal sandwich.

Let $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ be two graphs on the same set of vertices with $E_{1} \cap E_{2}=\emptyset$. A chordal sandwich ${ }^{\dagger}$ of $\left(G_{1}, G_{2}\right)$ is a chordal graph $G^{\prime}=\left(V, E^{\prime}\right)$
${ }^{\dagger}$ In this formulation, E_{1} are the forced edges and E_{2} are the forbidden edges. See 13 for further details on different ways of specifying the input to this problem.
with $E_{1} \subseteq E^{\prime}$ and $E^{\prime} \cap E_{2}=\emptyset$. A chordal sandwich G^{\prime} of $\left(G_{1}, G_{2}\right)$ is minimal if no proper subgraph of G^{\prime} is a chordal sandwich of $\left(G_{1}, G_{2}\right)$.

The cell intersection graph of \mathcal{Q}, denoted by $\operatorname{int}^{*}(\mathcal{Q})$, is the graph whose vertex set is $\{A \mid$ where A is a cell of $\pi \in \mathcal{Q}\}$ and two vertices A, A^{\prime} are adjacent just if the intersection of A and A^{\prime} is non-empty. Let $\operatorname{forb}(\mathcal{Q})$ denote the graph whose vertex set is that of $\operatorname{int}^{*}(\mathcal{Q})$ in which there is an edge between A and A^{\prime} just if A, A^{\prime} are cells of some $\pi \in \mathcal{Q}$.

The correspondence between the partial partition intersection graph and the cell intersection graph is captured by the following theorem.

Theorem 5. Let \mathcal{Q} be a collection of partial partitions of a set X. Then there is a one-to-one correspondence between the minimal restricted chordal completions of $\operatorname{int}(\mathcal{Q})$ and the minimal chordal sandwiches of $\left(\operatorname{int}^{*}(\mathcal{Q})\right.$, $\left.\operatorname{forb}(\mathcal{Q})\right)$.
(The proof of this theorem is presented as Section 5.)
This combined with Theorem 3 yields that there exists a phylogenetic X-tree that displays \mathcal{Q} if and only if there exists a chordal sandwich of (int* (\mathcal{Q}), forb (\mathcal{Q})). Conversely, we can express every instance to the chordal sandwich problem as a corresponding instance to the problem of perfect phylogeny as follows.
Theorem 6. Let $\left(G_{1}, G_{2}\right)$ be an instance to the chordal sandwich problem. Then there is a collection \mathcal{Q} of partial splits such that there is a one-to-one correspondence between the minimal chordal sandwiches of $\left(G_{1}, G_{2}\right)$ and the minimal restricted chordal completions of $\operatorname{int}(\mathcal{Q})$. In particular, there exists a chordal sandwich for $\left(G_{1}, G_{2}\right)$ if and only if there exists a phylogenetic tree that displays \mathcal{Q}.

Proof. Without loss of generality, we may assume that each connected component of G_{1} has at least three vertices. (We can safely remove any component with two or less vertices without changing the number of minimal chordal completions, since every such component is already chordal.)

As usual, $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ where $E_{1} \cap E_{2}=\emptyset$. We define the collection \mathcal{Q} of partial splits (of the set E_{1}) as follows: for every edge $x y \in E_{2}$, we construct the partial split $F_{x} \mid F_{y}$, where F_{x} are the edges of E_{1} incident to x, and F_{y} are the edges of E_{1} incident to y. By definition, the vertex set of the graph $\operatorname{int}^{*}(\mathcal{Q})$ is precisly $\left\{F_{v} \mid v \in V\right\}$. Further, it can be easily seen that the mapping ψ that, for each $v \in V$, maps v to F_{v} is an isomorphism between G_{1} and int $^{*}(\mathcal{Q})$. (Here, one only needs to verify that $F_{u}=F_{v}$ implies $u=v$; for this we use that each component of G_{1} has at least three vertices.) Moreover, forb (\mathcal{Q}) is precisely $\left\{\psi(x) \psi(y) \mid x y \in E_{2}\right\}$ by definition. Therefore, by Theorem5, there is a one-to-one correspondence between the minimal chordal sandwiches of $\left(G_{1}, G_{2}\right)$ are the minimal restricted chordal completions of $\operatorname{int}(\mathcal{Q})$. This proves the first part of the claim; the second part follows directly from Theorem 3.

As an immediate corollary, we obtain the following desired characterization.
Theorem 7. Let \mathcal{Q} be a collection of partial partitions of a set X. Let \mathcal{T} be a ternary phylogenetic X-tree. Then \mathcal{Q} defines \mathcal{T} if and only if:
(i) \mathcal{T} displays \mathcal{Q} and is distinguished by \mathcal{Q}, and
(ii) there is a unique minimal chordal sandwich of $\left(\operatorname{int}^{*}(\mathcal{Q}), \operatorname{forb}(\mathcal{Q})\right)$.

3 Construction

Consider an instance I to one-in-three-3sat. That is, I consists of n variables v_{1}, \ldots, v_{n} and m clauses $\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}$ each of which is a disjunction of exactly three literals (i.e., variables v_{i} or their negations $\overline{v_{i}}$).

By standard arguments, we may assume that no variable appears twice in the same clause, since otherwise we can replace the instance I with an equivalent instance with this property. In particular, we can replace each clause of the form $v_{i} \vee \overline{v_{i}} \vee v_{j}$ by clauses $v_{i} \vee x \vee v_{j}$ and $\overline{v_{i}} \vee \bar{x} \vee v_{j}$ where x is a new variable, and replace each clause of the form $v_{i} \vee v_{i} \vee v_{j}$ by clauses $v_{i} \vee v_{j} \vee x, v_{i} \vee \overline{v_{j}} \vee \bar{x}$, and $\overline{v_{i}} \vee \overline{v_{j}} \vee x$ where x is again a new variable. Note that these two transformation preserve the number of satisfying assignments, since in the former the new variable x has always the truth value of $\overline{v_{i}}$ while in the latter x is always false in any satisfying assignment of this modified instance.

In what follows, we describe a collection \mathcal{Q}_{I} of quartet trees arising from the instance I, and prove the following theorem. (We present the proof as Section 6)

Theorem 8. There is a one-to-one correspondence between satisfying assignments of the instance I and minimal chordal sandwiches of $\left(\operatorname{int}^{*}\left(\mathcal{Q}_{I}\right)\right.$, forb $\left.\left(\mathcal{Q}_{I}\right)\right)$.

To simplify the presentation, we shall denote literals by capital letters X, Y, etc., and indicate their negations by \bar{X}, \bar{Y}, etc. (For instance, if $X=v_{i}$ then $\bar{X}=\overline{v_{i}}$, and if $X=\overline{v_{i}}$ then $\bar{X}=v_{i}$.)

A truth assignment for the instance I is a mapping $\sigma:\left\{v_{1}, \ldots, v_{n}\right\} \rightarrow\{0,1\}$ where 0 and 1 represent false and true, respectively. To simplify the notation, we write $v_{i}=0$ and $v_{i}=1$ in place of $\sigma\left(v_{i}\right)=0$ and $\sigma\left(v_{i}\right)=1$, respectively, and extend this notation to literals X, Y, etc., i.e., write $X=0$ and $X=1$ in place of $\sigma(X)=0$ and $\sigma(X)=1$, respectively. A truth assignment σ is a satisfying assignment for I if in each clause \mathcal{C}_{j} exactly one the three literals evalues to true. That is, for each clause $\mathcal{C}_{j}=X \vee Y \vee Z$, either $X=1, Y=0, Z=0$, or $X=0, Y=1, Z=0$, or $X=0, Y=0, Z=1$.

For each $i \in\{1 \ldots n\}$, we let Δ_{i} denote all indices j such that v_{i} or $\overline{v_{i}}$ appears in the clause \mathcal{C}_{j}. Let \mathcal{X}_{I} be the set consisting of the following elements:
a) $\alpha_{v_{i}}, \alpha_{\overline{v_{i}}}$ for each $i \in\{1 \ldots n\}$,
b) $\beta_{v_{i}}^{j}, \beta_{\overline{v i}_{i}}^{j}$ for each $i \in\{1 \ldots n\}$ and each $j \in \Delta_{i}$,
c) $\gamma_{1}^{j}, \gamma_{2}^{j}, \gamma_{3}^{j}, \lambda^{j}$ for each $j \in\{1 \ldots m\}$,
d) δ and μ.

Consider the following collection of 2-element subsets of \mathcal{X}_{I} :
a) $B=\{\mu, \delta\}$,
b) for each $i \in\{1, \ldots, n\}$:

$$
\begin{aligned}
& H_{v_{i}}=\left\{\alpha_{v_{i}}, \delta\right\}, H_{\overline{v_{i}}}=\left\{\alpha_{\overline{v_{i}}}, \delta\right\}, A_{i}=\left\{\alpha_{v_{i}}, \alpha_{\overline{v_{i}}}\right\}, \\
& S_{v_{i}}^{j}=\left\{\alpha_{v_{i}}, \beta_{v_{i}}^{j}\right\}, S_{\overline{v_{i}}}^{j}=\left\{\alpha_{\overline{v_{i}}}, \beta_{\overline{v_{i}}}^{j}\right\} \text { for all } j \in \Delta_{i}
\end{aligned}
$$

Fig. 1. Two configurations from of the graph int* $\left(\mathcal{Q}_{I}\right)$.
c) for each $j \in\{1 \ldots m\}$ where $C_{j}=X \vee Y \vee Z$:

$$
\begin{aligned}
& K_{X}^{j}=\left\{\beta_{X}^{j}, \gamma_{1}^{j}\right\}, K_{Y}^{j}=\left\{\beta_{Y}^{j}, \gamma_{2}^{j}\right\}, K_{Z}^{j}=\left\{\beta_{Z}^{j}, \gamma_{3}^{j}\right\} \text {, } \\
& K_{X}^{j}=\left\{\beta_{\bar{X}}^{j}, \lambda^{j}\right\}, K_{Y}^{j}=\left\{\beta_{\bar{Y}}^{j}, \lambda^{j}\right\}, K_{Z}^{j}=\left\{\beta_{\bar{Z}}^{j}, \lambda^{j}\right\} \text {, } \\
& L_{X}^{j}=\left\{\beta_{\bar{X}}^{j}, \gamma_{2}^{j}\right\}, L_{Y}^{j}=\left\{\beta_{\bar{Y}}^{j}, \gamma_{3}^{j}\right\}, L_{Z}^{j}=\left\{\beta_{\bar{Z}}^{j}, \gamma_{1}^{j}\right\} \text {, } \\
& D_{1}^{j}=\left\{\gamma_{1}^{j}, \lambda^{j}\right\}, \quad D_{2}^{j}=\left\{\gamma_{2}^{j}, \lambda^{j}\right\}, \quad D_{3}^{j}=\left\{\gamma_{3}^{j}, \lambda^{j}\right\}, \quad F^{j}=\left\{\lambda^{j}, \mu\right\}
\end{aligned}
$$

The collection \mathcal{Q}_{I} of quartet trees is defined as follows:

$$
\begin{aligned}
& \mathcal{Q}_{I}=\bigcup_{i \in\{1 \ldots n\}}\left\{A_{i} \mid B\right\} \cup \bigcup_{j \in\{1 \ldots m\}}\left\{D_{1}^{j}\left|B, D_{2}^{j}\right| B, D_{3}^{j} \mid B\right\} \\
& \cup \bigcup_{\substack{i \in\{1 \ldots n\} \\
j, j^{\prime} \in \Delta_{i}}}^{\cup}\left\{S_{v_{i}}^{j} \mid S_{\bar{v}_{i}}^{j^{\prime}}\right\} \cup \underset{\substack{i \in\{1 \ldots n\} \\
j, j^{\prime} \in \Delta_{i} \text { and } j<j^{\prime}}}{\cup}\left\{S_{v_{i}}^{j}\left|K_{\overline{v_{i}}}^{j^{\prime}}, S_{\overline{v_{i}}}^{j}\right| K_{v_{i}}^{j^{\prime}}\right\} \cup \underset{\substack{i \in\{1 \ldots n\} \\
j \in \Delta_{i} \text { and } j<j^{\prime} \leq m}}{\cup}\left\{K_{\bar{v}_{i}}^{j}\left|F^{j^{\prime}}, K_{v_{i}}^{j}\right| F^{j^{\prime}}\right\} \\
& \cup \bigcup_{\substack{1 \leq i^{\prime}<i \leq n \\
j \in \Delta_{i}}}\left\{H_{v_{i^{\prime}}}\left|S_{v_{i}}^{j}, H \overline{v_{i^{\prime}}}\right| S_{v_{i}}^{j}, H_{v_{i^{\prime}}}\left|S_{\overline{v_{i}}}^{j}, H \overline{v_{i^{\prime}}}\right| S_{\overline{v_{i}}}^{j}\right\} \cup \bigcup_{\substack{i \in\{1 \ldots n\} \\
j \in\{1 \ldots m\}}}\left\{H_{\overline{v_{i}}}\left|F^{j}, H_{v_{i}}\right| F^{j}\right\} \\
& \cup \bigcup_{\substack{j \in\{1 \ldots m\} \\
\text { where } \mathcal{C}_{j}=X \vee Y \vee Z}}^{\cup}\left\{\begin{array}{l}
K_{\bar{X}}^{j} \mid K_{X}^{j}, \\
S_{Y}^{j}\left|K_{\bar{Y}}^{j}\right| K_{Y}^{j}, K_{Y}^{j}, K_{Z}^{j}\left|K_{Z}^{j}, K_{Y}^{j}, K_{X}^{j}\right| L_{X}^{j}, K_{\bar{Y}}^{j}\left|L_{Y}^{j}, K_{\bar{Z}}^{j}\right| L_{Z}^{j} \\
S_{Z}^{j}, \quad S_{Z}^{j}\left|L_{X}^{j}, \quad S_{X}^{j}\right| L_{Y}^{j}, S_{Y}^{j} \mid L_{Z}^{j}
\end{array}\right\}
\end{aligned}
$$

Note that in each clause $\mathcal{C}_{j}=X \vee Y \vee Z$ there is a particular type of symmetry between the literals X, Y, and Z. In particular, if we replace, in the above, the incices X, Y, Z and $1,2,3$ as follows: $X \rightarrow Y \rightarrow Z \rightarrow X$ and $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$, we obtain precisely the same definition of \mathcal{Q}_{I} as the above. We shall refer to this as the rotational symmetry between X, Y, Z.

4 Unique trees

Let T_{I} be the tree defined as follows: (for illustration, see Figures 2and 3)

$$
\begin{aligned}
& V\left(T_{I}\right)=\left\{y_{0}, y_{1}, y_{1}^{\prime}, \ldots, y_{n}, y_{n}^{\prime}\right\} \cup\left\{a_{1}, a_{1}^{\prime}, \ldots, a_{n}, a_{n}^{\prime}\right\} \cup\left\{u_{0}, u_{1}, \ldots, u_{m}\right\} \\
& \cup\left\{x_{1}^{j}, x_{2}^{j}, x_{3}^{j}, x_{4}^{j}, x_{5}^{j}, x_{6}^{j}, b_{1}^{j}, b_{2}^{j}, b_{3}^{j}, g_{1}^{j}, g_{2}^{j}, g_{3}^{j}, \ell^{j}\right\}_{j=1}^{m} \cup\left\{c_{i}^{j}, z_{i}^{j} \mid j \in \Delta_{i}\right\}_{i=1}^{n} \\
& E\left(T_{I}\right)=\left\{y_{1} y_{1}^{\prime}, y_{2} y_{2}^{\prime}, \ldots, y_{n} y_{n}^{\prime}\right\} \cup\left\{a_{1} y_{1}^{\prime}, a_{2} y_{2}^{\prime}, \ldots a_{n} y_{n}^{\prime}\right\} \cup\left\{c_{i}^{j} z_{i}^{j} \mid j \in \Delta_{i}\right\}_{i=1}^{n} \\
& \cup\left\{y_{0} y_{1}, y_{1} y_{2}, y_{2} y_{3}, \ldots, y_{n-1} y_{n}\right\} \cup\left\{y_{n} u_{1}, u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{m-1} u_{m}, u_{m} u_{0}\right\}^{m} \\
& \cup\left\{u_{j} x_{1}^{j}, x_{1}^{j} x_{2}^{j}, x_{2}^{j} x_{3}^{j}, x_{2}^{j} x_{4}^{j}, x_{4}^{j} x_{5}^{j}, x_{4}^{j} x_{6}^{j}, b_{1}^{j} x_{6}^{j}, b_{2}^{j} x_{3}^{j}, b_{3}^{j} x_{5}^{j}, g_{1}^{j} x_{6}^{j}, g_{2}^{j} x_{1}^{j}, g_{3}^{j} x_{3}^{j}, \ell^{j} x_{5}^{j}\right\}_{j=1}^{m} \\
& \cup\left\{a_{i}^{\prime} z_{i}^{j_{1}}, z_{i}^{j_{1}} z_{i}^{j_{2}}, \ldots, z_{i}^{j_{t-1}} z_{i}^{j_{t}}, z_{i}^{j_{t}} y_{i}^{\prime} \mid \text { where } j_{1}<j_{2}<\ldots<j_{t} \text { are elements of } \Delta_{i}\right\}_{i=1}^{n}
\end{aligned}
$$

