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Abstract. We answer, in the affirmitive, the following question pro-
posed by Mike Steel as a $100 challenge: “Is the following problem NP -
hard? Given a ternary† phylogenetic X-tree T and a collection Q of
quartet subtrees on X, is T the only tree that displays Q?” [25,27]

1 Introduction

One of the major efforts in molecular biology has been the computation of phylo-
genetic trees, or phylogenies, which describe the evolution of a set of species from
a common ancestor. A phylogenetic tree for a set of species is a tree in which
the leaves represent the species from the set and the internal nodes represent the
(hypothetical) ancestral species. One standard model for describing the species is
in terms of characters, where a character is an equivalence relation on the species
set, partitioning it into different character states. In this model, we also assign
character states to the (hypothetical) ancestral species. The desired property is
that for each state of each character, the set of nodes in the tree having that char-
acter state forms a connected subgraph. When a phylogeny has this property,
we say it is perfect. The Perfect Phylogeny problem [15] then asks for a given set
of characters defining a species set, does there exist a perfect phylogeny? Note
that we allow that states of some characters are unknown for some species; we
call such characters partial, otherwise we speak of full characters. This approach
to constructing phylogenies has been studied since the 1960s [4,19,20,21,30] and
was given a precise mathematical formulation in the 1970s [9,10,11,12]. In par-
ticular, Buneman [3] showed that the Perfect Phylogeny problem reduces to a
specific graph-theoretic problem, the problem of finding a chordal completion
of a graph that respects a prescribed colouring. In fact, the two problems are
polynomially equivalent [17]. Thus, using this formulation, it has been proved
that the Perfect Phylogeny problem is NP -hard in [2] and independently in [28].
These two results rely on the fact that the input may contain partial characters.
In fact, the characters in these constructions only have two states. If we insist on
full characters, the situation is different as for any fixed number r of character
states, the problem can be solved in time polynomial [1] in the size of the input

† The original formulation uses the term “binary”, in the sense of “rooted binary tree”,
but in this contex the two are equivalent.
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(and exponential in r). In fact, for r = 2 (or r = 3), the solution exists if and
only if it exists of every pair (or triple) of characters [12,18]. Also, when the
number of characters is k (even if there are partial characters), the complexity
[22] is polynomial in the number of species (and exponential in k).

Another common formulation of this problem is the problem of a consensus
tree [7,14,28], where a collection of subtrees with labeled leaves is given (for
instance, the leaves correspond to species of a partial character). Here, we ask
for a (phylogenetic) tree such that each of the input subtrees can be obtained
by contracting edges from the tree (we say that the tree displays the subtree).
It turns out that the problem is equivalent [25] even if we only allow particular
input subtrees, the so-called quartet trees which have exactly six vertices and
four leaves. In fact, any ternary phylogenetic tree can be uniquely described by
a collection of quartet trees [25]. However, a collection of quartet trees does not
necessarily uniquely describe a ternary phylogenetic tree.

This leads to a natural question: what is the complexity of deciding whether or
not a collection of quartet trees uniquely describes a (ternary) phylogenetic tree?
This question was posed in [25], later conjectured to be NP -hard and listed on
M. Steel’s personal webpage [27] where he offers $100 for the first proof of NP -
hardness. In this paper, we answer this question by showing that the problem is
indeed NP -hard. In particular, we prove the following theorem.

Theorem 1. It is NP -hard to determine, given a ternary phylogenetic X-tree
T and a collection Q of quartet subtrees on X, whether or not T is the only
phylogenetic tree that displays Q.

We prove the theorem by describing a polynomial-time reduction from the
uniqueness problem for one-in-three-3sat, which is NP -hard by the following
result of [16]. (Note that [16] gives a complete complexity characterization of
uniqueness for boolean satisfaction problems similar to that of Shaefer [26].)

Theorem 2. [16] It is NP -hard to decide, given an instance I to one-in-

three-3sat, and a truth assignment σ that satisfies I, whether or not σ is
the unique satisfying truth assignment for I.

Our construction in the reduction is essentially a modification of the con-
struction of [2] which proves NP -hardness of the Perfect Phylogeny problem.
Recall that the construction of [2] produces instances Q that have a perfect
phylogeny if and only if a particular boolean formula ϕ is satisfiable. We im-
mediately observed that these instances Q have, in addition, the property that
ϕ has a unique satisfying assignment if and only if there is a unique minimal
restricted chordal completion of the partial partition intersection graph of Q (for
definitions see Section 2). This is precisely one of the two necessary conditions
for uniqueness of perfect phylogeny as proved by Semple and Steel in [24] (see
Theorem 4). Thus by modifying the construction of [2] to also satisfy the other
condition of uniqueness of [24], we obtained the construction that we present
in this paper. Note that, however, unlike [2] which uses 3sat, we had to use a
different NP -hard problem in order for the construction to work correctly. Also,



to prove that the construction is correct, we employ a variant of the characteri-
zation of [24] that uses the more general chordal sandwich problem [13] instead
of the restricted chordal completion problem (see Theorem 7). In fact, by way of
Theorems 5 and 6, we establish a direct connection between the problem of per-
fect phylogeny and the chordal sandwich problem, which apparently has not been
yet observed. (Note that the connection to the (restricted) chordal completion
problem of coloured graphs as mentioned above [3,17] is a special case of this.)
Using this result, we are able to present a much simplified proof of Theorem 1.

Finally, as a corollary, we obtain the following result.

Corollary 1 (Chordal sandwich). The Unique chordal sandwich problem is
NP -hard. Counting the number of minimal chordal sandwiches is #P -complete.

The first part follows directly from Theorems 2 and 8, while the second part
follows from Theorem 8 and [5]. (Note that [5] gives a complete complexity
characterization for the problem of counting satisfying assignments for boolean
satisfaction problems, just like [16] gives for uniqueness as mentioned above).

The paper is structured as follows. First, in Section 2, we describe some pre-
liminary definitions and results needed for our construction of the reduction. In
particular, we describe, based on [24], necessary and sufficient conditions for the
existence of a unique perfect phylogeny in terms of the minimal chordal sand-
wich problem (cf. [6,13]). The proof of this characterization is postponed until
Section 5. In Section 3, we describe the actual construction and state one of
the two uniqueness conditions (Theorem 8) relating minimal chordal sandwiches
to satisfying assignments of an instance I of one-in-three-3sat. The proof is
presented later in Section 6. In Section 4, we describe and prove the other unique-
ness condition (Theorem 9) relating satisfying assignments of I to phylogenetic
trees. In Section 7, we put these results together to prove Theorem 1.

2 Preliminaries

We mostly follow the terminology of [24,25] and graph-theoretical notions of [29].
Let X be a non-empty set. An X-tree is a pair (T, φ) where T is tree and

φ : X → V (T ) is a mapping such that φ−1(v) 6= ∅ for all vertices v ∈ V (T )
of degree at most two. An X-tree (T, φ) is ternary if all internal vertices of T
have degree three. Two X-trees (T1, φ1), (T2, φ2) are isomorphic if there exists
an isomorphism ψ : V (T1) → V (T2) between T1 and T2 that satisfies φ2 = ψ◦φ1.