Let σ be a satisfying assignment for the instance I, and let ϕ_{σ} be the mapping of \mathcal{X}_{I} to $V\left(T_{I}\right)$ defined as follows:
a) for each $i \in\{1 \ldots n\}$:
if $v_{i}=1$, then $\phi_{\sigma}\left(\alpha_{v_{i}}\right)=a_{i}, \phi_{\sigma}\left(\alpha_{\overline{v_{i}}}\right)=a_{i}^{\prime}$, and $\phi_{\sigma}\left(\beta_{\overline{v_{i}}}^{j}\right)=c_{i}^{j}$ for all $j \in \Delta_{i}$,
if $v_{i}=0$, then $\phi_{\sigma}\left(\alpha_{\overline{v_{i}}}\right)=a_{i}, \phi_{\sigma}\left(\alpha_{v_{i}}\right)=a_{i}^{\prime}$, and $\phi_{\sigma}\left(\beta_{v_{i}}^{j}\right)=c_{i}^{j}$ for all $j \in \Delta_{i}$,
b) for each $j \in\{1 \ldots m\}$ where $\mathcal{C}_{j}=X \vee Y \vee Z$:
if $X=1$, then $\phi_{\sigma}\left(\beta_{X}^{j}\right)=b_{1}^{j}, \phi_{\sigma}\left(\beta_{\bar{Y}}^{j}\right)=b_{2}^{j}, \phi_{\sigma}\left(\beta_{\bar{Z}}^{j}\right)=b_{3}^{j}$,

$$
\phi_{\sigma}\left(\gamma_{1}^{j}\right)=g_{1}^{j}, \quad \phi_{\sigma}\left(\gamma_{2}^{j}\right)=g_{2}^{j}, \quad \phi_{\sigma}\left(\gamma_{3}^{j}\right)=g_{3}^{j}, \quad \phi_{\sigma}\left(\lambda^{j}\right)=\ell_{j},
$$

if $Y=1$, then $\phi_{\sigma}\left(\beta_{Y}^{j}\right)=b_{1}^{j}, \phi_{\sigma}\left(\beta_{\bar{Z}}^{j}\right)=b_{2}^{j}, \phi_{\sigma}\left(\beta_{\bar{X}}^{J}\right)=b_{3}^{j}$,

$$
\phi_{\sigma}\left(\gamma_{2}^{j}\right)=g_{1}^{j}, \quad \phi_{\sigma}\left(\gamma_{3}^{j}\right)=g_{2}^{j}, \quad \phi_{\sigma}\left(\gamma_{1}^{j}\right)=g_{3}^{j}, \quad \phi_{\sigma}\left(\lambda^{j}\right)=\ell_{j},
$$

if $Z=1$, then $\phi_{\sigma}\left(\beta_{Z}^{j}\right)=b_{1}^{j}, \phi_{\sigma}\left(\beta_{\bar{X}}^{j}\right)=b_{2}^{j}, \phi_{\sigma}\left(\beta_{\bar{Y}}^{j}\right)=b_{3}^{j}$,

$$
\phi_{\sigma}\left(\gamma_{3}^{j}\right)=g_{1}^{j}, \quad \phi_{\sigma}\left(\gamma_{1}^{j}\right)=g_{2}^{j}, \quad \phi_{\sigma}\left(\gamma_{2}^{j}\right)=g_{3}^{j}, \quad \phi_{\sigma}\left(\lambda^{j}\right)=\ell_{j},
$$

c) $\phi_{\sigma}(\delta)=y_{0}$ and $\phi_{\sigma}(\mu)=u_{0}$.

Theorem 9. If σ is a satisfying assignment for I, then $\mathcal{T}_{\sigma}=\left(T_{I}, \phi_{\sigma}\right)$ is a ternary phylogenetic \mathcal{X}_{I}-tree that displays \mathcal{Q}_{I} and is distinguished by \mathcal{Q}_{I}.

Proof. Let σ be a satisfying assignment for I, i.e., for each clause $\mathcal{C}_{j}=X \vee Y \vee Z$, either $X=1, Y=Z=0$, or $Y=1, X=Z=0$, or $Z=1, X=Y=0$. For each $i \in\{1 \ldots n\}$, let $\mathcal{A}_{i}=\left\{a_{i}, a_{i}^{\prime}, y_{i}^{\prime}, z_{i}^{j_{1}}, \ldots, z_{i}^{j_{t}}, c_{i}^{j_{1}}, \ldots, c_{i}^{j_{t}}\right\}$ where $\Delta_{i}=\left\{j_{1}, \ldots, j_{t}\right\}$, and for each $j \in\{1 \ldots m\}$, let $\mathcal{B}_{j}=\left\{x_{1}^{j}, x_{2}^{j}, x_{3}^{j}, x_{4}^{j}, x_{5}^{j}, x_{6}^{j}, g_{1}^{j}, g_{2}^{j}, g_{3}^{j}, b_{1}^{j}, b_{2}^{j}, b_{3}^{j}, \ell^{j}\right\}$.

Fig. 2. The tree T_{I}.

Fig. 3. a) the subtree \mathcal{A}_{i} for the variable $\left.v_{i}, b\right)$ the subtree \mathcal{B}_{j} for the clause \mathcal{C}_{j}, c) the subtree for $\mathcal{C}_{j}=X \vee Y \vee Z$ and assignment $\sigma(X)=1, \sigma(Y)=\sigma(Z)=0$

It is not difficult to see that ϕ_{σ} defines a bijection between the elements of \mathcal{X}_{I} and the leaves of T_{I}. For instance, for each $i \in\{1 \ldots n\}$, we note that $\left\{\phi\left(\alpha_{v_{i}}\right), \phi\left(\alpha_{\overline{v_{i}}}\right)\right\}=\left\{a_{i}, a_{i}^{\prime}\right\}$, and for each $j \in \Delta_{i}$, either $\phi_{\sigma}\left(\beta_{v_{i}}^{j}\right)=c_{i}^{j}$ and $\phi_{\sigma}\left(\beta_{\overline{v_{i}}}^{j}\right) \in\left\{b_{1}^{j}, b_{2}^{j}, b_{3}^{j}\right\}$, or $\phi_{\sigma}\left(\beta_{\bar{v}_{i}}^{j}\right)=c_{i}^{j}$ and $\phi_{\sigma}\left(\beta_{v_{i}}^{j}\right) \in\left\{b_{1}^{j}, b_{2}^{j}, b_{3}^{j}\right\}$. Also, for each $j \in\{1 \ldots m\}$, we have $\phi_{\sigma}\left(\lambda^{j}\right)=\ell^{j}$, and $\left\{\phi_{\sigma}\left(\gamma_{1}^{j}\right), \phi_{\sigma}\left(\gamma_{2}^{j}\right), \phi_{\sigma}\left(\gamma_{3}^{j}\right)\right\}=\left\{g_{1}^{j}, g_{2}^{j}, g_{3}^{j}\right\}$. Further, it can be readily verified that T_{I} is a ternary tree. Thus, $\mathcal{T}_{\sigma}=\left(T_{I}, \phi_{\sigma}\right)$ is indeed a ternary phylogenetic \mathcal{X}_{I}-tree. First, we show that it displays \mathcal{Q}_{I}.

Consider $A_{i} \mid B$ for $i \in\{1 \ldots n\}$. Recall that $A_{i}=\left\{\alpha_{v_{i}}, \alpha_{\overline{v_{i}}}\right\}, B=\{\delta, \mu\}$, and that $\left\{\phi_{\sigma}\left(\alpha_{v_{i}}\right), \phi_{\sigma}\left(\alpha_{\overline{v_{i}}}\right)\right\}=\left\{a_{i}, a_{i}^{\prime}\right\}$. Also, $\phi_{\sigma}(\delta)=y_{0}$ and $\phi_{\sigma}(\mu)=u_{0}$. Observe that $a_{i}, a_{i}^{\prime} \in \mathcal{A}_{i}$. Hence, both a_{i}, a_{i}^{\prime} are in one connected component of $T_{I}-y_{i} y_{i}^{\prime}$ whereas y_{0}, u_{0} are in another component. Thus, \mathcal{T}_{σ} indeed displays $A_{i} \mid B$.

Next, consider $D_{p}^{j} \mid B$ for $j \in\{1 \ldots m\}$ and $p \in\{1 \ldots 3\}$. Recall that $D_{p}^{j}=$ $\left\{\gamma_{p}^{j}, \lambda^{j}\right\}$, and $\phi_{\sigma}\left(\gamma_{p}^{j}\right) \in \mathcal{B}_{j}, \phi_{\sigma}\left(\lambda^{j}\right) \in \mathcal{B}_{j}$. Also, $B=\{\delta, \mu\}$ and $\phi_{\sigma}(\delta)=y_{0}$, $\phi_{\sigma}(\mu)=u_{0}$. Thus both $\phi_{\sigma}\left(\gamma_{p}^{j}\right), \phi_{\sigma}\left(\lambda^{j}\right)$ are in one component of $T_{I}-u_{j} x_{1}^{j}$ whereas y_{0}, u_{0} are in another component. This shows that \mathcal{T}_{σ} displays $D_{p}^{j} \mid B$.

Now, we look at $S_{v_{i}}^{j} \left\lvert\, S \frac{j^{\prime}}{v_{i}}\right.$ where $i \in\{1 \ldots n\}$ and $j, j^{\prime} \in \Delta_{i}$. Recall that $S_{v_{i}}^{j}=\left\{\alpha_{v_{i}}, \beta_{v_{i}}^{j}\right\}$ and $S_{\overline{v_{i}}}^{j^{\prime}}=\left\{\alpha_{\overline{v_{i}}}, \beta_{\overline{v_{i}}}^{j^{\prime}}\right\}$. By symmetry, we may assume that $v_{i}=1$. Then $\phi_{\sigma}\left(\alpha_{v_{i}}\right)=a_{i}, \phi_{\sigma}\left(\alpha_{\overline{v_{i}}}\right)=a_{i}^{\prime}, \phi_{\sigma}\left(\beta_{v_{i}}^{j}\right) \in \mathcal{B}_{j}$, and $\phi_{\sigma}\left(\beta_{\overline{v_{i}}}^{j^{\prime}}\right)=c_{i}^{j^{\prime}}$. Let j_{t} denote the largest element in Δ_{i}. Then, both $a_{i}^{\prime}, c_{i}^{j^{\prime}}$ are in one component of $T_{I}-y_{i}^{\prime} z_{i}^{j_{t}}$ whereas a_{i} and $\phi_{\sigma}\left(\beta_{v_{i}}^{j}\right)$ are in a different component. Thus, \mathcal{T}_{σ} displays $S_{v_{i}}^{j} \mid S_{\overline{v_{i}}}^{j^{\prime}}$.

Next, consider $S_{v_{i}}^{j} \mid K_{\overline{v_{i}}}^{j^{\prime}}$ and $S_{\overline{v_{i}}}^{j} \mid K_{v_{i}}^{j^{\prime}}$ for $i \in\{1 \ldots n\}$ and $j, j^{\prime} \in \Delta_{i}$ where $j<j^{\prime}$. Recall that $K_{\overline{v_{i}}}^{j^{\prime}} \subseteq\left\{\beta_{v_{i}}^{j^{\prime}}, \gamma_{1}^{j^{\prime}}, \gamma_{2}^{j^{\prime}}, \gamma_{3}^{j^{\prime}}, \lambda^{j^{\prime}}\right\}, K_{v_{i}}^{j^{\prime}} \subseteq\left\{\beta_{\overline{v_{i}}}^{j^{\prime}}, \gamma_{1}^{j^{\prime}}, \gamma_{2}^{j^{\prime}}, \gamma_{3}^{j^{\prime}}, \lambda^{j^{\prime}}\right\}$, $S_{v_{i}}^{j}=\left\{\alpha_{v_{i}}, \beta_{v_{i}}^{j}\right\}$ and $S_{\overline{v_{i}}}^{j}=\left\{\alpha_{\overline{v_{i}}}, \beta_{v_{i}}^{j}\right\}$. Again, by symmetry, we assume $v_{i}=1$. So, $\phi_{\sigma}\left(\alpha_{v_{i}}\right)=a_{i}, \phi_{\sigma}\left(\alpha_{\overline{v_{i}}}\right)=a_{i}^{\prime}, \phi_{\sigma}\left(\beta_{\overline{v_{i}}}^{j}\right)=c_{i}^{j}, \phi_{\sigma}\left(\beta_{\overline{v_{i}}}^{j^{\prime}}\right)=c_{i}^{j^{\prime}}, \phi_{\sigma}\left(\beta_{v_{i}}^{j}\right) \in \mathcal{B}_{j}$, and $\left\{\phi_{\sigma}\left(\beta_{v_{i}}^{j^{\prime}}\right), \phi_{\sigma}\left(\gamma_{1}^{j^{\prime}}\right), \phi_{\sigma}\left(\gamma_{2}^{j^{\prime}}\right), \phi_{\sigma}\left(\gamma_{3}^{j^{\prime}}\right), \phi_{\sigma}\left(\lambda^{j^{\prime}}\right)\right\} \subseteq \mathcal{B}_{j^{\prime}}$. Let $j_{1}<j_{2}<\ldots<j_{t}$ be the elements of Δ_{i}. Since $j \in \Delta_{i}$, let k be such that $j=j_{k}$. We conclude $k<t$, since
$j<j^{\prime}$ and $j^{\prime} \in \Delta_{i}$. Thus, the elements of $\phi_{\sigma}\left(S_{v_{i}}^{j}\right)$ and $\phi_{\sigma}\left(K_{v_{i}}^{j^{\prime}}\right)$, respectively are in different components of $T_{I}-z_{i}^{j_{k}} z_{i}^{j_{k+1}}$. Further, observe that $\phi_{\sigma}\left(K_{v_{i}}^{j^{\prime}}\right) \subseteq \mathcal{B}_{j^{\prime}}$, and since $j \neq j^{\prime}$, the elements of $\phi_{\sigma}\left(S_{v_{i}}^{j}\right)$ and $\phi_{\sigma}\left(K_{v_{i}}^{j^{\prime}}\right)$ are in different components of $T_{I}-u_{j^{\prime}} x_{1}^{j^{\prime}}$. This proves that \mathcal{T}_{σ} displays both $S_{v_{i}}^{j} \mid K_{v_{i}}^{j^{\prime}}$ and $S_{v_{i}}^{j} \mid K_{v_{i}}^{j^{\prime}}$.

Now, consider $K_{\overline{v_{i}}}^{j} \mid F^{j^{\prime}}$ and $K_{v_{i}}^{j} \mid F^{j^{\prime}}$ for $i \in\{1 \ldots n\}$ and $j<j^{\prime}$ where $j \in \Delta_{i}$. Again, recall that $K_{\overline{v_{i}}}^{j} \subseteq\left\{\beta_{v_{i}}^{j}, \gamma_{1}^{j}, \gamma_{2}^{j}, \gamma_{3}^{j}, \lambda^{j}\right\}, K_{v_{i}}^{j} \subseteq\left\{\beta_{\bar{v}_{i}}^{j}, \gamma_{1}^{j}, \gamma_{2}^{j}, \gamma_{3}^{j}, \lambda^{j}\right\}$, and that $F^{j^{\prime}}=\left\{\lambda^{j^{\prime}}, \mu\right\}$. So, $\phi_{\sigma}\left(K_{\overline{v_{i}}}^{j}\right) \cup \phi_{\sigma}\left(K_{v_{i}}^{j}\right) \subseteq \mathcal{A}_{i} \cup \mathcal{B}_{j}$ whereas $\phi_{\sigma}\left(F^{j^{\prime}}\right) \subseteq \mathcal{B}_{j^{\prime}} \cup\left\{u_{0}\right\}$. Since $j<j^{\prime} \leq m$, we conclude that $\phi_{\sigma}\left(K_{\overline{v_{i}}}^{j}\right) \cup \phi_{\sigma}\left(K_{v_{i}}^{j}\right)$ and $\phi_{\sigma}\left(F^{j^{\prime}}\right)$ are in different components of $T_{I}-u_{j} u_{j+1}$. Thus \mathcal{T}_{σ} displays both $K_{\overline{v_{i}}}^{j} \mid F^{j^{\prime}}$ and $K_{v_{i}}^{j} \mid F^{j^{\prime}}$.

Next, we consider $H_{v_{i^{\prime}}}\left|S_{v_{i}}^{j}, H_{\overline{v_{i}}}\right| S_{v_{i}}^{j}, H_{v_{i^{\prime}}} \mid S_{\overline{v_{i}}}^{j}$, and $H_{\overline{v_{i^{\prime}}} \mid} S_{\overline{v_{i}}}^{j}$ for $1 \leq i^{\prime}<i \leq n$ and $j \in \Delta_{i}$. Recall that $H_{v_{i^{\prime}}}=\left\{\alpha_{v_{i^{\prime}}}, \delta\right\}, H_{\overline{v_{i^{\prime}}}}=\left\{\alpha_{\overline{v_{i^{\prime}}}}, \delta\right\}, S_{v_{i}}^{j}=\left\{\alpha_{v_{i}}, \beta_{v_{i}}^{j}\right\}$, and $S_{\overline{v_{i}}}^{j}=\left\{\alpha_{\overline{v_{i}}}, \beta_{\overline{v_{i}}}^{j}\right\}$. So, $\phi_{\sigma}\left(S_{v_{i}}^{j}\right) \cup \phi_{\sigma}\left(S_{\overline{v_{i}}}^{j}\right) \subseteq \mathcal{A}_{i} \cup \mathcal{B}_{j}$ whereas $\phi_{\sigma}\left(H_{v_{i^{\prime}}}\right) \cup \phi_{\sigma}\left(H_{\overline{v_{i^{\prime}}}}\right) \subseteq$ $\mathcal{A}_{i^{\prime}} \cup\{\delta\}$. Thus, since $i^{\prime}<i \leq n$, we conclude that $\phi_{\sigma}\left(S_{v_{i}}^{j}\right) \cup \phi_{\sigma}\left(S_{v_{i}}^{j}\right)$ and $\phi_{\sigma}\left(H_{v_{i^{\prime}}}\right) \cup \phi_{\sigma}\left(H_{\overline{v_{i^{\prime}}}}\right)$ are in different components of $T_{I}-y_{i^{\prime}} y_{i^{\prime}+1}$. This proves that \mathcal{T}_{σ} displays all the four quartet trees $H_{v_{i^{\prime}}}\left|S_{v_{i}}^{j}, H_{\overline{v_{i^{\prime}}} \mid}\right| S_{v_{i}}^{j}, H_{v_{i^{\prime}}} \mid S_{\overline{v_{i}}}^{j}$ and $H_{\overline{\overline{i^{\prime}}}} \mid S_{\overline{v_{i}}}^{j}$.

Similarly, we consider $H_{\overline{v_{i}}} \mid F^{j}$ and $H_{v_{i}} \mid F^{j}$ for $i \in\{1 \ldots n\}$ and $j \in\{1 \ldots m\}$. Recall that $H_{v_{i}}=\left\{\alpha_{v_{i}}, \delta\right\}, H_{\overline{v_{i}}}=\left\{\alpha_{\overline{v_{i}}}, \delta\right\}$, and $F^{j}=\left\{\lambda^{j}, \mu\right\}$. Hence, it follows that $\left\{\phi_{\sigma}\left(H_{\overline{v_{i}}}\right) \cup \phi_{\sigma}\left(H_{v_{i}}\right)\right\} \subseteq \mathcal{A}_{i} \cup\{\delta\}$ and $\phi_{\sigma}\left(F^{j}\right) \subseteq \mathcal{B}_{j} \cup\{\mu\}$. Thus, we conclude that $\phi_{\sigma}\left(H_{\overline{v_{i}}}\right) \cup \phi_{\sigma}\left(H_{v_{i}}\right)$ and $\phi_{\sigma}\left(F^{j}\right)$ are in different components of $T_{I}-y_{n} u_{1}$. This proves that \mathcal{T}_{σ} displays both $H_{\overline{v_{i}}} \mid F^{j}$ and $H_{v_{i}} \mid F^{j}$.

Finally, we consider the clause $\mathcal{C}_{j}=X \vee Y \vee Z$ for $j \in\{1 \ldots m\}$. Since σ is a satisfying assignment, and by the rotational symmetry between X, Y, and Z, we may assume that $X=1, Y=0$, and $Z=0$. Let i_{X} be the index such that $X=v_{i_{X}}$ or $X=\overline{v_{i_{X}}}$, let i_{Y} be such that $Y=v_{i_{Y}}$ or $Y=$ $\overline{v_{i_{Y}}}$, and let i_{Z} be such that $Z=v_{i_{Z}}$ or $Z=\overline{v_{i_{Z}}}$. Note that i_{X}, i_{Y}, i_{Z} are all distinct, since we assume that no variable appears more than once in each clause. Thus we have that $\phi_{\sigma}\left(\beta_{X}^{j}\right)=b_{1}^{j}, \phi_{\sigma}\left(\beta_{\bar{Y}}^{j}\right)=b_{2}^{j}, \phi_{\sigma}\left(\beta_{\bar{Z}}^{j}\right)=b_{3}^{j}$, $\phi_{\sigma}\left(\gamma_{1}^{j}\right)=g_{1}^{j}, \phi_{\sigma}\left(\gamma_{2}^{j}\right)=g_{2}^{j}, \phi_{\sigma}\left(\gamma_{3}^{j}\right)=g_{3}^{j}$, and $\phi_{\sigma}\left(\lambda^{j}\right)=\ell_{j}$. (See Figure 33.) Also, $\left\{\phi_{\sigma}\left(\alpha_{X}\right), \phi_{\sigma}\left(\alpha_{\bar{X}}\right), \phi_{\sigma}\left(\beta_{\bar{X}}^{j}\right)\right\} \subseteq \mathcal{A}_{i_{X}},\left\{\phi_{\sigma}\left(\alpha_{Y}\right), \phi_{\sigma}\left(\alpha_{\bar{Y}}\right), \phi_{\sigma}\left(\beta_{Y}^{j}\right)\right\} \subseteq \mathcal{A}_{i_{Y}}$, and $\left\{\phi_{\sigma}\left(\alpha_{Z}\right), \phi_{\sigma}\left(\alpha_{\bar{Z}}\right), \phi_{\sigma}\left(\beta_{Z}^{j}\right)\right\} \subseteq \mathcal{A}_{i_{Z}}$. First, consider $K_{X}^{j} \mid K_{X}^{j}$ and $K_{X}^{j} \mid L_{X}^{j}$. Recall that $K_{\bar{X}}^{j}=\left\{\beta_{X}^{j}, \gamma_{1}^{j}\right\}, K_{X}^{j}=\left\{\beta_{\bar{X}}^{j}, \lambda^{j}\right\}$, and $L_{X}^{j}=\left\{\beta_{\bar{X}}^{j}, \gamma_{2}^{j}\right\}$. Also, recall that $\phi_{\sigma}\left(\beta_{\bar{X}}^{j}\right) \in \mathcal{A}_{i_{X}}$. Thus it follows that $\phi_{\sigma}\left(K_{X}^{j}\right) \cup \phi_{\sigma}\left(L_{X}^{j}\right)$ and $\phi_{\sigma}\left(K_{\bar{X}}^{j}\right)$ are in different components of $T_{I}-x_{4}^{j} x_{6}^{j}$. Now, consider $K_{\bar{Y}}^{j} \mid K_{Y}^{j}$ and $K_{\bar{Y}}^{j} \mid L_{Y}^{j}$. Recall that $K_{\bar{Y}}^{j}=\left\{\beta_{Y}^{j}, \gamma_{2}^{j}\right\}, K_{Y}^{j}=\left\{\beta_{\bar{Y}}^{j}, \lambda^{j}\right\}$, and $L_{Y}^{j}=\left\{\beta_{\bar{Y}}^{j}, \gamma_{3}^{j}\right\}$ where $\phi_{\sigma}\left(\beta_{Y}^{j}\right) \in \mathcal{A}_{i_{Y}}$. Thus, $\phi_{\sigma}\left(K_{Y}^{j}\right) \cup \phi_{\sigma}\left(L_{Y}^{j}\right)$ and $\phi_{\sigma}\left(K_{Y}^{j}\right)$ are in different components of $T_{I}-x_{1}^{j} x_{2}^{j}$. Similarly, consider $K_{\bar{Z}}^{j} \mid K_{Z}^{j}$ and $K_{Z}^{j} \mid L_{Z}^{j}$. Recall that $K_{Z}^{j}=\left\{\beta_{Z}^{j}, \gamma_{3}^{j}\right\}, K_{Z}^{j}=\left\{\beta_{Z}^{j}, \lambda^{j}\right\}$, and $L_{Z}^{j}=\left\{\beta_{Z}^{j}, \gamma_{1}^{j}\right\}$ where $\phi_{\sigma}\left(\beta_{Z}^{j}\right) \in \mathcal{A}_{i_{Z}}$. Thus, $\phi_{\sigma}\left(K_{Z}^{j}\right) \cup \phi_{\sigma}\left(L_{Z}^{j}\right)$ and $\phi_{\sigma}\left(K_{Z}^{j}\right)$ are in different components of $T_{I}-x_{2}^{j} x_{4}^{j}$. Now, consider $S_{Y}^{j} \mid K_{X}^{j}$ and $S_{Y}^{j} \mid L_{Z}^{j}$. Recall that $S_{Y}^{j}=\left\{\alpha_{Y}, \beta_{Y}^{j}\right\}, K_{X}^{j}=\left\{\beta_{\bar{X}}^{j}, \lambda^{j}\right\}$ and $L_{Z}^{j}=\left\{\beta_{\bar{Z}}^{j}, \gamma_{1}^{j}\right\}$. Also, $\left\{\phi_{\sigma}\left(\alpha_{Y}\right), \phi_{\sigma}\left(\beta_{Y}^{j}\right)\right\} \subseteq$ $\mathcal{A}_{i_{Y}}$ whereas $\phi_{\sigma}\left(\beta_{X}^{j}\right) \in \mathcal{A}_{i_{X}}$. Thus, since $i_{X} \neq i_{Y}$, we conclude that $\phi_{\sigma}\left(S_{Y}^{j}\right)$
and $\phi_{\sigma}\left(K_{X}^{j}\right) \cup \phi_{\sigma}\left(L_{Z}^{j}\right)$ are in different components of $T_{I}-y_{i_{Y}} y_{i_{Y}}^{\prime}$. Similarly, we consider $S_{Z}^{j} \mid K_{Y}^{j}$ and $S_{Z}^{j} \mid L_{X}^{j}$. Recall that $S_{Z}^{j}=\left\{\alpha_{Z}, \beta_{Z}^{j}\right\}, K_{Y}^{j}=\left\{\beta_{\bar{Y}}^{j}, \lambda^{j}\right\}$, and $L_{X}^{j}=\left\{\beta_{\bar{X}}^{j}, \gamma_{2}^{j}\right\}$. Also, $\left\{\phi_{\sigma}\left(\alpha_{Z}\right), \phi_{\sigma}\left(\beta_{Z}^{j}\right)\right\} \subseteq \mathcal{A}_{i_{Z}}$, and $\phi_{\sigma}\left(\beta_{\bar{X}}^{j}\right) \in \mathcal{A}_{i_{X}}$. Thus, since $i_{X} \neq i_{Z}$, we conclude that $\phi_{\sigma}\left(S_{Z}^{j}\right)$ and $\phi_{\sigma}\left(K_{Y}^{j}\right) \cup \phi_{\sigma}\left(L_{X}^{j}\right)$ are in different components of $T_{I}-y_{i_{Z}} y_{i_{Z}}^{\prime}$. Finally, consider $S_{X}^{j} \mid K_{Z}^{j}$ and $S_{X}^{j} \mid L_{Y}^{j}$. Recall that $S_{X}^{j}=\left\{\alpha_{X}, \beta_{X}^{j}\right\}, K_{Z}^{j}=\left\{\beta_{\bar{Z}}^{j}, \lambda^{j}\right\}$ and $L_{Y}^{j}=\left\{\beta_{\bar{Y}}^{j}, \gamma_{3}^{j}\right\}$ where $\phi_{\sigma}\left(\alpha_{X}\right) \in \mathcal{A}_{i_{X}}$. Thus, $\phi_{\sigma}\left(S_{X}^{j}\right)$ and $\phi_{\sigma}\left(K_{Z}^{j}\right)$ are in different components of $T_{I}-x_{4}^{j} x_{5}^{j}$, whereas $\phi_{\sigma}\left(S_{X}^{j}\right)$ and $\phi_{\sigma}\left(L_{Y}^{j}\right)$ are in different components of $T_{I}-x_{2}^{j} x_{3}^{j}$.

This proves that \mathcal{T}_{σ} displays \mathcal{Q}_{I}. It remains to prove that \mathcal{T}_{σ} is distinguished by \mathcal{Q}_{I}. First, consider the edge $y_{i} y_{i}^{\prime}$ for $i \in\{1 \ldots n\}$. Recall that $A_{i}=\left\{\alpha_{v_{i}}, \alpha_{\overline{v_{i}}}\right\}$ and $B=\{\delta, \mu\}$. By definition, we have $\phi_{\sigma}\left(A_{i}\right)=\left\{a_{i}, a_{i}^{\prime}\right\}$ and $\phi_{\sigma}(B)=\left\{y_{0}, u_{0}\right\}$. Note that every connected subgraph of T_{I} that contains both y_{0} and u_{0} must also contain y_{i}, since it lies on the path between u_{0} and y_{0} in T_{I}. Likewise, every connected subgraph of T_{I} that contains a_{i}, a_{i}^{\prime} also contains y_{i}^{\prime}. Thus, this shows that the edge $y_{i} y_{i}^{\prime}$ is distinguished by $A_{i} \mid B$ which is in \mathcal{Q}_{I}. We similarly consider the edge $u_{j} x_{1}^{j}$ for $j \in\{1 \ldots m\}$. By the definition of ϕ_{σ}, we observe that there exists $p \in\{1,2,3\}$ such that $\phi_{\sigma}\left(\gamma_{p}^{j}\right)=g_{2}^{j}$. We recall that $B=\{\delta, \mu\}$ and $D_{p}^{j}=\left\{\gamma_{p}^{j}, \lambda^{j}\right\}$. Thus, $\phi_{\sigma}(B)=\left\{y_{0}, u_{0}\right\}$ and $\phi_{\sigma}\left(D_{p}^{j}\right)=\left\{g_{2}^{j}, \ell^{j}\right\}$. Since g_{j}^{2} is adjacent to x_{1}^{j}, and u_{j} lies on the path between y_{0} and u_{0}, it follows that the edge $u_{j} x_{1}^{j}$ is distinguished by $D_{p}^{j} \mid B$ which is in \mathcal{Q}_{I}.

Now, consider $i \in\{1 \ldots n\}$, and let $j_{1}<j_{2}<\ldots<j_{t}$ be the elements of Δ_{i}. Let $W \in\left\{v_{i}, \overline{v_{i}}\right\}$ be such that $W=1$. Then we have $\phi_{\sigma}\left(\alpha_{W}\right)=a_{i}$, $\phi_{\sigma}\left(\alpha_{\bar{W}}\right)=a_{i}^{\prime}$, and $\phi_{\sigma}\left(\beta_{\bar{W}}^{j}\right)=c_{i}^{j}$ for all $j \in \Delta_{i}$. Recall that $S_{\bar{W}}^{j}=\left\{\alpha_{\bar{W}}, \beta_{\bar{W}}^{j}\right\}$ and $K_{W}^{j} \subseteq\left\{\beta_{\bar{W}}^{j}, \gamma_{1}^{j}, \gamma_{2}^{j}, \gamma_{3}^{j}, \lambda^{j}\right\}$ where $\left\{\phi_{\sigma}\left(\gamma_{1}^{j}\right), \phi_{\sigma}\left(\gamma_{2}^{j}\right), \phi_{\sigma}\left(\gamma_{3}^{j}\right), \phi_{\sigma}\left(\lambda^{j}\right)\right\} \subseteq \mathcal{B}_{j}$ for all $j \in \Delta_{i}$. Thus, for each $k \in\{1 \ldots t-1\}$, it follows that $\phi_{\sigma}\left(\beta_{\bar{W}}^{j_{k}}\right)$ is adjacent to $z_{i}^{j_{k}}$ whereas $\phi_{\sigma}\left(\beta_{\bar{W}}^{j_{k+1}}\right)$ is adjacent to $z_{i}^{j_{k+1}}$. This proves that the edge $z_{i}^{j_{k}} z_{i}^{j_{k+1}}$ is distinguished by $\left.S \frac{j_{k}}{W} \right\rvert\, K_{W}^{j_{k+1}}$. Similarly, recall that $S_{W}^{j}=\left\{\alpha_{W}, \beta_{W}^{j}\right\}$ where $\phi_{\sigma}\left(\beta_{W}^{j}\right) \in \mathcal{B}_{j}$ and $\phi_{\sigma}\left(\alpha_{W}\right)$ is adjacent to y_{i}^{\prime}. Thus, the edge $z_{i}^{j_{t}} y_{i}^{\prime}$ is distinguished by $S_{W}^{j_{t}} \mid S_{\bar{W}}^{j_{t}}$. Further, if $i \geq 2$, then we recall that $H_{v_{i-1}}=\left\{\alpha_{v_{i-1}}, \delta\right\}$ where $\phi_{\sigma}\left(\alpha_{v_{i-1}}\right) \in \mathcal{A}_{i-1}$ and $\phi_{\sigma}(\delta)=y_{0}$. Thus $y_{i-1} y_{i}$ is distinguished by $H_{v_{i-1}} \mid S_{W}^{j_{t}}$.