An X-tree (T, φ) is a phylogenetic X-tree (or a free X-free in [24]) if φ is
bijection between X and the set of leaves of T .

A partial partition of X is a partition of a non-empty subset of X into at least
two sets. If A1, A2, . . . , At are these sets, we call them cells of this partition,
and denote the partition A1|A2| . . . |At. If t = 2, we call the partition a partial
split. A partial split A1|A2 is trivial if |A1| = 1 or |A2| = 1.

A quartet tree is a ternary phylogenetic tree with a label set of size four,
that is, a ternary tree T with 6 vertices, 4 leaves labeled a, b, c, d, and with only
one non-trivial partial split {a, b}|{c, d} that it displays. Note that such a tree



is unambiguously defined by this partial split. Thus, in the subseqent text, we
identify the quartet tree T with the partial split {a, b}|{c, d}, that is, we say
that {a, b}|{c, d} is both a quartet tree and a partial split.

Let T = (T, φ) be an X-tree, and let π = A1|A2| . . . |At be a partial partition
of X . We say that T displays π if there is a set of edges F of T such that, for
all distinct i, j ∈ {1 . . . t}, the sets φ(Ai) and φ(Aj) are subsets of the vertex
sets of different connected components of T − F . We say that an edge e of T is
distinguished by π if every set of edges that displays π in T contains e.

Let Q be a collection of partial partitions of X . An X-tree T displays Q if
it displays every partial partition in Q. An X-tree T = (T, φ) is distinguished
by Q if every internal edge of T is distinguished by some partial partition in Q;
we also say that Q distinguishes T . The set Q defines T if T displays Q, and
all other X-trees that display Q are isomorphic to T . Note that if Q defines T ,
then T is necessarily a ternary phylogenetic X-tree, since otherwise “resolving”
any vertex either of degree four or more, or with multiple labels results in a
non-isomorphic X-tree that also displays Q (also, see Proposition 2.6 in [24]).

The partial partition intersection graph of Q, denoted by int(Q), is a graph
whose vertex set is {(A, π) | where A is a cell of π ∈ Q} and two vertices (A, π),
(A′, π′) are adjacent just if the intersection of A and A′ is non-empty.

A graph is chordal if it contains no induced cycle of length four or more. A
chordal completion of a graph G = (V,E) is a chordal graph G′ = (V,E′) with
E ⊆ E′. A restricted chordal completion of int(Q) is a chordal completion G′

of int(Q) with the property that if A1,A2 are cells of π ∈ Q, then (A1, π) is
not adjacent to (A2, π) in G′. A restricted chordal completion G′ of int(Q) is
minimal if no proper subgraph of G′ is a restricted chordal completion of int(Q).

The problem of perfect phylogeny is equivalent to the problem of determining
the existence of anX-tree that display the given collectionQ of partial partitions.
In [3], it was given the following graph-theoretical characterization.

Theorem 3. [3,25,28] Let Q be a set of partial partitions of a set X. Then there
exists an X-tree that displays Q if and only if there exists a restricted chordal
completion of int(Q).

Of course, the X-tree in the above theorem might not be unique. For the
problem of uniqueness, Semple and Steel [24,25] describe necessary and sufficient
conditions for when a collection of partial partitions defines an X-tree.

Theorem 4. [24] Let Q be a collection of partial partitions of a set X. Let T
be a ternary phylogenetic X-tree. Then Q defines T if and only if:
(i) T displays Q and is distinguished by Q, and
(ii) there is a unique minimal restricted chordal completion of int(Q).

In order to simplify our construction, we now describe a variant of the above
theorem that, instead, deals with the notion of chordal sandwich.

Let G1 = (V,E1) and G2 = (V,E2) be two graphs on the same set of vertices
with E1∩E2 = ∅. A chordal sandwich† of (G1,G2) is a chordal graphG

′ = (V,E′)

† In this formulation, E1 are the forced edges and E2 are the forbidden edges. See [13]
for further details on different ways of specifying the input to this problem.



with E1 ⊆ E′ and E′ ∩E2 = ∅. A chordal sandwich G′ of (G1,G2) is minimal if
no proper subgraph of G′ is a chordal sandwich of (G1,G2).

The cell intersection graph of Q, denoted by int∗(Q), is the graph whose
vertex set is {A | where A is a cell of π ∈ Q} and two vertices A, A′ are adjacent
just if the intersection of A and A′ is non-empty. Let forb(Q) denote the graph
whose vertex set is that of int∗(Q) in which there is an edge between A and A′

just if A,A′ are cells of some π ∈ Q.
The correspondence between the partial partition intersection graph and the

cell intersection graph is captured by the following theorem.

Theorem 5. Let Q be a collection of partial partitions of a set X. Then there is
a one-to-one correspondence between the minimal restricted chordal completions
of int(Q) and the minimal chordal sandwiches of (int∗(Q), forb(Q)).

(The proof of this theorem is presented as Section 5.)
This combined with Theorem 3 yields that there exists a phylogenetic X-tree

that displaysQ if and only if there exists a chordal sandwich of (int∗(Q), forb(Q)).
Conversely, we can express every instance to the chordal sandwich problem as a
corresponding instance to the problem of perfect phylogeny as follows.

Theorem 6. Let (G1, G2) be an instance to the chordal sandwich problem. Then
there is a collection Q of partial splits such that there is a one-to-one correspon-
dence between the minimal chordal sandwiches of (G1, G2) and the minimal re-
stricted chordal completions of int(Q). In particular, there exists a chordal sand-
wich for (G1, G2) if and only if there exists a phylogenetic tree that displays Q.

Proof. Without loss of generality, we may assume that each connected com-
ponent of G1 has at least three vertices. (We can safely remove any component
with two or less vertices without changing the number of minimal chordal com-
pletions, since every such component is already chordal.)

As usual, G1 = (V,E1) and G2 = (V,E2) where E1 ∩ E2 = ∅. We define the
collection Q of partial splits (of the set E1) as follows: for every edge xy ∈ E2,
we construct the partial split Fx|Fy, where Fx are the edges of E1 incident to
x, and Fy are the edges of E1 incident to y. By definition, the vertex set of the
graph int∗(Q) is precisly {Fv | v ∈ V }. Further, it can be easily seen that the
mapping ψ that, for each v ∈ V , maps v to Fv is an isomorphism between G1 and
int∗(Q). (Here, one only needs to verify that Fu = Fv implies u = v; for this we
use that each component of G1 has at least three vertices.) Moreover, forb(Q) is
precisely {ψ(x)ψ(y) | xy ∈ E2} by definition. Therefore, by Theorem 5, there is a
one-to-one correspondence between the minimal chordal sandwiches of (G1, G2)
are the minimal restricted chordal completions of int(Q). This proves the first
part of the claim; the second part follows directly from Theorem 3. �

As an immediate corollary, we obtain the following desired characterization.