Now, consider $j \in\{1, \ldots m\}$ where $\mathcal{C}_{j}=X \vee Y \vee Z$. By the rotational symmetry, we may assume that $X=1$ and $Y=Z=0$. Thus $\phi_{\sigma}\left(\beta_{X}^{j}\right)=b_{1}^{j}, \phi_{\sigma}\left(\beta_{\bar{Y}}^{j}\right)=b_{2}^{j}$, $\phi_{\sigma}\left(\beta_{\bar{Z}}^{j}\right)=b_{3}^{j}, \phi_{\sigma}\left(\gamma_{1}^{j}\right)=g_{1}^{j}, \phi_{\sigma}\left(\gamma_{2}^{j}\right)=g_{2}^{j}, \phi_{\sigma}\left(\gamma_{3}^{j}\right)=g_{3}^{j}$, and $\phi_{\sigma}\left(\lambda^{j}\right)=\ell_{j}$. (Again see Figure 3c.) Recall that $K_{Y}^{j}=\left\{\beta_{\bar{Y}}^{j}, \lambda^{j}\right\}$ and $K_{\bar{Y}}^{j}=\left\{\beta_{Y}^{j}, \gamma_{2}^{j}\right\}$ where $\phi_{\sigma}\left(\beta_{Y}^{j}\right) \notin \mathcal{B}_{j}$. This shows that the edge $x_{1}^{j} x_{2}^{j}$ is distinguished by $K_{\bar{Y}}^{j} \mid K_{Y}^{j}$. Recall that $S_{X}^{j}=\left\{\alpha_{X}, \beta_{X}^{j}\right\}, L_{Y}^{j}=\left\{\beta_{\bar{Y}}^{j}, \gamma_{3}^{j}\right\}$, and $K_{Z}^{j}=\left\{\beta_{\bar{Z}}^{j}, \lambda^{j}\right\}$ where $\phi_{\sigma}\left(\alpha_{X}\right) \notin \mathcal{B}_{j}$. Thus, the edge $x_{2}^{j} x_{3}^{j}$ is distiguished by $S_{X}^{j} \mid L_{Y}^{j}$ whereas the edge $x_{4}^{j} x_{5}^{j}$ is distinguished by $S_{X}^{j} \mid K_{Z}^{j}$. Recall that $K_{\bar{Z}}^{j}=\left\{\beta_{Z}^{j}, \gamma_{3}^{j}\right\}$ and $L_{Z}^{j}=\left\{\beta_{\bar{Z}}^{j}, \gamma_{1}^{j}\right\}$ where $\phi_{\sigma}\left(\beta_{Z}^{j}\right) \notin \mathcal{B}_{j}$. Thus, the edge $x_{2}^{j} x_{4}^{j}$ is distinguished by $K_{Z}^{j} \mid L_{Z}^{j}$. Recall that
$K_{X}^{j}=\left\{\beta_{\bar{X}}^{j}, \lambda^{j}\right\}$ and $K_{\bar{X}}^{j}=\left\{\beta_{X}^{j}, \gamma_{1}^{j}\right\}$ where $\phi_{\sigma}\left(\beta_{X}^{j}\right) \notin \mathcal{B}_{j}$. Thus, the edge $x_{4}^{j} x_{6}^{j}$ is distinguished by $K_{\bar{X}}^{j} \mid K_{X}^{j}$. Further, if $j<m$, recall that $F^{j+1}=\left\{\lambda^{j+1}, \mu\right\}$ where $\phi_{\sigma}\left(\lambda^{j+1}\right) \in \mathcal{B}_{j+1}$ and $\phi_{\sigma}(\mu)=u_{0}$. Thus $u_{j} u_{j+1}$ is distinguished by $K_{X}^{j} \mid F^{j+1}$. Finally, recall that $H_{v_{n}}=\left\{\alpha_{v_{n}}, \delta\right\}$ and $F^{1}=\left\{\lambda^{1}, \mu\right\}$. So, $\phi_{\sigma}\left(H_{v_{n}}\right) \subseteq \mathcal{A}_{n} \cup$ $\left\{y_{0}\right\}$ and $\phi_{\sigma}\left(F^{1}\right) \subseteq \mathcal{B}_{j} \cup\left\{u_{0}\right\}$. Thus, the edge $y_{n} u_{1}$ is distinguished by $\bar{H}_{v_{n}} \mid F^{1}$. This concludes the proof.

5 Proof of Theorem 5

To prove Theorem [5] we need to introduce some additional tools. The following is a standard property of minimal chordal completions.

Lemma 1. Let G^{\prime} be a chordal completion of G. Then G^{\prime} is a minimal chordal completion of G if and only if for all $u v \in E\left(G^{\prime}\right) \backslash E(G)$, the vertices u, v have at least two non-adjacent common neighbours in G^{\prime}.

Proof. Suppose that G^{\prime} is a minimal chordal completion. Let $u v \in E\left(G^{\prime}\right) \backslash E(G)$, and let $G^{\prime \prime}=G^{\prime}-u v$. Since G^{\prime} is a minimal chordal completion and $u v \notin E(G)$, we conclude that $G^{\prime \prime}$ is not chordal. Thus, there exists a set $C \subseteq V\left(G^{\prime}\right)$ that induces a cycle in $G^{\prime \prime}$. Since G^{\prime} is chordal, C does not induce a cycle in G^{\prime}. This implies $u, v \in C$, and hence, $u v$ is the unique chord of $G^{\prime}[C]$. So, we conclude $|C|=4$, because otherwise $G^{\prime}[C]$ contains an induced cycle. Let x, y be the two vertices of $C \backslash\{u, v\}$. Clearly, $x y \notin E\left(G^{\prime}\right)$ and both x and y are common neighbours of u, v as required.

Conversely, suppose that G^{\prime} is not a minimal chordal completion. Then by [23], there exists an edge $u v \in E\left(G^{\prime}\right) \backslash E(G)$ such that $G^{\prime}-u v$ is a chordal graph. Therefore, u, v do not have non-adjacent common neighbours x, y in G^{\prime}, since otherwise $\{u, x, v, y\}$ induces a 4 -cycle in $G^{\prime}-u v$, which is impossible since we assume that $G^{\prime}-u v$ is chordal. That concludes the proof.

Using this tool, we prove the following two important lemmas.
Lemma 2. Let G be a graph and G^{\prime} be a minimal chordal completion of G. If G contains vertices u, v with $N_{G}(u) \subseteq N_{G}(v)$, then also $N_{G^{\prime}}(u) \subseteq N_{G^{\prime}}(v)$.

Proof. Let u, v be vertices of G with $N_{G}(u) \subseteq N\left(G_{v}\right)$. Let $B=N_{G^{\prime}}(u) \backslash N_{G^{\prime}}(v)$ and $A=N_{G^{\prime}}(u) \cap N_{G^{\prime}}(v)$. Assume that $B \neq \emptyset$, and let A_{1} denote the vertices of A with at least one neighbour in B. Look at the graph $G_{1}=G^{\prime}\left[A_{1} \cup B \cup\{v\}\right]$.

By the definition of A_{1} and B, the vertex v is adjacent to each vertex of A_{1} and non-adjacent to each vertex of B. Hence, no vertex of A_{1} is simplicial in G_{1}, since it is adjacent to v and at least one vertex in B.

Now, consider $w \in B$. By the definition of B, we have that w is adjacent in G^{\prime} to u but not v. Thus, $u w$ is not an edge of G, since $N_{G}(u) \subseteq N_{G}(v)$ and $N_{G}(v) \subseteq N_{G^{\prime}}(v)$. So, by Lemma 1, the vertices u, w have non-adjacent common neighbours x, y in G^{\prime}. Since x, y are adjacent to u, we have $x, y \in A \cup B$. In fact,
since w has no neighbours in $A \backslash A_{1}$, we conclude $x, y \in A_{1} \cup B$. Thus, w is not a simplicial vertex in G_{1}, and hence, no vertex of B is simplicial in G_{1}.

This proves that no vertex of G_{1}, except possibly for v, is simplicial in G_{1}. Also, G_{1} is not a complete graph, since $B \neq \emptyset$, and v has no neighbour in B. Recall that G_{1} is chordal because G^{\prime} is. Thus, by the result of Dirac [8, G_{1} must contain at least two non-adjacent simplicial vertices, but that is impossible. Hence, we must conclude $B=\emptyset$. In other words, $N_{G^{\prime}}(u) \subseteq N_{G^{\prime}}(v)$.

Lemma 3. Let G be a graph, and let H be a graph obtained from G by substituting complete graphs for the vertices of G. Then there is a one-to-one correspondence between minimal chordal completions of G and H.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of G. Since H is obtained from G by substituting complete graphs, there is a partition $C_{1} \cup \ldots \cup C_{n}$ of $V(H)$ where each C_{i} induces a complete graph in H, and for every distinct $i, j \in\{1 \ldots n\}$:
(\star) each $x \in C_{i}, y \in C_{j}$ satisfy $v_{i} v_{j} \in E(G)$ if and only if $x y \in E(H)$.
Let G^{\prime} be any graph with vertex set $V(G)$, and let $H^{\prime}=\Psi\left(G^{\prime}\right)$ be the graph constructed from G^{\prime} by, for each $i \in\{1 \ldots n\}$, substituting C_{i} for the vertex v_{i}, and making C_{i} into a complete graph. Thus, for every distinct $i, j \in\{1 \ldots n\}$
$(\star \star)$ each $x \in C_{i}, y \in C_{j}$ satisfy $v_{i} v_{j} \in E\left(G^{\prime}\right)$ if and only if $x y \in E\left(H^{\prime}\right)$.
We prove that Ψ is a bijection between the minimal chordal completions of G and H which will yield the claim of the lemma.

Let G^{\prime} be a minimal chordal completion of G, and let $H^{\prime}=\Psi\left(G^{\prime}\right)$. Clearly, H^{\prime} is chordal, since G^{\prime} is chordal, and chordal graphs are closed under the operation of substituting a complete graph for a vertex. Also, observe that $V(H)=V\left(H^{\prime}\right)$, and if $x y \in E(H)$, then either $x, y \in C_{i}$ for some $i \in\{1 \ldots n\}$, in which case $x y \in E\left(H^{\prime}\right)$, since C_{i} induces a complete graph in H^{\prime}, or we have $x \in C_{i}$, $y \in C_{j}$ for distinct $i, j \in\{1 \ldots n\}$ in which case $v_{i} v_{j} \in E(G)$ by (\star) implying $v_{i} v_{j} \in E\left(G^{\prime}\right)$, since $E(G) \subseteq E\left(G^{\prime}\right)$, and hence, $x y \in E\left(H^{\prime}\right)$ by ($\star \star$). This proves that $E(H) \subseteq E\left(H^{\prime}\right)$, and thus, H^{\prime} is a chordal completion of H.

To prove that H^{\prime} is a minimal chordal completion of H, it suffices, by Lemma 11, to show that for all $x y \in E\left(H^{\prime}\right) \backslash E(H)$, the vertices x, y have at least two non-adjacent common neighbours in H^{\prime}. Consider $x y \in E\left(H^{\prime}\right) \backslash E(H)$, and let $i, j \in\{1 \ldots n\}$ be such that $x \in C_{i}$ and $y \in C_{j}$. Since $x y \notin E(H)$ and C_{i} induces a complete graph in H, we conclude $i \neq j$. Thus, by ($\star \star$), we have $v_{i} v_{j} \in E\left(G^{\prime}\right)$, and so, $v_{i} v_{j} \in E\left(G^{\prime}\right) \backslash E(G)$ by (\star). Now, recall that G^{\prime} is a minimal chordal completion of G. Thus, by Lemma [1 the vertices v_{i}, v_{j} have non-adjacent common neighbours v_{k}, v_{ℓ} in G^{\prime}. So, we let $w \in C_{k}$ and $z \in C_{\ell}$. By $(\star \star)$, we conclude $w z \notin E\left(H^{\prime}\right)$, since $v_{k} v_{\ell} \notin E\left(G^{\prime}\right)$. Moreover, ($\star \star$) also implies that z, w are common neighbours of x, y, since v_{k}, v_{ℓ} are common neighbours of v_{i}, v_{j}. This proves that x, y have non-adjacent common neighbours, and thus shows that H^{\prime} is a minimal chordal completion of H.

Conversely, let H^{\prime} be a minimal chordal completion of H. Let G^{\prime} be the graph with $V\left(G^{\prime}\right)=V(G)$ such that $v_{i} v_{j} \in E\left(G^{\prime}\right)$ if and only if there exists $x \in C_{i}$,
$y \in C_{j}$ with $x y \in E\left(H^{\prime}\right)$. Let $i \in\{1 \ldots n\}$ and consider vertices $x, y \in C_{i}$ in the graph H. Recall that C_{i} induces a complete graph in H. This implies that $x y \in E(H)$ and both x and y are adjacent in H to every $z \in C_{i} \backslash\{x, y\}$. Further, by (\star), if $z \in C_{j}$ where $j \neq i$, then x, y are both adjacent to z if $v_{i} v_{j} \in E(G)$, and x, y are both non-adjacent to z if $v_{i} v_{j} \notin E(G)$. This shows that $N_{H}(x)=N_{H}(y)$, and hence, $N_{H^{\prime}}(x)=N_{H^{\prime}}(y)$ by Lemma 2 and the fact that H^{\prime} is a minimal chordal completion of H. This proves that $H^{\prime}=\Psi\left(G^{\prime}\right)$, and hence, G^{\prime} is chordal. In fact, $E(G) \subseteq E\left(G^{\prime}\right)$ by (\star) and $(\star \star)$. Thus G^{\prime} is a chordal completion of G.

It remains to show that G^{\prime} is a minimal chordal completion of G. Again, it suffices to show that for each $v_{i} v_{j} \in E\left(G^{\prime}\right) \backslash E(G)$, the vertices v_{i}, v_{j} have nonadjacent common neighbours in G^{\prime}. Consider $v_{i} v_{j} \in E\left(G^{\prime}\right) \backslash E(G)$, and let $x \in C_{i}$ and $y \in C_{j}$. So, $i \neq j$ and $x y \in E\left(H^{\prime}\right)$ by $(\star \star)$. Further, $x y \in E\left(H^{\prime}\right) \backslash E(H)$ by ((\star) and the fact that $v_{i} v_{j} \notin E(G)$. So, the vertices x, y have non-adjacent common neighbours w, z in H^{\prime} by Lemma 2 and the fact that H^{\prime} is a minimal chordal completion of H. Let $k, \ell \in\{1 \ldots n\}$ be such that $w \in C_{k}$ and $z \in C_{\ell}$. Since $x z \in E\left(H^{\prime}\right)$ but $w x \notin E\left(H^{\prime}\right)$, we conclude by $(\star \star)$ that $i \neq k$. By symmetry, also $i \neq \ell, j \neq k$, and $j \neq \ell$. Further, $k \neq \ell$, since $w x \notin E\left(H^{\prime}\right)$ and C_{k} induces a complete graph in H^{\prime}. Thus, $(\star \star)$ implies that v_{k}, v_{ℓ} are non-adjacent common neighbours of v_{i}, v_{j}, since w, z are non-adjacent common neighbours of x, y. This proves that G^{\prime} is indeed a minimal chordal completion of G.

That concludes the proof.
Now, we are finally ready to prove Theorem 5.
Proof of Theorem 5. We observe that the graph $\operatorname{int}(\mathcal{Q})$ is obtained by substituting complete graphs for the vertices of $\operatorname{int}^{*}(\mathcal{Q})$. Thus, by Lemma 3, there is a bijection Ψ between the minimal chordal completions of $\operatorname{int}(\mathcal{Q})$ and $\operatorname{int}^{*}(\mathcal{Q})$.

By translating the condition ($\star \star$) from the proof of Lemma 3, we obtain that if G^{\prime} is a minimal chordal completion of $\operatorname{int}^{*}(\mathcal{Q})$, then $H^{\prime}=\Psi\left(G^{\prime}\right)$ is the graph whose vertex set is that of $\operatorname{int}(\mathcal{Q})$ with the property that for all $A, A^{\prime} \in V\left(G^{\prime}\right)$
$(\star \star)$ all meaningful $\pi, \pi^{\prime} \in \mathcal{Q}$ satisfy $A A^{\prime} \in V\left(G^{\prime}\right) \Longleftrightarrow(A, \pi)\left(A^{\prime}, \pi^{\prime}\right) \in V\left(H^{\prime}\right)$.
We show that Ψ is a bijection between the minimal restricted chordal completions of $\operatorname{int}(\mathcal{Q})$ and the minimal chordal sandwiches of (int* (\mathcal{Q}), forb (\mathcal{Q})).

First, let H^{\prime} be a minimal restricted chordal completion of $\operatorname{int}(\mathcal{Q})$. Then $G^{\prime}=$ $\Psi^{-1}\left(H^{\prime}\right)$ is a minimal chordal completion of int* (\mathcal{Q}). Consider two cells A_{1}, A_{2} of $\pi \in \mathcal{Q}$. Since H^{\prime} is a restricted chordal completion of $\operatorname{int}(\mathcal{Q})$, we have that $\left(A_{1}, \pi\right)$ is not adjacent to $\left(A_{2}, \pi\right)$ in H^{\prime}. Thus, $A_{1} A_{2} \notin E\left(G^{\prime}\right)$ by ($\left.\star \star\right)$. This shows that G^{\prime} contains no edge of forb (\mathcal{Q}). Thus G^{\prime} is a minimal chordal sandwich of (int* (\mathcal{Q}), forb (\mathcal{Q})), since it is also a minimal chordal completion of int* (\mathcal{Q}).

Conversely, let G^{\prime} be a minimal chordal sandwich of $\left(\operatorname{int}^{*}(\mathcal{Q})\right.$, forb $\left.(\mathcal{Q})\right)$. Then $H^{\prime}=\Psi\left(G^{\prime}\right)$ is a minimal chordal completion of $\operatorname{int}(\mathcal{Q})$. Consider two cells A_{1}, A_{2} of $\pi \in \mathcal{Q}$. Since $A_{1} A_{2}$ is an edge of forb (\mathcal{Q}), and G^{\prime} is a minimal chordal sandwich of ($\operatorname{int}^{*}(\mathcal{Q})$,forb (\mathcal{Q})), we have $A_{1} A_{2} \notin E\left(G^{\prime}\right)$. Thus, $\left(A_{1}, \pi\right)\left(A_{2}, \pi\right) \notin E\left(H^{\prime}\right)$ by $(\star \star)$. This shows that H^{\prime} is a minimal restricted chordal completion of $\operatorname{int}(\mathcal{Q})$.

That concludes the proof.

6 Proof of Theorem 8

For the proof, we shall need the following simple properties of chordal graphs.
Lemma 4. Let G be a chordal graph, and let a, b be non-adjacent vertices of G. Then every two common neighbours of a and b are adjacent.

Lemma 5. Let G be a chordal graph, and $C=\{a, b, c, d, e\}$ be a 5-cycle in G with edges $a b, b c, c d, d e, a e$. Then
(a) $b d$, ce $\notin E(G)$ implies $a c, a d \in E(G)$, and
(b) $b d$, be $\notin E(G)$ implies ac $\in E(G)$.

Lemma 6. Let G be a chordal graph, and $C=\{a, b, c, d, e, f\}$ be a 6 -cycle in G with edges $a b, b c, c d, d e, e f, a f$. Then
(a) $b d, c e, d f \notin E(G)$ implies $a c, a d, a e \in E(G)$,
(b) $b d$, ce, cf $\notin E(G)$ implies ac, ad $\in E(G)$, and
(c) be, bf , ce, cf $\notin E(G)$ implies ad $\in E(G)$.

To assist the reader in following the subsequent arguments, we list here the cliques of $\operatorname{int}^{*}\left(\mathcal{Q}_{I}\right)$ according to the elements from which they arise:
a) for each $i \in\{1 \ldots n\}$ where $j_{1}, j_{2}, \ldots, j_{k}$ are the elements of Δ_{i} :

$$
\alpha_{v_{i}}: H_{v_{i}}, A_{i}, S_{v_{i}}^{j_{1}}, S_{v_{i}}^{j_{2}}, \ldots, S_{v_{i}}^{j_{t}}, \quad \alpha_{\overline{v_{i}}}: H_{\overline{v_{i}}}, A_{i}, S_{\overline{v_{i}}}^{j_{1}}, S_{\overline{v_{i}}}^{j_{2}}, \ldots, S_{\overline{v_{i}}}^{j_{t}}
$$

b) for each $j \in\{1 \ldots m\}$ where $\mathcal{C}_{j}=X \vee Y \vee Z$:

$$
\begin{array}{lll}
\lambda^{j}: K_{X}^{j}, K_{Y}^{j}, K_{Z}^{j}, D_{1}^{j}, D_{2}^{j}, D_{3}^{j}, F^{j} & \\
\gamma_{1}^{j}: K_{\bar{X}}^{j}, L_{Z}^{j}, D_{1}^{j} & \gamma_{2}^{j}: K_{\bar{Y}}^{j}, L_{X}^{j}, D_{2}^{j} & \gamma_{3}^{j}: K_{\bar{Z}}^{j}, L_{Y}^{j}, D_{3}^{j} \\
\beta_{X}^{j}: S_{X}^{j}, K_{\bar{X}}^{j} & \beta_{Y}^{j}: S_{Y}^{j}, K_{\bar{Y}}^{j} & \beta_{Z}^{j}: S_{Z}^{j}, K_{\bar{Z}}^{j} \\
\beta_{\bar{X}}^{j}: S_{\bar{X}}^{j}, K_{X}^{j}, L_{X}^{j} & \beta_{\bar{Y}}^{j}: S_{\bar{Y}}^{j}, K_{Y}^{j}, L_{Y}^{j} & \beta_{\bar{Z}}^{j}: S_{\bar{Z}}^{j}, K_{Z}^{j}, L_{Z}^{j}
\end{array}
$$

c) $\delta: B, H_{v_{1}}, \ldots, H_{v_{n}}, H_{\overline{v_{1}}}, \ldots, H_{\overline{v_{n}}}$
$\mu: B, F^{1}, \ldots, F^{m}$
We start with a useful lemma describing an important property of int* $\left(\mathcal{Q}_{I}\right)$.
Lemma 7. Let G^{\prime} be a chordal sandwich of (int* $\left(\mathcal{Q}_{I}\right)$, forb $\left.\left(\mathcal{Q}_{I}\right)\right)$, and $1 \leq i \leq n$.
(a) there is $W \in\left\{v_{i}, \overline{v_{i}}\right\}$ such that for all $j \in \Delta_{i}, K_{W}^{j}$ is adjacent to B.
(b) for each $j \in \Delta_{i}$, and each $W \in\left\{v_{i}, \overline{v_{i}}\right\}$, if K_{W}^{j} is adjacent to B, then the vertices $S_{W}^{j}, K_{W}^{j}, L_{W}^{j}$ (if exists) are adjacent to $B, A_{i}, H_{W}, H_{\bar{W}}, F^{j}$.

Proof. Let $i \in\{1 \ldots n\}$. First, we observe the following.
(*) for each $j \in \Delta_{i}$, each $W \in\left\{v_{i}, \overline{v_{i}}\right\}$, at least one of $S_{\bar{W}}^{j}, K_{W}^{j}$ is adjacent to B.
We may assume that $S_{\bar{W}}^{j}$ is not adjacent to B, otherwise we are done. Observe that $S_{\bar{W}}^{j}$ is adjacent to K_{W}^{j}, since $\beta_{\bar{W}}^{j} \in K_{W}^{j} \cap S_{\bar{W}}^{j}$. Moreover, there exists $p \in\{1,2,3\}$ such that $K_{W}^{j} \cap D_{p}^{j}$ contains λ^{j} or γ_{p}^{j}, implying that K_{W}^{j} is adjacent to D_{p}^{j}. Also, F^{j} is adjacent to D_{p}^{j} and B, since $\lambda^{j} \in D_{p}^{j} \cap F^{j}$ and $\mu \in B \cap F^{j}$,
respectively. Further, $H_{\bar{W}}$ is adjacent to $S_{\bar{W}}^{j}$ and B, since $\alpha_{\bar{W}} \in H_{\bar{W}} \cap S_{\bar{W}}^{j}$ and $\delta \in H_{\bar{W}} \cap B$. Finally, $H_{\bar{W}}$ is not adjacent to F^{j}, and B is not adjacent to D_{p}^{j}, since $H_{\bar{W}} \mid F^{j}$ and $D_{p}^{j} \mid B$ are in \mathcal{Q}_{I}. So, by Lemma 6 applied to the cycle $\left\{K_{W}^{j}\right.$, $\left.S_{\bar{W}}^{j}, H_{\bar{W}}, B, F^{j}, D_{p}^{j}\right\}$, we conclude that K_{W}^{j} is adjacent to B. This proves (\star).

Now, to prove (a), suppose for contradiction that there are $j, j^{\prime} \in \Delta_{i}$ such that both $K_{\frac{j}{v_{i}}}^{j}$ and $K_{v_{i}}^{j^{\prime}}$ are not adjacent to B. Then by (\star), both $S_{v_{i}}^{j}$ and $S_{\frac{j_{i}}{j_{i}}}$ are adjacent to B. Note also that A_{i} is adjacent to both $S_{v_{i}}^{j}, S_{\bar{v}_{i}}^{j^{\prime}}$, since $\alpha_{v_{i}} \in A_{i} \cap S_{v_{i}}^{j}$ and $\alpha_{\overline{v_{i}}} \in A_{i} \cap S_{\overline{v_{i}}}^{j^{\prime}}$. Further, note that $A_{i} B$ and $S_{v_{i}}^{j} S_{\overline{v_{i}}}^{j^{\prime}}$ are not edges of G^{\prime}, since $A_{i} \mid B$ and $S_{v_{i}}^{j} \mid S_{\overline{v_{i}}}^{j^{\prime}}$ are in \mathcal{Q}_{I}. But then G^{\prime} contains an induced 4-cycle on $\left\{S_{v_{i}}^{j}\right.$, $\left.A_{i}, S \frac{j^{\prime}}{v_{i}}, B\right\}$, which is impossible, since G^{\prime} is chordal. This proves (a).

For (b), suppose that K_{W}^{j} is adjacent to B for $j \in \Delta_{i}$ and $W \in\left\{v_{i}, \overline{v_{i}}\right\}$. First observe that K_{W}^{j} is adjacent to $S_{\bar{W}}^{j}$, and the vertex $K_{\bar{W}}^{j}$ is adjacent to S_{W}^{j}, since $\beta_{\bar{W}}^{j} \in K_{W}^{j} \cap S_{\bar{W}}^{j}$ and $\beta_{W}^{j} \in K_{\bar{W}}^{j} \cap S_{W}^{j}$. Moreover, there exists $p \in\{1,2,3\}$ such that $K_{W}^{j} \cap D_{p}^{j}$ and $K_{\bar{W}}^{j} \cap D_{p}^{j}$ contain γ_{p}^{j} and λ^{j}, respectively, or λ^{j} and γ_{p}^{j}, respectively. This implies that K_{W}^{j} and $K_{\bar{W}}^{j}$ are adjacent to D_{p}^{j}. Also, A_{i} is adjacent to S_{W}^{j} and $S_{\bar{W}}^{j}$, since $\alpha_{W} \in A_{i} \cap S_{W}^{j}$ and $\alpha_{\bar{W}} \in A_{i} \cap S_{\bar{W}}^{j}$. Further, note that $D_{p}^{j} B, A_{i} B, K_{W}^{j} K_{\bar{W}}^{j}$, and $S_{W}^{j} S_{\bar{W}}^{j}$ are not edges of G^{\prime}, since $D_{p}^{j}\left|B, A_{i}\right| B$, $K_{W}^{j} \mid K_{\bar{W}}^{j}$, and $S_{W}^{j} \mid S_{\bar{W}}^{j}$ are in \mathcal{Q}_{I}. This implies that $K_{\bar{W}}^{j}$ is not adjacent to B, since otherwise G^{\prime} contains an induced 4-cycle on $\left\{K_{W}^{j}, B, K_{\bar{W}}^{j}, D_{p}^{j}\right\}$. So, by (\star), we have that S_{W}^{j} is adjacent to B. Thus, Lemma 5 applied to $\left\{K_{W}^{j}, S_{\bar{W}}^{j}\right.$, $\left.A_{i}, S_{W}^{j}, B\right\}$ yields that K_{W}^{j} is adjacent to A_{i} and S_{W}^{j}. So, by Lemma 4 applied to $\left\{S_{W}^{j}, K_{W}^{j}, D_{p}^{j}, K_{\bar{W}}^{j}\right\}$, we have that S_{W}^{j} is adjacent to D_{p}^{j}.

Now, observe that $H_{W}, H_{\bar{W}}$ are adjacent to both A_{i} and B, since $\alpha_{W} \in$ $H_{W} \cap A_{i}, \alpha_{\bar{W}} \in H_{\bar{W}} \cap A_{i}$, and $\delta \in B \cap H_{W} \cap H_{\bar{W}}$. Thus, by Lemma 4 applied to $\left\{u, A_{i}, u^{\prime}, B\right\}$ where $u \in\left\{S_{W}^{j}, K_{W}^{j}\right\}$ and $u^{\prime} \in\left\{H_{W}, H_{\bar{W}}\right\}$, we conclude that S_{W}^{j} and K_{W}^{j} are adjacent to both H_{W} and $H_{\bar{W}}$. Similarly, we observe that F^{j} is adjacent to B and D_{p}^{j}, since $\mu \in F^{j} \cap B$ and $\lambda^{j} \in D_{p}^{j} \cap F^{j}$. Thus, Lemma 4 applied to $\left\{u, B, F^{j}, D_{p}^{j}\right\}$ yields that S_{W}^{j} and K_{W}^{j} are also adjacent to F^{j}.

Lastly, suppose that L_{W}^{j} exists. Then there exists $q \in\{1,2,3\}$ such that $\gamma_{q}^{j} \in D_{q}^{j} \cap L_{W}^{j}$ implying that L_{W}^{j} is adjacent to D_{q}^{j}. Moreover, F^{j} is adjacent to D_{q}^{j} and B, since $\lambda^{j} \in D_{q}^{j} \cap F^{j}$ and $\mu \in F^{j} \cap B$. Also, $H_{\bar{W}}$ is adjacent to $B, S_{\bar{W}}^{j}$, and the vertex $S_{\bar{W}}^{j}$ is adjacent to L_{W}^{j}, since $\delta \in B \cap H_{\bar{W}}, \alpha_{\bar{W}} \in H_{\bar{W}} \cap S_{\bar{W}}^{j}$, and $\beta_{\bar{W}}^{j} \in S_{\bar{W}}^{j} \cap L_{W}^{j}$. Further, $H_{\bar{W}} F^{j}$ and $D_{q}^{j} B$ are not edges of G^{\prime}, since $H_{\bar{W}} \mid F^{j}$ and $D_{q}^{j} \mid B$ are in \mathcal{Q}_{I}. Also, $S_{\bar{W}}^{j} B$ is not an edge of G^{\prime}, since otherwise G^{\prime} contains an induced 4-cycle on $\left\{S_{W}^{j}, B, S_{\bar{W}}^{j}, A_{i}\right\}$. Thus, by Lemma 5 applied to $\left\{L_{W}^{j}\right.$, $\left.S_{\bar{W}}^{j}, H_{\bar{W}}, B, F^{j}, D_{q}^{j}\right\}$, we conclude that L_{W}^{j} is adjacent to $H_{\bar{W}}, B$, and F^{j}. Moreover, by Lemma 5applied to $\left\{L_{W}^{j}, B, S_{W}^{j}, A_{i}, S_{\bar{W}}^{j}\right\}$, we conclude that L_{W}^{j}
is adjacent to A_{i}. Finally, recall that H_{W} is adjacent to both A_{i} and B. Thus, Lemma 4 applied to $\left\{L_{W}^{j}, A_{i}, H_{W}, B\right\}$ yields that L_{W}^{j} is also adjacent to H_{W}.

That concludes the proof.

Fig. 4. The fill-in edges for a) $W=1, b) X=1, Y=0, Z=0$.

Let σ be a truth assignment for the instance I. Recall that, for simplicity, we write $X=0$ and $X=1$ in place of $\sigma(X)=0$ and $\sigma(X)=1$, respectively.

To facilitate the arguments in the proof, we introduce a naming convention for the vertices in int* $\left(\mathcal{Q}_{I}\right)$ similar to that of [2]. The vertices S_{W}^{j} for all meaningful choices of j and W are called shoulders. For a fixed j, we call them shoulders of the clause \mathcal{C}_{j}, and for a fixed W, we call them shoulders of the literal W. A shoulder is a a true shoulder if $W=1$. Otherwise, it is a false shoulder. The vertices K_{W}^{j}, L_{W}^{j} for all meaningful choices of j and W are called knees. For a fixed j, we call them knees of the clause \mathcal{C}_{j}, and for a fixed W, we call them knees of the literal W. A knee is a true knee if $W=1$. Otherwise, it is a false knee. The vertices $A_{i}, D_{p}^{j}, H_{W}, F^{j}$ for all meaningful choices of indices are called A-vertices, D-vertices, H-vertices, and F-vertices, respectively.

Let G_{σ} be the graph constructed from int* $\left(\mathcal{Q}_{I}\right)$ by performing the following:
(i) make B adjacent to all true knees and true shoulders

Let G_{σ}^{\prime} be the graph constructed from G_{σ} by performing the following steps:
(ii) make $\{$ true knees, true shoulders $\}$ into a complete graph
(iii) for all $i \in\{1 \ldots n\}$, make A_{i} adjacent to all true knees of the literals $v_{i}, \overline{v_{i}}$,
(iv) for all $1 \leq i^{\prime} \leq i \leq n$, make $H_{v_{i}}, H_{\overline{v_{i}}}$ adjacent to all true knees and true shoulders of the literals $v_{i^{\prime}}, \overline{v_{i^{\prime}}}$
(v) for all $1 \leq j \leq j^{\prime} \leq m$, make F^{j} adjacent to all true knees and true shoulders of the clause $\mathcal{C}_{j^{\prime}}$,
(vi) for all $1 \leq i \leq n$ and all $j, j^{\prime} \in \Delta_{i}$ such that $j \leq j^{\prime}$:
a) if $v_{i}=1$, make $S_{v_{i}}^{j^{\prime}}$ adjacent to $K_{v_{i}}^{j}$, $L_{v_{i}}^{j}$ (if exists)
b) if $v_{i}=0$, make $S_{v_{i}}^{j}$ adjacent to $K_{\overline{v_{i}}}^{j}, L_{\bar{v}_{i}}^{j}$ (if exists)

Finally, let G_{σ}^{*} be constructed from G_{σ}^{\prime} by adding the following edges.
(vii) for all $j \in\{1 \ldots m\}$ where $\mathcal{C}_{j}=X \vee Y \vee Z$:
a) if $X=1$, then add edges $F^{j} L_{Z}^{j}, K_{X}^{j} L_{Z}^{j}, K_{Y}^{j} K_{\bar{Z}}^{j}, D_{2}^{j} K_{Z}^{j}, D_{2}^{j} S_{\bar{Y}}^{j}, D_{3}^{j} S_{\bar{Y}}^{j}$ and make $\left\{D_{1}^{j}, D_{2}^{j}, D_{3}^{j}, S_{X}^{j}, S_{\bar{Z}}^{j}, L_{Z}^{j}, K_{Y}^{j}\right\}$ into a complete graph
b) if $Y=1$, then add edges $F^{j} L_{X}^{j}, K_{Y}^{j} L_{X}^{j}, K_{Z}^{j} K_{\bar{X}}^{j}, D_{3}^{j} K_{\bar{X}}^{j}, D_{3}^{j} S_{\bar{Z}}^{j}, D_{1}^{j} S_{\bar{Z}}^{j}$ and make $\left\{D_{1}^{j}, D_{2}^{j}, D_{3}^{j}, S_{Y}^{j}, S_{\bar{X}}^{j}, L_{X}^{j}, K_{Z}^{j}\right\}$ into a complete graph
c) if $Z=1$, then add edges $F^{j} L_{Y}^{j}, K_{Z}^{j} L_{Y}^{j}, K_{X}^{j} K_{\bar{Y}}^{j}, D_{1}^{j} K_{\bar{Y}}^{j}, D_{1}^{j} S_{\bar{X}}^{j}, D_{2}^{j} S_{\bar{X}}^{j}$ and make $\left\{D_{1}^{j}, D_{2}^{j}, D_{3}^{j}, S_{Z}^{j}, S_{\bar{Y}}^{j}, L_{Y}^{j}, K_{X}^{j}\right\}$ into a complete graph

Lemma 8. G_{σ}^{\prime} is a subgraph of every chordal sandwich of $\left(G_{\sigma}\right.$, forb $\left.\left(\mathcal{Q}_{I}\right)\right)$.
Proof. Let G^{\prime} be a chordal sandwich of $\left(G_{\sigma}\right.$, forb $\left.\left(\mathcal{Q}_{I}\right)\right)$. We prove the claim by showing that G^{\prime} contains all edges defined in (iii)-(vil).