Theorem 7. Let Q be a collection of partial partitions of a set X. Let T be a
ternary phylogenetic X-tree. Then Q defines T if and only if:

(i) T displays Q and is distinguished by Q, and

(ii) there is a unique minimal chordal sandwich of
(

int∗(Q), forb(Q)
)

.



3 Construction

Consider an instance I to one-in-three-3sat. That is, I consists of n variables
v1, . . . , vn and m clauses C1, . . . , Cm each of which is a disjunction of exactly
three literals (i.e., variables vi or their negations vi).

By standard arguments, we may assume that no variable appears twice in
the same clause, since otherwise we can replace the instance I with an equivalent
instance with this property. In particular, we can replace each clause of the form
vi∨vi∨vj by clauses vi∨x∨vj and vi∨x∨vj where x is a new variable, and replace
each clause of the form vi∨vi∨vj by clauses vi∨vj ∨x, vi∨vj ∨x, and vi∨vj ∨x
where x is again a new variable. Note that these two transformation preserve
the number of satisfying assignments, since in the former the new variable x has
always the truth value of vi while in the latter x is always false in any satisfying
assignment of this modified instance.

In what follows, we describe a collection QI of quartet trees arising from the
instance I, and prove the following theorem. (We present the proof as Section 6.)

Theorem 8. There is a one-to-one correspondence between satisfying assign-
ments of the instance I and minimal chordal sandwiches of (int∗(QI), forb(QI)).

To simplify the presentation, we shall denote literals by capital letters X , Y ,
etc., and indicate their negations by X, Y , etc. (For instance, if X = vi then
X = vi, and if X = vi then X = vi.)

A truth assignment for the instance I is a mapping σ : {v1, . . . , vn} → {0, 1}
where 0 and 1 represent false and true, respectively. To simplify the notation,
we write vi = 0 and vi = 1 in place of σ(vi) = 0 and σ(vi) = 1, respectively, and
extend this notation to literals X ,Y , etc., i.e., write X = 0 and X = 1 in place
of σ(X) = 0 and σ(X) = 1, respectively. A truth assignment σ is a satisfying
assignment for I if in each clause Cj exactly one the three literals evalues to
true. That is, for each clause Cj = X ∨ Y ∨ Z, either X = 1, Y = 0, Z = 0, or
X = 0, Y = 1, Z = 0, or X = 0, Y = 0, Z = 1.

For each i ∈ {1 . . . n}, we let ∆i denote all indices j such that vi or vi appears
in the clause Cj. Let XI be the set consisting of the following elements:

a) αvi , αvi for each i ∈ {1 . . . n},

b) βj
vi
, βj

vi
for each i ∈ {1 . . . n} and each j ∈ ∆i,

c) γj1 , γ
j
2, γ

j
3 , λ

j for each j ∈ {1 . . .m},

d) δ and µ.

Consider the following collection of 2-element subsets of XI :

a) B =
{

µ, δ
}

,

b) for each i ∈ {1, . . . , n}:

Hvi={αvi , δ
}

, Hvi={αvi , δ
}

, Ai =
{

αvi , αvi

}

,

Sj
vi

=
{

αvi , β
j
vi

}

, Sj
vi

=
{

αvi , β
j
vi

}

for all j ∈ ∆i
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Fig. 1. Two configurations from of the graph int∗(QI).

c) for each j ∈ {1 . . .m} where Cj = X ∨ Y ∨ Z:

K
j

X
=

{

β
j
X , γ

j
1

}

, Kj

Y
=

{

β
j
Y , γ

j
2

}

, Kj

Z
=

{

β
j
Z , γ

j
3

}

,

K
j
X =

{

β
j

X
, λj

}

, Kj
Y =

{

β
j

Y
, λj

}

, Kj
Z =

{

β
j

Z
, λj

}

,

L
j
X =

{

β
j

X
, γ

j
2

}

, Lj
Y =

{

β
j

Y
, γ

j
3

}

, Lj
Z =

{

β
j

Z
, γ

j
1

}

,

D
j
1 =

{

γ
j
1 , λ

j
}

, D
j
2 =

{

γ
j
2 , λ

j
}

, D
j
3 =

{

γ
j
3, λ

j
}

, F j =
{

λj , µ
}

The collection QI of quartet trees is defined as follows:

QI =
⋃

i∈{1...n}

{

Ai|B
}

∪
⋃

j∈{1...m}

{

D
j
1|B,D

j
2|B,D

j
3|B

}

∪
⋃

i∈{1...n}
j,j′∈∆i

{

Sj
vi
|Sj′

vi

}

∪
⋃

i∈{1...n}
j,j′∈∆i and j<j′

{

Sj
vi
|Kj′

vi
, S

j
vi
|Kj′

vi

}

∪
⋃

i∈{1...n}
j∈∆i and j<j′≤m

{

K
j
vi
|F j′ ,Kj

vi
|F j′

}

∪
⋃

1≤i′<i≤n
j∈∆i

{

Hvi′
|Sj

vi
, Hvi′

|Sj
vi
, Hvi′

|Sj
vi
, Hvi′

|Sj
vi

}

∪
⋃

i∈{1...n}
j∈{1...m}

{

Hvi |F
j , Hvi |F

j
}

∪
⋃

j∈{1...m}
where Cj=X∨Y ∨Z

{

K
j

X
|Kj

X , Kj

Y
|Kj

Y , K
j

Z
|Kj

Z , K
j

X
|Lj

X , Kj

Y
|Lj

Y ,K
j

Z
|Lj

Z

S
j
Y |K

j
X , Sj

Z |K
j
Y , S

j
X |Kj

Z , S
j
Z |L

j
X , S

j
X |Lj

Y ,S
j
Y |L

j
Z

}

Note that in each clause Cj = X∨Y ∨Z there is a particular type of symmetry
between the literals X , Y , and Z. In particular, if we replace, in the above, the
incices X , Y , Z and 1, 2, 3 as follows: X → Y → Z → X and 1 → 2 → 3 → 1,
we obtain precisely the same definition of QI as the above. We shall refer to this
as the rotational symmetry between X , Y , Z.