For (iii), let us consider true shoulders $S_{W}^{j}, S_{W^{\prime}}^{j^{\prime}}$ and true knees $K_{W}^{j}, K_{W^{\prime}}^{j^{\prime}}$ and $L_{W}^{j}, L_{W^{\prime}}^{j^{\prime}}$ (if they exist). We allow that W is possibly equal to W^{\prime} and possibly $j=j^{\prime}$. First, we observe that, by (il), the true knees K_{W}^{j} and $K_{W^{\prime}}^{j^{\prime}}$ are adjacent to B. Therefore, by Lemma 7 , the vertices $S_{W}^{j}, K_{W}^{j}, L_{W}^{j}$ are adjacent to H_{W} and F^{j}, whereas $S_{W^{\prime}}^{j^{\prime}}, K_{W^{\prime}}^{j^{\prime}}, L_{W^{\prime}}^{j^{\prime}}$ are adjacent to $H_{W^{\prime}}$ and $F^{j^{\prime}}$. Also, H_{W} is adjacent to $H_{W^{\prime}}$ and F^{j} is adjacent to $F^{j^{\prime}}$, since $\delta \in H_{W} \cap H_{W^{\prime}}$ and $\mu \in F^{j} \cap F^{j^{\prime}}$, respectively. Further, $H_{W} F^{j}, H_{W} F^{j^{\prime}}, H_{W^{\prime}} F^{j}, H_{W^{\prime}} F^{j^{\prime}}$ are not edges of G^{\prime}, since $H_{W}\left|F^{j}, H_{W}\right| F^{j^{\prime}}, H_{W^{\prime}}\left|F^{j}, H_{W^{\prime}}\right| F^{j^{\prime}}$ are in \mathcal{Q}_{I}. Thus, if $j=j^{\prime}$ and W is equal to W^{\prime}, then, by Lemma 4 applied to cycles $\left\{u, H_{W}, u^{\prime}, F^{j}\right\}$ where $u, u^{\prime} \in\left\{S_{W}^{j}\right.$, $\left.S_{W^{\prime}}^{j^{\prime}}, K_{W}^{j}, K_{W^{\prime}}^{j^{\prime}}, L_{W}^{j}, L_{W^{\prime}}^{j^{\prime}}\right\}$, we conclude that $\left\{S_{W}^{j}, S_{W^{\prime}}^{j^{\prime}}, K_{W}^{j}, K_{W^{\prime}}^{j^{\prime}}, L_{W}^{j}, L_{W^{\prime}}^{j^{\prime}}\right\}$ forms a complete graph in G^{\prime}. If $j \neq j^{\prime}$ and W is not equal to W^{\prime}, we reach the same conclusion by Lemma 6 applied to the cycles $\left\{u, H_{W}, H_{W^{\prime}}, u^{\prime}, F^{j^{\prime}}, F^{j}\right\}$. Otherwise, we obtain the conclusion by applying Lemma 5 either to cycles $\left\{u, H_{W}, u^{\prime}, F^{j^{\prime}}, F^{j}\right\}$ or cycles $\left\{u, F^{j}, u^{\prime}, H_{W^{\prime}}, H_{W}\right\}$. This proves (iii).

For (iiii), consider the vertex A_{i} for $i \in\{1 \ldots n\}$. Let $W \in\left\{v_{i}, \overline{v_{i}}\right\}$ be such that $W=1$. Then, for each $j \in \Delta_{i}$, the vertex K_{W}^{j} is adjacent to B by (il). Thus, by Lemma [7 both K_{W}^{j} and L_{W}^{j} (if exists) are adjacent to A_{i}. This proves (iiii).

For (iv), we consider $1 \leq i^{\prime} \leq i \leq n$. Let $W^{\prime} \in\left\{v_{i^{\prime}}, \overline{v_{i^{\prime}}}\right\}$ be such that $W^{\prime}=1$. Then, for all $j \in \Delta_{i^{\prime}}$, the vertex $K_{W^{\prime}}^{j}$ is adjacent to B by (ii), and hence, the vertices $S_{W^{\prime}}^{j}, K_{W^{\prime}}^{j}$ and $L_{W^{\prime}}^{j}$ (if exists) are adjacent by Lemma 7 to $H_{v_{i^{\prime}}}, H_{\overline{v_{i^{\prime}}}}$. In other words, the vertices $H_{v_{i^{\prime}}}, H_{\overline{v_{i^{\prime}}}}$ are adjacent to all true knees and true shoulders of the literals $v_{i^{\prime}}, \overline{v_{i^{\prime}}}$. Thus, we may assume that $i^{\prime}<i$. Now, the vertex $H_{v_{i^{\prime}}}$ is adjacent to $H_{v_{i}}, H_{\overline{v_{i}}}$, since $\delta \in H_{v_{i}} \cap H_{\overline{v_{i}}} \cap H_{v_{i^{\prime}}}$. Let $W \in\left\{v_{i}, \overline{v_{i}}\right\}$ be such that $W=1$. Then K_{W}^{j} is adjacent to B by (ii), and hence, S_{W}^{j} is adjacent to $H_{v_{i}}, H_{\overline{v_{i}}}$ by Lemma 7 . Also, S_{W}^{j} is adjacent to all true knees and true shoulders of the literals $v_{i^{\prime}}, \overline{v_{i^{\prime}}}$, by (iii). Further, the vertex S_{W}^{j} is not adjacent to $H_{v_{i^{\prime}}}$, since $H_{v_{i^{\prime}}} \mid S_{W}^{j}$ is in \mathcal{Q}_{I}. Thus, by Lemma [4] both $H_{v_{i}}$ and $H_{\overline{v_{i}}}$ are adjacent to all true knees and true shoulders of the literals $v_{i^{\prime}}, \overline{v_{i^{\prime}}}$. This proves (iv).

For (园), consider $1 \leq j \leq j^{\prime} \leq m$. Again, we observe that if $K_{W}^{j^{\prime}}$ is a true knee, then $K_{W}^{j^{\prime}}$ is adjacent to B by (il), and hence, $S_{W}^{j^{\prime}}, K_{W}^{j^{\prime}}$, and $L_{W}^{j^{\prime}}$ (if exists) are adjacent to $F^{j^{\prime}}$ by Lemma 7. In other words, the vertex $F^{j^{\prime}}$ is adjacent to all true knees and true shoulders of the clause $\mathcal{C}_{j^{\prime}}$. So, we may assume that $j<j^{\prime}$. Now, let K_{W}^{j} be any true knee of the clause \mathcal{C}_{j}. Then K_{W}^{j} is adjacent to B, and hence, to F^{j} by (i) and Lemma [7, respectively. Also, K_{W}^{j} is adjacent to all true shoulders and true knees of $\mathcal{C}_{j^{\prime}}$ by (iii). Further, F^{j} is adjacent to $F^{j^{\prime}}$, since $\mu \in F^{j} \cap F^{j^{\prime}}$, and the vertex K_{W}^{j} is not adjacent to $F^{j^{\prime}}$, since $K_{W}^{j} \mid F^{j^{\prime}}$ is in \mathcal{Q}_{I}. Thus, by Lemma 4 the vertex F^{j} is adjacent to all true knees and true shoulders of the clause $\mathcal{C}_{j^{\prime}}$. This proves (园).

For (vil), let $i \in\{1 \ldots n\}$ and consider $j, j^{\prime} \in \Delta_{i}$ with $j \leq j^{\prime}$. Let $W \in\left\{v_{i}, \overline{v_{i}}\right\}$ be such that $W=1$. Observe that K_{W}^{j} is adjacent to $S_{\bar{W}}^{j}$, since $\beta_{\bar{W}}^{j} \in S_{\bar{W}}^{j} \cap K_{W}^{j}$. If L_{W}^{j} exists, also L_{W}^{j} is adjacent to $S_{\bar{W}}^{j}$, since then $\beta_{\bar{W}}^{j} \in S_{\bar{W}}^{j} \cap L_{W}^{j}$. Thus, we may assume that $j<j^{\prime}$. Now, $S_{\bar{W}}^{j^{\prime}}$ is adjacent to $S_{\bar{W}}^{j}$ and $K_{W}^{j^{\prime}}$, since $\alpha_{\bar{W}} \in S_{\bar{W}}^{j} \cap S_{\bar{W}}^{j^{\prime}}$, and $\beta \frac{j^{\prime}}{\bar{W}} \in S_{\bar{W}}^{j^{\prime}} \cap K_{W}^{j^{\prime}}$. Also, K_{W}^{j} and L_{W}^{j} (if exists) are adjacent to $K_{W}^{j^{\prime}}$ by (iii). Further, $S_{\bar{W}}^{j} K_{W}^{j^{\prime}}$ is not an edge of G^{\prime}, since $S_{\bar{W}}^{j} \mid K_{W}^{j^{\prime}}$ is in \mathcal{Q}_{I}. Thus, by Lemma4, the vertices K_{W}^{j}, L_{W}^{j} (if exists) are adjacent to $S_{\overline{j^{\prime}}}$. This proves (vi).

The proof is now complete.

Lemma 9. If σ is a satisfying assignment for I, then G_{σ}^{*} is a subgraph of every chordal sandwich of $\left(G_{\sigma}\right.$, forb $\left.\left(\mathcal{Q}_{I}\right)\right)$.

Proof. Let G^{\prime} be a chordal sandwich of $\left(G_{\sigma}\right.$, forb $\left.\left(\mathcal{Q}_{I}\right)\right)$, and assume that σ is a satisfying assignment for I. That is, in each clause $\mathcal{C}_{j}=X \vee Y \vee Z$, either $X=1, Y=Z=0$, or $Y=1, X=Z=0$, or $Z=1, X=Y=0$.

By Lemma 8, the graph G^{\prime} contain all edges defined in (iii)-(vi). Thus it remains to prove that it also contains the edges defined in (vii).

Consider $j \in\{1 \ldots m\}$ where $\mathcal{C}_{j}=X \vee Y \vee Z$. By the rotational symmetry between X, Y, and Z, we may assume that $X=1, Y=0$, and $Z=0$. Observe that K_{Z}^{j} is adjacent to K_{X}^{j} and L_{Z}^{j}, since $\lambda^{j} \in K_{Z}^{j} \cap K_{X}^{j}$ and $\beta_{Z}^{j} \in K_{Z}^{j} \cap L_{Z}^{j}$. Further, $K_{\bar{X}}^{j}$ is adjacent to L_{Z}^{j} and S_{X}^{j}, since $\gamma_{1}^{j} \in L_{Z}^{j} \cap K_{X}^{j}$ and $\beta_{X}^{j} \in K_{X}^{j} \cap S_{X}^{j}$. By (iii), also K_{X}^{j} is adjacent to S_{X}^{j}. Moreover, $S_{X}^{j} K_{Z}^{j}$ and $K_{X}^{j} K_{X}^{j}$ are not edges of G^{\prime}, since $S_{X}^{j}\left|K_{Z}^{j}, K_{X}^{j}\right| K_{\bar{X}}^{j}$ are in \mathcal{Q}_{I}. Thus, by Lemma 5 applied to the cycle $\left\{L_{Z}^{j}\right.$, $\left.K_{Z}^{j}, K_{X}^{j}, S_{X}^{j}, K_{X}^{j}\right\}$, we conclude that L_{Z}^{j} is adjacent to S_{X}^{j} and K_{X}^{j}. Now, observe that L_{Y}^{j} is adjacent to K_{Y}^{j} and $K_{\bar{Z}}^{j}$, since $\beta_{\bar{Y}}^{j} \in L_{Y}^{j} \cap K_{Y}^{j}$ and $\gamma_{3}^{j} \in L_{Y}^{j} \cap K_{\bar{Z}}^{j}$. Recall that K_{Z}^{j} is adjacent to L_{Z}^{j} and also to K_{Y}^{j}, since $\lambda^{j} \in K_{Z}^{j} \cap K_{Y}^{j}$. Moreover, S_{X}^{j} is adjacent to K_{Z}^{j} and L_{Z}^{j} by (iii) and the above. Further, $K_{Z}^{j} L_{Z}^{j}, S_{X}^{j} L_{Y}^{j}$, $S_{X}^{j} K_{Z}^{j}$ are not edges of G^{\prime}, since $K_{\bar{Z}}^{j}\left|L_{Z}^{j}, S_{X}^{j}\right| L_{Y}^{j}, S_{X}^{j} \mid K_{Z}^{j}$ are in \mathcal{Q}_{I}. Thus, by Lemma 6 applied to the cycle $\left\{K_{Y}^{j}, L_{Y}^{j}, K_{Z}^{j}, S_{X}^{j}, L_{Z}^{j}, K_{Z}^{j}\right\}$, we conclude that K_{Y}^{j} is adjacent to $K_{\bar{Z}}^{j}, S_{X}^{j}$, and L_{Z}^{j}. Next, observe that $S_{\bar{Z}}^{j}$ is adjacent to K_{Z}^{j} and
K_{Z}^{j} by (iii) and since $\beta_{\bar{Z}}^{j} \in S_{\frac{j}{Z}}^{j} \cap K_{Z}^{j}$. Recall that K_{Y}^{j} is adjacent to $K_{\frac{Z}{Z}}^{j}$ and K_{Z}^{j}. Further, $K_{Z}^{j} K_{Z}^{j}$ is not an edge of G^{\prime}, since $K_{Z}^{j} \mid K_{Z}^{j}$ is in \mathcal{Q}_{I}. Thus, by Lemma 4, the vertex S_{Z}^{j} is adjacent to K_{Y}^{j}. Now, recall that L_{Z}^{j} is adjacent to S_{X}^{j} and K_{Z}^{j}, and $S_{X}^{j} K_{Z}^{j}$ is not an edge of G^{\prime}. Also, F^{j} is adjacent to S_{X}^{j} and K_{Z}^{j} by (v) and since $\lambda^{j} \in F^{j} \cap K_{Z}^{j}$. Thus, by Lemma 4, the vertex L_{Z}^{j} is adjacent to F^{j}. Now, observe that D_{1}^{j} is adjacent to $K_{X}^{j}, K_{\bar{X}}^{j}$, since $\lambda^{j} \in D_{1}^{j} \cap K_{X}^{j}$ and $\gamma_{1}^{j} \in D_{1}^{j} \cap K_{\bar{X}}^{j}$. Recall that also S_{X} is adjacent to both K_{X}^{j} and K_{X}^{j}, and that $K_{X}^{j} K_{X}^{j}$ is not an edge of G^{\prime}. Thus, by Lemma 4 we have that D_{1}^{j} is adjacent to S_{X}^{j}. Next, observe that D_{2}^{j} is adjacent to $K_{Y}^{j}, K_{\bar{Y}}^{j}$, since $\lambda^{j} \in D_{2}^{j} \cap K_{Y}^{j}$ and $\gamma_{2}^{j} \in D_{2}^{j} \cap K_{\bar{Y}}^{j}$. Recall that K_{Y}^{j} is adjacent to $K_{\bar{Z}}^{j}$ and S_{X}^{j}. Also, $K_{\bar{Y}}^{j}$ is adjacent to $S_{X}^{j}, S_{\bar{Y}}^{j}$, $K_{\bar{Z}}^{j}$ by (iii), and K_{Y}^{j} is adjacent to $S_{\bar{Y}}^{j}$, since $\beta_{\bar{Y}}^{j} \in K_{Y}^{j} \cap S_{\bar{Y}}^{j}$. Further, $K_{Y}^{j} K_{\bar{Y}}^{j}$ is not an edge of G^{\prime}, since $K_{Y}^{j} \mid K_{\bar{Y}}^{j}$ is in \mathcal{Q}_{I}. Thus, by Lemma [4 the vertices $S_{X}^{j}, S_{\bar{Y}}^{j}, K_{\frac{Z}{Z}}^{j}$ are adjacent to D_{2}^{j}. Now, observe that D_{1}^{j}, D_{2}^{j} are adjacent to K_{Z}^{j}, since $\lambda^{j} \in D_{1}^{j} \cap D_{2}^{j} \cap K_{Z}^{j}$. Also, recall that S_{X}^{j} is adjacent to $D_{1}^{j}, D_{2}^{j}, L_{Z}^{j}$, the vertex K_{Z}^{j} is adjacent to $S_{\bar{Z}}^{j}, L_{Z}^{j}$, and $S_{X}^{j} K_{Z}^{j}$ is not an edge of G^{\prime}. Further, S_{X}^{j} is adjacent to $S_{\frac{j}{Z}}^{j}$ by (iii). Thus, by Lemma 4 both D_{1}^{j} and D_{2}^{j} are adjacent to $S_{\frac{1}{Z}}^{j}$ and L_{Z}^{j}. Next, observe that D_{3}^{j} is adjacent to K_{Z}^{j}, K_{Z}^{j}, since $\lambda^{j} \in D_{3}^{j} \cap K_{Z}^{j}$ and $\gamma_{3}^{j} \in D_{3}^{j} \cap K_{Z}^{j}$. Recall that also $S_{\bar{Z}}^{j}$ is adjacent to K_{Z}^{j}, K_{Z}^{j}, and that $K_{Z}^{j} K_{Z}^{j}$ is not an edge of G^{\prime}. Thus, by Lemma 4 the vertex D_{3}^{j} is adjacent to $S_{\bar{Z}}^{j}$. Further, recall that L_{Z}^{j} is adjacent to K_{Z}^{j}, S_{X}^{j}, the vertex K_{Z}^{j} is adjacent to S_{X}^{j}, and $S_{X}^{j} K_{Z}^{j}$ and $K_{Z}^{j} L_{Z}^{j}$ are not edges of G^{\prime}. Thus, Lemma 5 applied to $\left\{D_{3}^{j}, K_{Z}^{j}, L_{Z}^{j}\right.$, $\left.S_{X}^{j}, K_{\bar{Z}}^{j}\right\}$ yields that D_{3}^{j} is adjacent to both L_{Z}^{j} and S_{X}^{j}. Moveover, $S_{\bar{Y}}^{j}$ is also adjacent to S_{X}^{j} by (iii), and L_{Y}^{j} is also adjacent to $D_{3}^{j}, S_{\bar{Y}}^{j}$, since $\gamma_{3}^{j} \in D_{3}^{j} \cap L_{Y}^{j}$ and $\beta_{\bar{Y}}^{j} \in S_{\bar{Y}}^{j} \cap L_{Y}^{j}$. Further, recall that $S_{X}^{j} L_{Y}^{j}$ is not an edge of G^{\prime}. Thus, by Lemma 4 applied to $\left\{D_{3}^{j}, L_{Y}^{j}, S_{\bar{Y}}^{j}, S_{X}^{j}\right\}$, the vertex D_{3}^{j} is adjacent to $S_{\bar{Y}}^{j}$.

To prove (vii), we observe that the above analysis yields that G^{\prime} contains edges $F^{j} L_{Z}^{j}, K_{X}^{j} L_{Z}^{j}, K_{Y}^{j} K_{\bar{Z}}^{j}, D_{2}^{j} K_{\bar{Z}}^{j}, D_{2}^{j} S_{\bar{Y}}^{j}$, and $D_{3}^{j} S_{\bar{Y}}^{j}$. It remains to show that $\left\{D_{1}^{j}, D_{2}^{j}, D_{3}^{j}, S_{X}^{j}, S_{\bar{Z}}^{j}, L_{Z}^{j}, K_{Y}^{j}\right\}$ forms a complete graph. By the above paragraph, we have that $S_{X}^{j}, S_{\bar{Z}}^{j}, L_{Z}^{j}$ are adjacent to $D_{1}^{j}, D_{2}^{j}, D_{3}^{j}$. Also, $D_{1}^{j}, D_{2}^{j}, D_{3}^{j}$ and K_{Y}^{j} are pair-wise adjacent, since $\lambda^{j} \in D_{1}^{j} \cap D_{2}^{j} \cap D_{3}^{j} \cap K_{Y}^{j}$. Further, L_{Z}^{j} is adjacent to S_{X}^{j}, and K_{Y}^{j} is adjacent to $S_{X}^{j}, S_{\frac{Z}{Z}}^{j}, L_{Z}^{j}$, by the above paragraph. Finally, $S_{\bar{Z}}^{j}$ is adjacent to S_{X}^{j} and L_{Z}^{j} by (iii) and since $\beta_{\bar{Z}}^{j} \in S_{\bar{Z}}^{j} \cap L_{Z}^{j}$. This proves (viil).

The proof is now complete.

Lemma 10. If σ is a satisfying assignment for I, then G_{σ}^{*} is chordal.
Proof. Again, assume that σ is a satisfying assignment for I. That is, for each clause $\mathcal{C}_{j}=X \vee Y \vee Z$, either $X=1, Y=Z=0$, or $Y=1, X=Z=0$, or $Z=1$, $X=Y=0$. Consider the following partition $V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5}$ of $V\left(G_{\sigma}^{*}\right)$ where
$V_{1}=\{$ false knees, D-vertices $\}, V_{2}=\{$ false shoulders $\}, V_{3}=\{A$-vertices $\}, V_{4}=$ $\{H$-vertices, F-vertices $\}$, and $V_{5}=\{$ true knees, true shoulders, the vertex $B\}$.

Let π be an enumeration of $V\left(G_{\sigma}^{*}\right)$ constructed by listing the elements of V_{1}, $V_{2}, V_{3}, V_{4}, V_{5}$ in that order such that:
(\bullet) the elements of V_{1} are listed by considering each clause $\mathcal{C}_{j}=X \vee Y \vee Z$ and listing vertices (based on the truth assignment) as follows:
a) if $X=1$, then list $K_{\bar{X}}^{j}, K_{Z}^{j}, L_{Y}^{j}, L_{Z}^{j}, D_{1}^{j}, K_{Y}^{j}, D_{3}^{j}, D_{2}^{j}$ in that order,
b) if $Y=1$, then list $K_{\bar{Y}}^{j}, K_{X}^{j}, L_{Z}^{j}, L_{X}^{j}, D_{2}^{j}, K_{Z}^{j}, D_{1}^{j}, D_{3}^{j}$ in that order,
c) if $Z=1$, then list $K_{Z}^{j}, K_{Y}^{j}, L_{X}^{j}, L_{Y}^{j}, D_{3}^{j}, K_{X}^{j}, D_{2}^{j}, D_{1}^{j}$ in that order,
(•) the elements of V_{2} (the false shoulders) are listed by listing the false shoulders of the clauses $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{m}$ in that order,
(\bullet) the elements of V_{4} are listed as follows: first the vertices $H_{v_{1}}, H_{\overline{v_{1}}}, H_{v_{2}}, H_{\overline{v_{2}}}$, $\ldots H_{v_{n}}, H_{\overline{v_{n}}}$ in that order, then $F^{m}, F^{m-1}, \ldots, F^{1}$ in that order,
(\bullet) the elements of V_{3} and V_{5} are listed in any order.
We show that π is a perfect elimination ordering of G_{σ}^{*} which implies the claim.
First, consider V_{1}. Let $j \in\{1 \ldots m\}$ and let $\mathcal{C}_{j}=X \vee Y \vee Z$. By the rotational symmetry between X, Y, Z, assume that $X=1$ and $Y=Z=0$. So, π lists the false knees and D-vertices of \mathcal{C}_{j} as $K_{\bar{X}}^{j}, K_{Z}^{j}, L_{Y}^{j}, L_{Z}^{j}, D_{1}^{j}, K_{Y}^{j}, D_{3}^{j}, D_{2}^{j}$.

First, consider the vertex $K_{\bar{X}}^{j}$. Recall that $K_{\bar{X}}^{j}=\left\{\beta_{X}^{j}, \gamma_{1}^{j}\right\}$. Observe that S_{X}^{j} is the only other vertex containing β_{X}^{j}, and L_{Z}^{j}, D_{1}^{j} are the only other vertices containing γ_{1}^{j}. Moreover, none of the rules (ii)-(vii) adds edges incident to $K_{\bar{X}}^{j}$. Thus, $S_{X}^{j}, L_{Z}^{j}, D_{1}^{j}$ are the only neighbours of K_{X}^{j}, and they are pair-wise adjacent by (vii). This proves that $K_{\bar{X}}^{j}$ is indeed simplicial in G_{σ}^{*}.

Next, consider K_{Z}^{j}. Since $K_{Z}^{j}=\left\{\beta_{Z}^{j}, \lambda^{j}\right\}$, we conclude that K_{Z}^{j} is adjacent to $S_{\bar{Z}}^{j}, L_{Z}^{j}, K_{X}^{j}, K_{Y}^{j}, D_{j}^{1}, D_{j}^{2}, D_{j}^{3}$, and F^{j}. Moreover, K_{Z}^{j} has no other neighbours by observing the rules (ii)-(vii). Now, by (vii), we conclude that $S_{\bar{Z}}^{j}, L_{Z}^{j}, K_{Y}^{j}$, $D_{1}^{j}, D_{2}^{j}, D_{3}^{j}$ are pair-wise adjacent. Also, the vertices $F^{j}, K_{X}^{j}, K_{Y}^{j}, D_{1}^{j}, D_{2}^{j}, D_{3}^{j}$ are pair-wise adjacent, since they all contain λ^{j}. Further, F^{j} is adjacent to $S_{\bar{Z}}^{j}$ and L_{Z}^{j} by ($\mathbb{\nabla}$) and (viil), respectively, and K_{X}^{j} is adjacent to $S_{\bar{Z}}^{j}$ and L_{Z}^{j} by (iii) and (vii), respectively. This proves that K_{Z}^{j} is simplicial in G_{σ}^{*}.

Now, consider L_{Y}^{j}. The neighbours of L_{Y}^{j} are $S_{\bar{Y}}^{j}, K_{Y}^{j}, K_{\bar{Z}}^{j}$, and D_{3}^{j}. So, $S_{\bar{Y}}^{j}$ is adjacent to $K_{\bar{Z}}^{j}, D_{3}^{j}$, and K_{Y}^{j} by (iii), (vii), and since $\beta_{\bar{Y}}^{j} \in S_{\bar{Y}}^{j} \cap K_{Y}^{j}$. Similarly, K_{Y}^{j} is adjacent to $K_{\bar{Z}}^{j}$ and D_{3}^{j} by (viii) and since $\lambda^{j} \in K_{Y}^{j} \cap D_{3}^{j}$. Finally, $K_{\bar{Z}}^{j}$ is adjacent to D_{3}^{j}, since $\gamma_{3}^{j} \in K_{Z}^{j} \cap D_{3}^{j}$. Thus L_{Y}^{j} is simplicial in G_{σ}^{*}.

Next, consider L_{Z}^{j}. The neighbours of L_{Z}^{j} are $F^{j}, K_{X}^{j}, K_{Y}^{j}, K_{Z}^{j}, D_{1}^{j}, D_{2}^{j}$, $D_{3}^{j}, S_{X}^{j}, S_{\bar{Z}}^{j}$, and $K_{\bar{X}}^{j}$. By viil), the vertices $D_{1}^{j}, D_{2}^{j}, D_{3}^{j}, S_{X}^{j}, S_{\bar{Z}}^{j}, K_{Y}^{j}$ are pairwise adjacent. Also, $F^{j}, K_{X}^{j}, K_{Y}^{j}, D_{1}^{j}, D_{2}^{j}, D_{3}^{j}$ are pair-wise adjacent, since they all contain λ_{j}. Further, K_{X}^{j} and F^{j} are adjacent to $S_{X}^{j}, S_{\bar{Z}}^{j}$ by (iii) and (v), respectively. This proves that L_{Z}^{j} is simplicial in $G_{\sigma}^{*}-\left\{K_{\bar{X}}^{j}, K_{Z}^{j}\right\}$.

Now, consider D_{1}^{j}. The neighbours of D_{1}^{j} are $F^{j}, K_{X}^{j}, K_{Y}^{j}, K_{Z}^{j}, D_{2}^{j}, D_{3}^{j}$, $S_{X}^{j}, S_{\bar{Z}}^{j}, L_{Z}^{j}$, and K_{X}^{j}. By (vii), the vertices $D_{2}^{j}, D_{3}^{j}, S_{X}^{j}, S_{\bar{Z}}^{j}, K_{Y}^{j}$ are pairwise adjacent. Also, $F^{j}, K_{X}^{j}, K_{Y}^{j}, D_{2}^{j}, D_{3}^{j}$ are pair-wise adjacent, since they all contain λ^{j}. Further, K_{X}^{j} and F^{j} are adjacent to $S_{X}^{j}, S_{\bar{Z}}^{j}$ by (iii) and (v), respectively. This proves that D_{1}^{j} is simplicial in $G_{\sigma}^{*}-\left\{K_{\bar{X}}^{j}, K_{Z}^{j}, L_{Z}^{j}\right\}$.

Next, consider K_{Y}^{j}. The neighbours of K_{Y}^{j} are $F^{j}, K_{X}^{j}, K_{Z}^{j}, D_{1}^{j}, D_{2}^{j}, D_{3}^{j}, S_{X}^{j}$, $S_{\bar{Y}}^{j}, S_{\bar{Z}}^{j}, K_{\bar{Z}}^{j}, L_{Y}^{j}$, and L_{Z}^{j}. By (vii), the vertices $D_{2}^{j}, D_{3}^{j}, S_{X}^{j}, S_{\bar{Z}}^{j}$ are pair-wise adjacent. Also, $F, K_{X}^{j}, D_{2}^{j}, D_{3}^{j}$ are pair-wise adjacent, since they all contain λ^{j}. Further, by (iii), the vertices $S_{X}^{j}, S_{\bar{Y}}^{j}, S_{\bar{Z}}^{j}, K_{X}^{j}$, and $K_{\bar{Z}}^{j}$ are pair-wise adjacent, and are adjacent to F^{j} by ((చ). Moreover, by (vii), both $S_{\bar{Y}}^{j}$ and $K_{\bar{Z}}^{j}$ are adjacent D_{2}^{j}, and are also adjacent to D_{3}^{j} by (vii) and since $\gamma_{3}^{j} \in K_{Z}^{j} \cap D_{3}^{j}$, respectively. This proves that K_{Y}^{j} is simplicial in $G_{\sigma}^{*}-\left\{K_{Z}^{j}, L_{Y}^{j}, L_{Z}^{j}, D_{1}^{j}\right\}$.

Now, consider D_{j}^{3}. The neighbours of D_{j}^{3} are $F^{j}, K_{X}^{j}, K_{Y}^{j}, K_{Z}^{j}, D_{1}^{j}, D_{2}^{j}, S_{X}^{j}$, $S_{\bar{Y}}^{j}, S_{\bar{Z}}^{j}, K_{\bar{Z}}^{j}, L_{Z}^{j}$, and L_{Y}^{j}. By (iii), the vertices $S_{X}^{j}, S_{\bar{Y}}^{j}, S_{\bar{Z}}^{j}, K_{X}^{j}, K_{\bar{Z}}^{j}$ are pairwise adjacent. Also, $F^{j}, K_{X}^{j}, D_{2}^{j}$ are pair-wise adjacent, since they all contain λ^{j}. Further, F^{j} and D_{2}^{j} are adjacent to $S_{X}^{j}, S_{\bar{Y}}^{j}, S_{\bar{Z}}^{j}, K_{\bar{Z}}^{j}$ by (च) and (vii), respectively. Thus D_{j}^{3} is simplicial in $G_{\sigma}^{*}-\left\{K_{Z}^{j}, L_{Y}^{j}, L_{Z}^{j}, D_{1}^{j}, K_{Y}^{j}\right\}$.

Finally, consider D_{j}^{2}. The neighbours of D_{j}^{2} are $F^{j}, K_{X}^{j}, K_{Y}^{j}, K_{Z}^{j}, D_{j}^{1}, D_{j}^{3}$, $S_{X}^{j}, S_{\bar{Y}}^{j}, S_{\bar{Z}}^{j}, K_{\bar{Z}}^{j}, K_{\bar{Y}}^{j}, L_{X}^{j}$ and L_{Z}^{j}. By (iii), the vertices $S_{X}^{j}, S_{\bar{Y}}^{j}, S_{\bar{Z}}^{j}, K_{X}^{j}, L_{X}^{j}, K_{\bar{Y}}^{j}$, $K_{\bar{Z}}^{j}$ are pair-wise adjacent, and are adjacent to F by ($\mathbb{\nabla}$). Thus D_{j}^{2} is simplicial in $G_{\sigma}^{*}-\left\{K_{Z}^{j}, L_{Z}^{j}, D_{1}^{j}, K_{Y}^{j}, D_{3}^{j}\right\}$. This concludes the vertices in V_{1}.

We now consider V_{2}. Let $j \in\{1 \ldots m\}$ and consider a false shoulder S_{W}^{j} for some $W=0$. Let i be such that $W=v_{i}$ or $W=\overline{v_{i}}$. Then the neighbours of S_{W}^{j} are the vertices H_{W}, A_{i}, and the elements of the following sets:

$$
\begin{aligned}
& \mathcal{S}^{-}=\left\{S_{W}^{j^{\prime}} \mid j^{\prime} \in \Delta_{i} \text { and } j^{\prime}<j\right\} \quad \mathcal{S}^{+}=\left\{S_{W}^{j^{\prime}} \mid j^{\prime} \in \Delta_{i} \text { and } j<j^{\prime}\right\} \\
& \mathcal{K}^{-}=\left\{K \frac{j^{\prime}}{W}, L_{\bar{W}}^{j^{\prime}}(\text { if exists }) \mid j^{\prime} \in \Delta_{i} \text { and } j^{\prime} \leq j\right\}
\end{aligned}
$$

By (iii), the elements of \mathcal{K}^{-}are pair-wise adjacent. Similarly, the elements of $\left\{H_{W}, A_{i}\right\} \cup \mathcal{S}^{+}$are pair-wise adjacent, since they all contain α_{W}. Further, each element of \mathcal{S}^{+}is adjacent to every element of \mathcal{K}^{-}by (vil), and each element of \mathcal{K}^{-}is adjacent to A_{i} and H_{W} by (iiii) and (iv), respectively. This proves that S_{W}^{j} is simplicial in $G_{\sigma}^{*}-\mathcal{S}^{-}$. Finally, note that the elements of \mathcal{S}^{-}are false shoulders in clauses $\mathcal{C}_{1}, \ldots, \mathcal{C}_{j-1}$. This concludes the elements of V_{2}.