4 Unique trees

Let TI be the tree defined as follows: (for illustration, see Figures 2 and 3)



V (TI) =
{

y0, y1, y
′
1, . . . , yn, y

′
n

}

∪
{

a1, a
′
1, . . . , an, a

′
n

}

∪
{

u0, u1, . . . , um

}

∪
{

x
j
1, x

j
2, x

j
3, x

j
4, x

j
5, x

j
6, b

j
1, b

j
2, b

j
3, g

j
1, g

j
2, g

j
3, ℓ

j
}m

j=1
∪
{

c
j
i , z

j
i | j ∈ ∆i

}n

i=1

E(TI) =
{

y1y
′
1, y2y

′
2, . . . , yny

′
n

}

∪
{

a1y
′
1, a2y

′
2, . . . any

′
n

}

∪
{

c
j
iz

j
i | j ∈ ∆i

}n

i=1

∪
{

y0y1, y1y2, y2y3, . . . , yn−1yn

}

∪
{

ynu1, u1u2, u2u3, . . . , um−1um, umu0

}

∪
{

ujx
j
1, x

j
1x

j
2, x

j
2x

j
3, x

j
2x

j
4, x

j
4x

j
5, x

j
4x

j
6, b

j
1x

j
6, b

j
2x

j
3, b

j
3x

j
5, g

j
1x

j
6, g

j
2x

j
1, g

j
3x

j
3, ℓ

jx
j
5

}m

j=1

∪
{

a′iz
j1
i , z

j1
i z

j2
i , . . . , z

jt−1

i z
jt
i , z

jt
i y

′
i | where j1 < j2 < . . . < jt are elements of ∆i

}n

i=1

Let σ be a satisfying assignment for the instance I, and let φσ be the mapping
of XI to V (TI) defined as follows:

a) for each i ∈ {1 . . . n}:
if vi = 1, then φσ(αvi) = ai, φσ(αvi) = a′i, and φσ(β

j
vi
) = c

j
i for all j ∈ ∆i,

if vi = 0, then φσ(αvi) = ai, φσ(αvi) = a′i, and φσ(β
j
vi
) = c

j
i for all j ∈ ∆i,

b) for each j ∈ {1 . . .m} where Cj = X ∨ Y ∨ Z:

if X = 1, then φσ(β
j
X) = b

j
1, φσ(β

j

Y
) = b

j
2, φσ(β

j

Z
) = b

j
3,

φσ(γ
j
1) = g

j
1, φσ(γ

j
2) = g

j
2, φσ(γ

j
3) = g

j
3, φσ(λ

j) = ℓj ,

if Y = 1, then φσ(β
j
Y ) = b

j
1, φσ(β

j

Z
) = b

j
2, φσ(β

j

X
) = b

j
3,

φσ(γ
j
2) = g

j
1, φσ(γ

j
3) = g

j
2, φσ(γ

j
1) = g

j
3, φσ(λ

j) = ℓj ,

if Z = 1, then φσ(β
j
Z) = b

j
1, φσ(β

j

X
) = b

j
2, φσ(β

j

Y
) = b

j
3,

φσ(γ
j
3) = g

j
1, φσ(γ

j
1) = g

j
2, φσ(γ

j
2) = g

j
3, φσ(λ

j) = ℓj ,
c) φσ(δ) = y0 and φσ(µ) = u0.

Theorem 9. If σ is a satisfying assignment for I, then Tσ = (TI , φσ) is a
ternary phylogenetic XI-tree that displays QI and is distinguished by QI .

Proof. Let σ be a satisfying assignment for I, i.e., for each clause Cj = X∨Y ∨Z,
either X = 1, Y = Z = 0, or Y = 1, X = Z = 0, or Z = 1, X = Y = 0. For each
i ∈ {1 . . . n}, letAi = {ai, a′i, y

′
i, z

j1
i , . . . , zjti ,cj1i , . . . , cjti } where∆i = {j1, . . . , jt},

and for each j ∈ {1 . . .m}, let Bj = {xj1,x
j
2,x

j
3,x

j
4,x

j
5,x

j
6, g

j
1, g

j
2, g

j
3, b

j
1, b

j
2, b

j
3, ℓ

j}.

. . . . . .
u1 u2 umy1 y2 yny0 u0

...
...

...
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It is not difficult to see that φσ defines a bijection between the elements
of XI and the leaves of TI . For instance, for each i ∈ {1 . . . n}, we note that
{φ(αvi), φ(αvi)} = {ai, a′i}, and for each j ∈ ∆i, either φσ(β

j
vi
) = c

j
i and

φσ(β
j
vi
) ∈ {bj1, b

j
2, b

j
3}, or φσ(β

j
vi
) = c

j
i and φσ(β

j
vi
) ∈ {bj1, b

j
2, b

j
3}. Also, for each

j ∈ {1 . . .m}, we have φσ(λ
j) = ℓj , and {φσ(γ

j
1), φσ(γ

j
2), φσ(γ

j
3)} = {gj1, g

j
2, g

j
3}.

Further, it can be readily verified that TI is a ternary tree. Thus, Tσ = (TI , φσ)
is indeed a ternary phylogenetic XI -tree. First, we show that it displays QI .

Consider Ai|B for i ∈ {1 . . . n}. Recall that Ai = {αvi , αvi}, B = {δ, µ}, and
that {φσ(αvi), φσ(αvi)} = {ai, a′i}. Also, φσ(δ) = y0 and φσ(µ) = u0. Observe
that ai, a

′
i ∈ Ai. Hence, both ai, a

′
i are in one connected component of TI − yiy

′
i

whereas y0, u0 are in another component. Thus, Tσ indeed displays Ai|B.

Next, consider Dj
p|B for j ∈ {1 . . .m} and p ∈ {1 . . . 3}. Recall that Dj

p =

{γjp, λ
j}, and φσ(γ

j
p) ∈ Bj, φσ(λ

j) ∈ Bj . Also, B = {δ, µ} and φσ(δ) = y0,

φσ(µ) = u0. Thus both φσ(γ
j
p), φσ(λ

j) are in one component of TI − ujx
j
1

whereas y0, u0 are in another component. This shows that Tσ displays Dj
p|B.

Now, we look at Sj
vi
|Sj′

vi
where i ∈ {1 . . . n} and j, j′ ∈ ∆i. Recall that

Sj
vi

= {αvi , β
j
vi
} and Sj′

vi
= {αvi , β

j′

vi
}. By symmetry, we may assume that vi = 1.

Then φσ(αvi ) = ai, φσ(αvi) = a′i, φσ(β
j
vi
) ∈ Bj , and φσ(β

j′

vi
) = c

j′

i . Let jt denote

the largest element in ∆i. Then, both a
′
i,c

j′

i are in one component of TI − y′iz
jt
i

whereas ai and φσ(β
j
vi
) are in a different component. Thus, Tσ displays Sj

vi
|Sj′

vi
.

Next, consider Sj
vi
|Kj′

vi
and S

j
vi
|Kj′

vi
for i ∈ {1 . . . n} and j, j′ ∈ ∆i where

j < j′. Recall that Kj′

vi
⊆ {βj′

vi
, γ

j′

1 , γ
j′

2 , γ
j′

3 , λ
j′}, Kj′

vi
⊆ {βj′

vi
, γ

j′

1 , γ
j′

2 , γ
j′

3 , λ
j′},

Sj
vi

= {αvi , β
j
vi
} and Sj

vi
= {αvi , β

j
vi
}. Again, by symmetry, we assume vi = 1.