For V_{3}, let $i \in\{1 \ldots n\}$ and consider the vertex A_{i}. The neighbours of A_{i} are the vertices $H_{v_{i}}, H_{\overline{v_{i}}}$, all shoulders of the literals $v_{i}, \overline{v_{i}}$, and all true knees of $v_{i}, \overline{v_{i}}$. By (iii), the true knees and true shoulders of $v_{i}, \overline{v_{i}}$ are pair-wise adjacent, and are adjacent to both $H_{v_{i}}$ and $H_{\overline{v_{i}}}$ by (iv). Also, $H_{v_{i}}$ is adjacent to $H_{\overline{v_{i}}}$, since $\delta \in H_{v_{i}} \cap H_{\overline{v_{i}}}$. Thus A_{i} is simplicial in $G_{\sigma}^{*}-V_{2}$. This concludes V_{3}.

Now, we consider V_{4}. Let $i \in\{1 \ldots n\}$ and consider $H_{v_{i}}, H_{\overline{v_{i}}}$. The vertices $H_{v_{i}}, H_{\overline{v_{i}}}$ are adjacent to the vertices B, A_{i}, the elements of the following sets
$\mathcal{H}^{-}=\left\{H_{v_{i^{\prime}}}, H_{\overline{v_{i^{\prime}}}} \mid i^{\prime}<i\right\} \quad \mathcal{H}^{+}=\left\{H_{v_{i^{\prime}}}, H_{\overline{v_{i^{\prime}}}} \mid i<i^{\prime}\right\}$
and all true knees, true shoulders of $v_{i^{\prime}}, \overline{v_{i^{\prime}}}$ for all $i^{\prime} \in\{1 \ldots i\}$. Further, $H_{v_{i}}$ is adjacent to $H_{\overline{v_{i}}}$, to all shoulders of v_{i} and to no other vertices, whereas $H_{\overline{v_{i}}}$ is adjacent $H_{v_{i}}$, to all shoulders of $\overline{v_{i}}$ and to no other vertices. Now, by (iii), the true knees and true shoulders of $v_{i^{\prime}}, \overline{v_{i^{\prime}}}$ for all $i^{\prime} \in\{1 \ldots i\}$, are pair-wise adjacent, and are adjacent to B and each element of \mathcal{H}^{+}by (ii) and (iv), respectively. Also, the elements of $\{B\} \cup \mathcal{H}^{+}$are pair-wise adjacent, since they all contain δ. Finally, observe that the false shoulders of $v_{i}, \overline{v_{i}}$ belong to V_{2}. This proves that both $H_{v_{i}}$ and $H_{\overline{v_{i}}}$ are simplicial in $G_{\sigma}^{*}-\left(V_{2} \cup V_{3} \cup \mathcal{H}^{-}\right)$as required.

Next, let $j \in\{1 \ldots m\}$ and consider F^{j}. Let $\mathcal{C}_{j}=X \vee Y \vee Z$, and by the rotational symmetry, assume that $X=1$ and $Y=Z=0$. Then the neighbours of F^{j} are $B, K_{Y}^{j}, K_{Z}^{j}, D_{1}^{j}, D_{2}^{j}, D_{3}^{j}, L_{Z}^{j}$, the elements of the following sets

$$
\mathcal{F}^{-}=\left\{F^{j^{\prime}} \mid j^{\prime}<j\right\} \quad \mathcal{F}^{+}=\left\{F^{j^{\prime}} \mid j<j^{\prime}\right\}
$$

and all true knees and true shoulders of the clause $\mathcal{C}_{j^{\prime}}$ for all $j^{\prime} \in\{j \ldots m\}$. By (iii), the true knees and true shoulders of the clause $\mathcal{C}_{j^{\prime}}$ for all $j^{\prime} \in\{j \ldots m\}$, are pair-wise adjacent, and are adjacent to B and each elements of \mathcal{F}^{-}by (ii) and ((च) , respectively. Also, the vertices of $\{B\} \cup \mathcal{F}^{-}$are pair-wise adjacent, since they all contain μ. Thus F^{j} is simplicial in $G_{\sigma}^{*}-\left(V_{1} \cup \mathcal{F}^{+}\right)$. This concludes V_{4}.

Finally, observe that all vertices of V_{5} are pair-wise adjacent by (ii) and (iii). That concludes the proof.

Lemma 11. For every chordal sandwich G^{\prime} of (int* $\left(\mathcal{Q}_{I}\right)$, forb $\left.\left(\mathcal{Q}_{I}\right)\right)$, there is σ such that G_{σ} is a subgraph of G^{\prime}, and such that σ is a satisfying assignment for I.

Proof. By Lemma 7 for each $i \in\{1 \ldots n\}$, there is $W \in\left\{v_{i}, \overline{v_{i}}\right\}$ such that for all $j \in \Delta_{i}$, the vertices S_{W}^{j}, K_{W}^{j}, and L_{W}^{j} (if exists) are adjacent to B. Set $\sigma\left(v_{i}\right)=1$ if $W=v_{i}$, and otherwise set $\sigma\left(v_{i}\right)=0$. For such a mapping σ, the graph G^{\prime} clearly contains all edges of G_{σ}. Thus, by Lemma 9 the graph G_{σ}^{\prime} is a subgraph of G^{\prime}, that is, G^{\prime} contains the edges defined in (iii)-(vil).

It remains to prove that σ is a satisfying assignment for I. Let $j \in\{1 \ldots m\}$ and consider the clause $\mathcal{C}_{j}=X \vee Y \vee Z$. If $X=Y=1$, then the vertex S_{Y}^{j} is a true shoulder, and K_{X}^{j} is a true knee. Thus, by (iii), we conclude that S_{Y}^{j} is adjacent K_{X}^{j}. However, this is impossible, since $S_{Y}^{j} \mid K_{X}^{j}$ is in \mathcal{Q}_{Y}. Similarly, if $X=Z=1$, we have that S_{X}^{j} is adjacent to K_{Z}^{j} by (iii) while $S_{X}^{j} \mid K_{Z}^{j}$ is in \mathcal{Q}_{I}, and if $Y=Z=1$, then S_{Z}^{j} is adjacent to K_{Y}^{j} by (iii) while $S_{Z}^{j} \mid K_{Y}^{j}$ is in \mathcal{Q}_{I}.

Now, suppose that $X=Y=Z=0$. First, observe that K_{X}^{j} is adjacent to L_{X}^{j}, K_{Z}^{j}, and the vertex L_{Z}^{j} is adjacent to $K_{Z}^{j}, K_{\bar{X}}^{j}$, since $\beta_{\bar{X}}^{j} \in K_{X}^{j} \cap L_{X}^{j}$, $\lambda^{j} \in K_{X}^{j} \cap K_{Z}^{j}, \beta_{\bar{Z}}^{j} \in L_{Z}^{j} \cap K_{Z}^{j}$, and $\gamma_{1}^{j} \in L_{Z}^{j} \cap K_{\bar{X}}^{j}$. Also, $K_{\bar{X}}^{j}$ is adjacent to $K_{\bar{Z}}^{j}$ by (iii). Further, $K_{Z}^{j} K_{Z}^{j}, K_{Z}^{j} L_{Z}^{j}$ and $K_{X}^{j} L_{X}^{j}$ are not edges of G^{\prime}, since $K_{Z}^{j} \mid K_{Z}^{j}$, $K_{\bar{Z}}^{j} \mid L_{Z}^{j}$, and $K_{X}^{j} \mid L_{X}^{j}$ and in \mathcal{Q}_{I}. Thus, if L_{X}^{j} is adjacent to K_{Z}^{j}, then by Lemma6 applied to $\left\{K_{X}^{j}, L_{X}^{j}, K_{\bar{Z}}^{j}, K_{\bar{X}}^{j}, L_{Z}^{j}, K_{Z}^{j}\right\}$, we conclude that K_{X}^{j} is adjacent to $K_{\bar{X}}^{j}$, which is impossible since $K_{\bar{X}}^{j} \mid K_{X}^{j}$ is in \mathcal{Q}_{I}. Similarly, if K_{X}^{j} is adjacent to $K_{\frac{Z}{Z}}^{j}$, then by Lemma 5 applied to $\left\{K_{X}^{j}, K_{\bar{Z}}^{j}, K_{\bar{X}}^{j}, L_{Z}^{j}, K_{Z}^{j}\right\}$, we again conclude that K_{X}^{j} is adjacent to $K_{\bar{X}}^{j}$, a contradiction. So, we may assume that both K_{X}^{j}
and L_{X}^{j} are not adjacent to $K_{\bar{Z}}^{j}$. Now, observe that L_{Y}^{j} is adjacent to $K_{\bar{Z}}^{j}, K_{Y}^{j}$, and the vertex K_{X}^{j} is adjacent to L_{X}^{j}, K_{Y}^{j}, since $\gamma_{3}^{j} \in K_{Z}^{j} \cap L_{Y}^{j}, \beta_{\bar{Y}}^{j} \in L_{Y}^{j} \cap K_{Y}^{j}$, $\beta_{\bar{X}}^{j} \in K_{X}^{j} \cap L_{X}^{j}$, and $\lambda^{j} \in K_{Y}^{j} \cap K_{X}^{j}$. Also, $K_{\bar{Y}}^{j}$ is adjacent to $K_{\bar{Z}}^{j}$ and L_{X}^{j} by (iii) and since $\gamma_{2}^{j} \in K_{\bar{Y}}^{j} \cap L_{X}^{j}$. Further, $K_{\bar{Y}}^{j} K_{Y}^{j}$ and $K_{\bar{Y}}^{j} L_{Y}^{j}$ are not edges of G^{\prime}, since $K_{\bar{Y}}^{j} \mid K_{Y}^{j}$ and $K_{\bar{Y}}^{j} \mid L_{Y}^{j}$ are in \mathcal{Q}_{I}. Recall that K_{X}^{j} and L_{X}^{j} are not adjacent to $K_{\bar{Z}}^{j}$. Then this contradicts Lemma 6 when applied to $\left\{K_{X}^{j}, L_{X}^{j}, K_{\bar{Y}}^{j}, K_{\bar{Z}}^{j}, L_{Y}^{j}, K_{Y}^{j}\right\}$.

Thus, it is not the case that $X=Y=Z=0$, and by the above also not $X=Y=1$, nor $X=Z=1$, nor $Y=Z=1$. Therefore, either $X=1$, $Y=Z=0$, or $Y=1, X=Z=0$, or $Z=1, X=Y=0$. This proves that σ is indeed a satisfying assignment for I, which concludes the proof.

We are finally ready to prove Theorem 8 .
Proof of Theorem 8. Let G^{\prime} be a minimal chordal sandwich of (int* $\left(\mathcal{Q}_{I}\right)$, forb $\left.\left(\mathcal{Q}_{I}\right)\right)$. By Lemma 11, there exists σ, a satisfying assignment for I, such that G_{σ} is a subgraph fo G^{\prime}. Thus, G^{\prime} is also a chordal sandwich of $\left(G_{\sigma}, \operatorname{forb}\left(\mathcal{Q}_{I}\right)\right)$, and hence, G_{σ}^{*} is a subgraph of G^{\prime} by Lemma 9 , But by Lemma 10, G_{σ}^{*} is chordal, and so G^{\prime} is isomorphic to G_{σ}^{*} by the minimality of G^{\prime}.

Conversely, if σ is a satisfying assignment for I, then the graph G_{σ}^{*} is chordal by Lemma 10 Moreover, $\operatorname{int}^{*}\left(\mathcal{Q}_{I}\right)$ is a subgraph of G_{σ}^{*}, by definition, and G_{σ}^{*} contains no edges of forb $\left(\mathcal{Q}_{I}\right)$, also by definition. Thus, G_{σ}^{*} is a chordal sandwich of ($\operatorname{int}^{*}\left(\mathcal{Q}_{I}\right)$, forb $\left(\mathcal{Q}_{I}\right)$), and it is minimal by Lemma 9 .

This proves that by mapping each satisfying assigment σ to the graph G_{σ}^{*}, we obtain the required bijection. That concludes the proof.

Finally, we have all the pieces to prove Theorem 1 .

7 Proof of Theorem 1

Consider an instance I to ONE-IN-THREE-3SAT and a satisfying assignment for I. We construct the collection \mathcal{Q}_{I} of quartet trees, as well as the ternary phylogenetic tree \mathcal{T}_{σ} as described in Sections 3 and 4 respectively. Clearly, constructing \mathcal{Q}_{I} and \mathcal{T}_{σ} takes polynomial time. By combining Theorem 7 with Theorems 8 and 9, we obtain that σ is the unique satisfying assignment of I if and only if \mathcal{T}_{σ} is the only phylogenetic tree that displays \mathcal{Q}_{I}. Since, by Theorem 2, it is $N P$ hard to determine if an instance to ONE-IN-THREE-3SAT has a unique satisfying assignment, it is therefore $N P$-hard to decide, for a given phylogenetic tree \mathcal{T} and a collection of quartet trees \mathcal{Q}, whether or not \mathcal{Q} defines \mathcal{T}.

That concludes the proof.

References

1. Agarwala, R., and Fernández-Baca, D. A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM Journal of Computing 23 (1994), 1216-1224.
2. Bodlaender, H. L., Fellows, M. R., and Warnow, T. J. Two strikes against perfect phylogeny. In Proceedings of 19th International Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science 623 (1992), Springer Berlin/Heidelberg, pp. 273-283.
3. Buneman, P. A characterization of rigid circuit graphs. Discrete Mathematics 9 (1974), 205-212.
4. Camin, J., and Sokal, R. A method for deducing branching sequences in phylogeny. Evolution 19 (1965), 311-326.
5. Creignou, N., and Hermann, M. Complexity of generalized satisfiability counting problems. Information and Computation 125 (1996), 1-12.
6. de Figueiredo, C. M. H., Faria, L., Klein, S., and Sritharan, R. On the complexity of the sandwich problems for strongly chordal graphs and chordal bipartite graphs. Theoretical Computer Science 381 (2007), 57-67.
7. Dekker, M. C. H. Reconstruction methods for derivation trees. Master's thesis, Vrije Universiteit, Amsterdam, 1986.
8. Dirac, G. A. On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 25 (1961), 71-76.
9. Estabrook, G. F. Cladistic methodology: a discussion of the theoretical basis for the induction of evolutionary history. Annual Review of Ecology and Systematics 3 (1972), 427-456.
10. Estabrook, G. F., C. S. Johnson, J., and McMorris, F. R. An idealized concept of the true cladistic character. Mathematical Biosciences 23 (1975), 263272.
11. Estabrook, G. F., C. S. Johnson, J., and McMorris, F. R. An algebraic analysis of cladistic characters. Discrete Mathematics 16 (1976), 141-147.
12. Estabrook, G. F., C. S. Johnson, J., and McMorris, F. R. A mathematical foundation for the analysis of cladistic character compatibility. Mathematical Biosciences 29 (1976), 181-187.
13. Golumbic, M. C., Kaplan, H., and Shamir, R. Graph sandwich problems. Journal of Algorithms 19 (1995), 449-473.
14. Gordon, A. D. Consensus supertrees: The synthesis of rooted trees containing overlapping sets of labeled leaves. Journal of Classification 3 (1986), 335-348.
15. Gusfield, D. Efficient algorithms for inferring evolutionary trees. Networks 21 (1991), 19-28.
16. Juban, L. Dichotomy theorem for the generalized unique satisfiability problem. In Proceedings of the 12th International Symposium on Fundamentals of Computation Theory (FCT 99), Lecture Notes in Computer Science 1684 (1999), Springer Berlin/Heidelberg, pp. 327-337.
17. Kannan, S. K., and Warnow, T. J. Triangulating 3-colored graphs. SIAM Journal on Discrete Mathematics 5 (1992), 249-258.
18. Lam, F., Gusfield, D., and Sridhar, S. Generalizing the splits equivalence theorem and four gamete condition: Perfect phylogeny on three state characters. In Algorithms in Bioinformatics (WABI 2009), Lecture Notes in Computer Science 5724 (2009), Springer Berlin/Heidelberg, pp. 206-219.
19. LeQuesne, W. J. Further studies on the uniquely derived character concept. Systematic Zoology 21 (1972), 281-288.
20. LeQuesne, W. J. The uniquely evolved character concept and its cladistic application. Systematic Zoology 23 (1974), 513-517.
21. LeQuesne, W. J. The uniquely evolved character concept. Systematic Zoology 26 (1977), 218-223.
22. McMorris, F. R., Warnow, T., and Wimer, T. Triangulating vertex colored graphs. SIAM Journal on Discrete Mathematics 7 (1994), 296-306.
23. Rose, D., Tarjan, R., and Lueker, G. Algorithmic aspects of vertex elimination on graphs. SIAM Journal of Computing 5 (1976), 266-283.
24. Semple, C., And Steel, M. A characterization for a set of partial partitions to define an X-tree. Discrete Mathematics 247 (2002), 169-186.
25. Semple, C., and Steel, M. Phylogenetics. Oxford lecture series in mathematics and its applications. Oxford University Press, 2003.
26. Shaefer, T. J. The complexity of satisfiability problems. In Proceedings of 10th ACM Symposium on Theory of Computing (STOC) (1978), pp. 216-226.
27. Steel, M. personal webpage, http://www.math.canterbury.ac.nz/~m.steel/
28. Steel, M. The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9 (1992), 91-116.
29. West, D. Introduction to Graph Theory. Prentice Hall, 1996.
30. Wilson, E. O. A consistency test for phylogenies based upon contemporaneous species. Systematic Zoology 14 (1965), 214-220.

[^0]: \dagger The original formulation uses the term "binary", in the sense of "rooted binary tree", but in this contex the two are equivalent.