So, φσ(αvi) = ai, φσ(αvi) = a′i, φσ(β
j
vi
) = c

j
i , φσ(β

j′

vi
) = c

j′

i , φσ(β
j
vi
) ∈ Bj , and

{φσ(βj′

vi
), φσ(γ

j′

1 ), φσ(γ
j′

2 ), φσ(γ
j′

3 ), φσ(λ
j′ )} ⊆ Bj′ . Let j1 < j2 < . . . < jt be the

elements of ∆i. Since j ∈ ∆i, let k be such that j = jk. We conclude k < t, since



j < j′ and j′ ∈ ∆i. Thus, the elements of φσ(S
j
vi
) and φσ(K

j′

vi
), respectively are

in different components of TI − z
jk
i z

jk+1

i . Further, observe that φσ(K
j′

vi
) ⊆ Bj′ ,

and since j 6= j′, the elements of φσ(S
j
vi
) and φσ(K

j′

vi
) are in different components

of TI − uj′x
j′

1 . This proves that Tσ displays both Sj
vi
|Kj′

vi
and Sj

vi
|Kj′

vi
.

Now, consider Kj
vi
|F j′ and Kj

vi
|F j′ for i ∈ {1 . . . n} and j < j′ where j ∈ ∆i.

Again, recall that Kj
vi

⊆ {βj
vi
, γ

j
1, γ

j
2, γ

j
3 , λ

j}, Kj
vi

⊆ {βj
vi
, γ

j
1, γ

j
2 , γ

j
3, λ

j}, and that

F j′ = {λj
′

, µ}. So, φσ(K
j
vi
) ∪ φσ(Kj

vi
) ⊆ Ai ∪ Bj whereas φσ(F

j′) ⊆ Bj′ ∪ {u0}.

Since j < j′ ≤ m, we conclude that φσ(K
j
vi
) ∪ φσ(K

j
vi
) and φσ(F

j′ ) are in

different components of TI−ujuj+1. Thus Tσ displays bothKj
vi
|F j′ andKj

vi
|F j′ .

Next, we considerHvi′
|Sj

vi
, Hvi′

|Sj
vi
, Hvi′

|Sj
vi
, and Hvi′

|Sj
vi

for 1 ≤ i′ < i ≤ n

and j ∈ ∆i. Recall that Hvi′
= {αvi′

, δ}, Hvi′
= {αvi′

, δ}, Sj
vi

= {αvi , β
j
vi
}, and

S
j
vi

= {αvi , β
j
vi
}. So, φσ(S

j
vi
)∪φσ(S

j
vi
) ⊆ Ai∪Bj whereas φσ(Hvi′

)∪φσ(Hvi′
) ⊆

Ai′ ∪ {δ}. Thus, since i′ < i ≤ n, we conclude that φσ(S
j
vi
) ∪ φσ(S

j
vi
) and

φσ(Hvi′
)∪φσ(Hvi′

) are in different components of TI−yi′yi′+1. This proves that

Tσ displays all the four quartet trees Hvi′
|Sj

vi
, Hvi′

|Sj
vi
, Hvi′

|Sj
vi

and Hvi′
|Sj

vi
.

Similarly, we consider Hvi |F
j and Hvi |F

j for i ∈ {1 . . . n} and j ∈ {1 . . .m}.
Recall that Hvi = {αvi , δ}, Hvi = {αvi , δ}, and F

j = {λj , µ}. Hence, it follows
that {φσ(Hvi)∪φσ(Hvi)} ⊆ Ai∪{δ} and φσ(F

j) ⊆ Bj ∪{µ}. Thus, we conclude
that φσ(Hvi) ∪ φσ(Hvi) and φσ(F

j) are in different components of TI − ynu1.
This proves that Tσ displays both Hvi |F

j and Hvi |F
j .

Finally, we consider the clause Cj = X ∨ Y ∨ Z for j ∈ {1 . . .m}. Since
σ is a satisfying assignment, and by the rotational symmetry between X , Y ,
and Z, we may assume that X = 1, Y = 0, and Z = 0. Let iX be the in-
dex such that X = viX or X = viX , let iY be such that Y = viY or Y =
viY , and let iZ be such that Z = viZ or Z = viZ . Note that iX , iY , iZ
are all distinct, since we assume that no variable appears more than once in
each clause. Thus we have that φσ(β

j
X) = b

j
1, φσ(β

j

Y
) = b

j
2, φσ(β

j

Z
) = b

j
3,

φσ(γ
j
1) = g

j
1, φσ(γ

j
2) = g

j
2, φσ(γ

j
3) = g

j
3, and φσ(λ

j) = ℓj . (See Figure 3c.)

Also, {φσ(αX), φσ(αX), φσ(β
j

X
)} ⊆ AiX , {φσ(αY ), φσ(αY ), φσ(β

j
Y )} ⊆ AiY , and

{φσ(αZ), φσ(αZ), φσ(β
j
Z)} ⊆ AiZ . First, consider K

j

X
|Kj

X and K
j

X
|Lj

X . Recall

that Kj

X
= {βj

X , γ
j
1}, K

j
X = {βj

X
, λj}, and L

j
X = {βj

X
, γ

j
2}. Also, recall that

φσ(β
j

X
) ∈ AiX . Thus it follows that φσ(K

j
X) ∪ φσ(L

j
X) and φσ(K

j

X
) are in dif-

ferent components of TI −x
j
4x

j
6. Now, consider K

j

Y
|Kj

Y and Kj

Y
|Lj

Y . Recall that

K
j

Y
= {βj

Y , γ
j
2},K

j
Y = {βj

Y
, λj}, and Lj

Y = {βj

Y
, γ

j
3} where φσ(β

j
Y ) ∈ AiY . Thus,

φσ(K
j
Y )∪φσ(L

j
Y ) and φσ(K

j

Y
) are in different components of TI−x

j
1x

j
2. Similarly,

consider Kj

Z
|Kj

Z and Kj

Z
|Lj

Z . Recall that K
j

Z
= {βj

Z , γ
j
3}, K

j
Z = {βj

Z
, λj}, and

L
j
Z = {βj

Z
, γ

j
1} where φσ(β

j
Z) ∈ AiZ . Thus, φσ(K

j
Z)∪φσ(L

j
Z) and φσ(K

j

Z
) are in

different components of TI−x
j
2x

j
4. Now, consider S

j
Y |K

j
X and Sj

Y |L
j
Z . Recall that

S
j
Y = {αY , β

j
Y }, K

j
X = {βj

X
, λj} and Lj

Z = {βj

Z
, γ

j
1}. Also, {φσ(αY ), φσ(β

j
Y )} ⊆

AiY whereas φσ(β
j
X) ∈ AiX . Thus, since iX 6= iY , we conclude that φσ(S

j
Y )



and φσ(K
j
X) ∪ φσ(L

j
Z) are in different components of TI − yiY y

′
iY
. Similarly,

we consider Sj
Z |K

j
Y and S

j
Z |L

j
X . Recall that Sj

Z = {αZ , β
j
Z}, K

j
Y = {βj

Y
, λj},

and Lj
X = {βj

X
, γ

j
2}. Also, {φσ(αZ), φσ(β

j
Z)} ⊆ AiZ , and φσ(β

j

X
) ∈ AiX . Thus,

since iX 6= iZ , we conclude that φσ(S
j
Z) and φσ(K

j
Y ) ∪ φσ(L

j
X) are in different

components of TI − yiZy
′
iZ
. Finally, consider Sj

X |Kj
Z and S

j
X |Lj

Y . Recall that

S
j
X = {αX , β

j
X}, Kj

Z = {βj

Z
, λj} and L

j
Y = {βj

Y
, γ

j
3} where φσ(αX) ∈ AiX .

Thus, φσ(S
j
X) and φσ(K

j
Z) are in different components of TI − x

j
4x

j
5, whereas

φσ(S
j
X) and φσ(L

j
Y ) are in different components of TI − x

j
2x

j
3.

This proves that Tσ displays QI . It remains to prove that Tσ is distinguished
by QI . First, consider the edge yiy

′
i for i ∈ {1 . . . n}. Recall that Ai = {αvi , αvi}

and B = {δ, µ}. By definition, we have φσ(Ai) = {ai, a′i} and φσ(B) = {y0, u0}.
Note that every connected subgraph of TI that contains both y0 and u0 must
also contain yi, since it lies on the path between u0 and y0 in TI . Likewise,
every connected subgraph of TI that contains ai, a

′
i also contains y′i. Thus, this

shows that the edge yiy
′
i is distinguished by Ai|B which is in QI . We similarly

consider the edge ujx
j
1 for j ∈ {1 . . .m}. By the definition of φσ, we observe

that there exists p ∈ {1, 2, 3} such that φσ(γ
j
p) = g

j
2. We recall that B = {δ, µ}

and Dj
p = {γjp, λ

j}. Thus, φσ(B) = {y0, u0} and φσ(D
j
p) = {gj2, ℓ

j}. Since g2j is

adjacent to xj1, and uj lies on the path between y0 and u0, it follows that the

edge ujx
j
1 is distinguished by Dj

p|B which is in QI .

Now, consider i ∈ {1 . . . n}, and let j1 < j2 < . . . < jt be the elements
of ∆i. Let W ∈ {vi, vi} be such that W = 1. Then we have φσ(αW ) = ai,
φσ(αW ) = a′i, and φσ(β

j

W
) = c

j
i for all j ∈ ∆i. Recall that S

j

W
= {αW , β

j

W
}

and Kj
W ⊆ {βj

W
, γ

j
1 , γ

j
2, γ

j
3 , λ

j} where {φσ(γ
j
1), φσ(γ

j
2), φσ(γ

j
3), φσ(λ

j)} ⊆ Bj for

all j ∈ ∆i. Thus, for each k ∈ {1 . . . t− 1}, it follows that φσ(β
jk

W
) is adjacent to

z
jk
i whereas φσ(β

jk+1

W
) is adjacent to z

jk+1

i . This proves that the edge zjki z
jk+1

i

is distinguished by S
jk

W
|K

jk+1

W . Similarly, recall that Sj
W = {αW , β

j
W } where

φσ(β
j
W ) ∈ Bj and φσ(αW ) is adjacent to y′i. Thus, the edge z

jt
i y

′
i is distinguished

by S
jt
W |Sjt

W
. Further, if i ≥ 2, then we recall that Hvi−1

= {αvi−1
, δ} where

φσ(αvi−1
) ∈ Ai−1 and φσ(δ) = y0. Thus yi−1yi is distinguished by Hvi−1

|Sjt
W .

Now, consider j ∈ {1, . . .m} where Cj = X∨Y ∨Z. By the rotational symme-

try, we may assume thatX = 1 and Y = Z = 0. Thus φσ(β
j
X) = b

j
1, φσ(β

j

Y
) = b

j
2,

φσ(β
j

Z
) = b

j
3, φσ(γ

j
1) = g

j
1, φσ(γ

j
2) = g

j
2, φσ(γ

j
3) = g

j
3, and φσ(λ

j) = ℓj .

(Again see Figure 3c.) Recall that Kj
Y = {βj

Y
, λj} and K

j

Y
= {βj

Y , γ
j
2} where

φσ(β
j
Y ) 6∈ Bj. This shows that the edge xj1x

j
2 is distinguished by Kj

Y
|Kj

Y . Recall

that Sj
X = {αX , β

j
X}, Lj

Y = {βj

Y
, γ

j
3}, and K

j
Z = {βj

Z
, λj} where φσ(αX) 6∈ Bj .

Thus, the edge xj2x
j
3 is distiguished by S

j
X |Lj

Y whereas the edge xj4x
j
5 is dis-

tinguished by S
j
X |Kj

Z . Recall that K
j

Z
= {βj

Z , γ
j
3} and L

j
Z = {βj

Z
, γ

j
1} where

φσ(β
j
Z) 6∈ Bj . Thus, the edge x

j
2x

j
4 is distinguished by K

j

Z
|Lj

Z . Recall that



K
j
X = {βj

X
, λj} and Kj

X
= {βj

X , γ
j
1} where φσ(β

j
X) 6∈ Bj. Thus, the edge xj4x

j
6 is

distinguished by Kj

X
|Kj

X . Further, if j < m, recall that F j+1 = {λj+1, µ} where

φσ(λ
j+1) ∈ Bj+1 and φσ(µ) = u0. Thus ujuj+1 is distinguished by Kj

X |F j+1.
Finally, recall that Hvn = {αvn , δ} and F 1 = {λ1, µ}. So, φσ(Hvn) ⊆ An ∪

{y0} and φσ(F
1) ⊆ Bj ∪ {u0}. Thus, the edge ynu1 is distinguished by Hvn |F

1.
This concludes the proof. �

5 Proof of Theorem 5

To prove Theorem 5, we need to introduce some additional tools. The following
is a standard property of minimal chordal completions.

Lemma 1. Let G′ be a chordal completion of G. Then G′ is a minimal chordal
completion of G if and only if for all uv ∈ E(G′) \ E(G), the vertices u, v have
at least two non-adjacent common neighbours in G′.

Proof. Suppose thatG′ is a minimal chordal completion. Let uv ∈ E(G′)\E(G),
and let G′′ = G′−uv. Since G′ is a minimal chordal completion and uv 6∈ E(G),
we conclude that G′′ is not chordal. Thus, there exists a set C ⊆ V (G′) that
induces a cycle in G′′. Since G′ is chordal, C does not induce a cycle in G′. This
implies u, v ∈ C, and hence, uv is the unique chord of G′[C]. So, we conclude
|C| = 4, because otherwise G′[C] contains an induced cycle. Let x, y be the
two vertices of C \ {u, v}. Clearly, xy 6∈ E(G′) and both x and y are common
neighbours of u, v as required.

Conversely, suppose that G′ is not a minimal chordal completion. Then by
[23], there exists an edge uv ∈ E(G′)\E(G) such that G′−uv is a chordal graph.
Therefore, u, v do not have non-adjacent common neighbours x, y in G′, since
otherwise {u, x, v, y} induces a 4-cycle in G′ − uv, which is impossible since we
assume that G′ − uv is chordal. That concludes the proof. �

Using this tool, we prove the following two important lemmas.

Lemma 2. Let G be a graph and G′ be a minimal chordal completion of G. If
G contains vertices u, v with NG(u) ⊆ NG(v), then also NG′(u) ⊆ NG′(v).

Proof. Let u, v be vertices of G with NG(u) ⊆ N(Gv). Let B = NG′(u)\NG′(v)
and A = NG′(u)∩NG′(v). Assume that B 6= ∅, and let A1 denote the vertices of
A with at least one neighbour in B. Look at the graph G1 = G′[A1 ∪B ∪ {v}].

By the definition of A1 and B, the vertex v is adjacent to each vertex of A1

and non-adjacent to each vertex of B. Hence, no vertex of A1 is simplicial in G1,
since it is adjacent to v and at least one vertex in B.

Now, consider w ∈ B. By the definition of B, we have that w is adjacent
in G′ to u but not v. Thus, uw is not an edge of G, since NG(u) ⊆ NG(v) and
NG(v) ⊆ NG′(v). So, by Lemma 1, the vertices u,w have non-adjacent common
neighbours x, y in G′. Since x, y are adjacent to u, we have x, y ∈ A∪B. In fact,



since w has no neighbours in A \A1, we conclude x, y ∈ A1 ∪B. Thus, w is not
a simplicial vertex in G1, and hence, no vertex of B is simplicial in G1.

This proves that no vertex of G1, except possibly for v, is simplicial in G1.
Also, G1 is not a complete graph, since B 6= ∅, and v has no neighbour in
B. Recall that G1 is chordal because G′ is. Thus, by the result of Dirac [8], G1

must contain at least two non-adjacent simplicial vertices, but that is impossible.
Hence, we must conclude B = ∅. In other words, NG′(u) ⊆ NG′(v). �

Lemma 3. Let G be a graph, and let H be a graph obtained from G by substi-
tuting complete graphs for the vertices of G. Then there is a one-to-one corre-
spondence between minimal chordal completions of G and H.

Proof. Let v1,v2,. . . ,vn be the vertices of G. Since H is obtained from G by
substituting complete graphs, there is a partition C1 ∪ . . . ∪ Cn of V (H) where
each Ci induces a complete graph in H , and for every distinct i, j ∈ {1 . . . n}:

(⋆) each x ∈ Ci, y ∈ Cj satisfy vivj ∈ E(G) if and only if xy ∈ E(H).

Let G′ be any graph with vertex set V (G), and let H ′ = Ψ(G′) be the graph
constructed from G′ by, for each i ∈ {1 . . . n}, substituting Ci for the vertex vi,
and making Ci into a complete graph. Thus, for every distinct i, j ∈ {1 . . . n}

(⋆⋆) each x ∈ Ci, y ∈ Cj satisfy vivj ∈ E(G′) if and only if xy ∈ E(H ′).

We prove that Ψ is a bijection between the minimal chordal completions of
G and H which will yield the claim of the lemma.

Let G′ be a minimal chordal completion ofG, and letH ′ = Ψ(G′). Clearly,H ′

is chordal, since G′ is chordal, and chordal graphs are closed under the operation
of substituting a complete graph for a vertex. Also, observe that V (H) = V (H ′),
and if xy ∈ E(H), then either x, y ∈ Ci for some i ∈ {1 . . . n}, in which case
xy ∈ E(H ′), since Ci induces a complete graph in H ′, or we have x ∈ Ci,
y ∈ Cj for distinct i, j ∈ {1 . . . n} in which case vivj ∈ E(G) by (⋆) implying
vivj ∈ E(G′), since E(G) ⊆ E(G′), and hence, xy ∈ E(H ′) by (⋆⋆). This proves
that E(H) ⊆ E(H ′), and thus, H ′ is a chordal completion of H .

To prove that H ′ is a minimal chordal completion of H , it suffices, by
Lemma 1, to show that for all xy ∈ E(H ′) \ E(H), the vertices x, y have at
least two non-adjacent common neighbours in H ′. Consider xy ∈ E(H ′)\E(H),
and let i, j ∈ {1 . . . n} be such that x ∈ Ci and y ∈ Cj . Since xy 6∈ E(H) and
Ci induces a complete graph in H , we conclude i 6= j. Thus, by (⋆⋆), we have
vivj ∈ E(G′), and so, vivj ∈ E(G′) \ E(G) by (⋆). Now, recall that G′ is a
minimal chordal completion of G. Thus, by Lemma 1, the vertices vi, vj have
non-adjacent common neighbours vk, vℓ in G

′. So, we let w ∈ Ck and z ∈ Cℓ. By
(⋆⋆), we conclude wz 6∈ E(H ′), since vkvℓ 6∈ E(G′). Moreover, (⋆⋆) also implies
that z, w are common neighbours of x, y, since vk, vℓ are common neighbours
of vi, vj . This proves that x, y have non-adjacent common neighbours, and thus
shows that H ′ is a minimal chordal completion of H .

Conversely, let H ′ be a minimal chordal completion ofH . Let G′ be the graph
with V (G′) = V (G) such that vivj ∈ E(G′) if and only if there exists x ∈ Ci,



y ∈ Cj with xy ∈ E(H ′). Let i ∈ {1 . . . n} and consider vertices x, y ∈ Ci in
the graph H . Recall that Ci induces a complete graph in H . This implies that
xy ∈ E(H) and both x and y are adjacent in H to every z ∈ Ci \{x, y}. Further,
by (⋆), if z ∈ Cj where j 6= i, then x, y are both adjacent to z if vivj ∈ E(G), and
x, y are both non-adjacent to z if vivj 6∈ E(G). This shows that NH(x) = NH(y),
and hence, NH′ (x) = NH′(y) by Lemma 2 and the fact that H ′ is a minimal
chordal completion of H . This proves that H ′ = Ψ(G′), and hence, G′ is chordal.
In fact, E(G) ⊆ E(G′) by (⋆) and (⋆⋆). Thus G′ is a chordal completion of G.

It remains to show that G′ is a minimal chordal completion of G. Again, it
suffices to show that for each vivj ∈ E(G′) \ E(G), the vertices vi, vj have non-
adjacent common neighbours in G′. Consider vivj ∈ E(G′)\E(G), and let x ∈ Ci

and y ∈ Cj . So, i 6= j and xy ∈ E(H ′) by (⋆⋆). Further, xy ∈ E(H ′)\E(H) by (⋆)
and the fact that vivj 6∈ E(G). So, the vertices x, y have non-adjacent common
neighbours w, z in H ′ by Lemma 2 and the fact that H ′ is a minimal chordal
completion of H . Let k, ℓ ∈ {1 . . . n} be such that w ∈ Ck and z ∈ Cℓ. Since
xz ∈ E(H ′) but wx 6∈ E(H ′), we conclude by (⋆⋆) that i 6= k. By symmetry,
also i 6= ℓ, j 6= k, and j 6= ℓ. Further, k 6= ℓ, since wx 6∈ E(H ′) and Ck induces a
complete graph in H ′. Thus, (⋆⋆) implies that vk, vℓ are non-adjacent common
neighbours of vi, vj , since w, z are non-adjacent common neighbours of x, y. This
proves that G′ is indeed a minimal chordal completion of G.

That concludes the proof. �

Now, we are finally ready to prove Theorem 5.

Proof of Theorem 5. We observe that the graph int(Q) is obtained by sub-
stituting complete graphs for the vertices of int∗(Q). Thus, by Lemma 3, there
is a bijection Ψ between the minimal chordal completions of int(Q) and int∗(Q).

By translating the condition (⋆⋆) from the proof of Lemma 3, we obtain that
if G′ is a minimal chordal completion of int∗(Q), then H ′ = Ψ(G′) is the graph
whose vertex set is that of int(Q) with the property that for all A,A′ ∈ V (G′)

(⋆⋆) all meaningful π, π′ ∈ Q satisfy AA′ ∈ V (G′) ⇐⇒ (A, π)(A′, π′) ∈ V (H ′).

We show that Ψ is a bijection between the minimal restricted chordal com-
pletions of int(Q) and the minimal chordal sandwiches of (int∗(Q), forb(Q)).

First, let H ′ be a minimal restricted chordal completion of int(Q). Then G′ =
Ψ−1(H ′) is a minimal chordal completion of int∗(Q). Consider two cells A1,A2

of π ∈ Q. Since H ′ is a restricted chordal completion of int(Q), we have that
(A1, π) is not adjacent to (A2, π) in H

′. Thus, A1A2 6∈ E(G′) by (⋆⋆). This shows
that G′ contains no edge of forb(Q). Thus G′ is a minimal chordal sandwich of
(int∗(Q), forb(Q)), since it is also a minimal chordal completion of int∗(Q).

Conversely, let G′ be a minimal chordal sandwich of (int∗(Q), forb(Q)). Then
H ′ = Ψ(G′) is a minimal chordal completion of int(Q). Consider two cells A1,A2

of π ∈ Q. Since A1A2 is an edge of forb(Q), and G′ is a minimal chordal sandwich
of (int∗(Q),forb(Q)), we have A1A2 6∈ E(G′). Thus, (A1, π)(A2, π) 6∈ E(H ′) by
(⋆⋆). This shows that H ′ is a minimal restricted chordal completion of int(Q).

That concludes the proof. �



6 Proof of Theorem 8

For the proof, we shall need the following simple properties of chordal graphs.

Lemma 4. Let G be a chordal graph, and let a, b be non-adjacent vertices of G.
Then every two common neighbours of a and b are adjacent.

Lemma 5. Let G be a chordal graph, and C = {a, b, c, d, e} be a 5-cycle in G

with edges ab, bc, cd, de, ae. Then

(a) bd, ce 6∈ E(G) implies ac, ad ∈ E(G), and
(b) bd, be 6∈ E(G) implies ac ∈ E(G).

Lemma 6. Let G be a chordal graph, and C = {a, b, c, d, e, f} be a 6-cycle in G
with edges ab, bc, cd, de, ef, af . Then

(a) bd, ce, df 6∈ E(G) implies ac, ad, ae ∈ E(G),
(b) bd, ce, cf 6∈ E(G) implies ac, ad ∈ E(G), and
(c) be, bf, ce, cf 6∈ E(G) implies ad ∈ E(G).

To assist the reader in following the subsequent arguments, we list here the
cliques of int∗(QI) according to the elements from which they arise:

a) for each i ∈ {1 . . . n} where j1, j2, . . . , jk are the elements of ∆i:

αvi : Hvi , Ai, S
j1
vi
, Sj2

vi
, . . . , Sjt

vi
, αvi : Hvi , Ai, S

j1
vi
, Sj2

vi
, . . . , Sjt

vi
,

b) for each j ∈ {1 . . .m} where Cj = X ∨ Y ∨ Z:

λj : Kj
X , Kj

Y , K
j
Z , D

j
1, D

j
2, D

j
3, F

j

γ
j
1 : K

j

X
, Lj

Z , D
j
1 γ

j
2 : K

j

Y
, Lj

X , Dj
2 γ

j
3: K

j

Z
, Lj

Y , D
j
3

β
j
X : Sj

X , Kj

X
β
j
Y : S

j
Y , K

j

Y
β
j
Z : S

j
Z , K

j

Z

β
j

X
: Sj

X
, Kj

X , Lj
X β

j

Y
: Sj

Y
, Kj

Y , L
j
Y β

j

Z
: Sj

Z
, Kj

Z , L
j
Z

c) δ: B, Hv1 , . . . , Hvn , Hv1 , . . . , Hvn

µ: B, F 1, . . . , Fm

We start with a useful lemma describing an important property of int∗(QI).

Lemma 7. Let G′ be a chordal sandwich of (int∗(QI), forb(QI)), and 1 ≤ i ≤ n.

(a) there is W ∈ {vi, vi} such that for all j ∈ ∆i, K
j
W is adjacent to B.

(b) for each j ∈ ∆i, and each W ∈ {vi, vi}, if K
j
W is adjacent to B, then the

vertices Sj
W , Kj

W , Lj
W (if exists) are adjacent to B, Ai, HW , HW , F j.

Proof. Let i ∈ {1 . . . n}. First, we observe the following.

(⋆) for each j ∈ ∆i, each W ∈ {vi, vi}, at least one of Sj

W
, Kj

W is adjacent to B.

We may assume that Sj

W
is not adjacent to B, otherwise we are done. Observe

that Sj

W
is adjacent to K

j
W , since β

j

W
∈ K

j
W ∩ S

j

W
. Moreover, there exists

p ∈ {1, 2, 3} such that Kj
W ∩Dj

p contains λj or γjp, implying that Kj
W is adjacent

to Dj
p. Also, F

j is adjacent to Dj
p and B, since λj ∈ Dj

p ∩ F
j and µ ∈ B ∩ F j ,



respectively. Further, HW is adjacent to Sj

W
and B, since αW ∈ HW ∩ Sj

W
and

δ ∈ HW ∩ B. Finally, HW is not adjacent to F j , and B is not adjacent to Dj
p,

since HW |F j and Dj
p|B are in QI . So, by Lemma 6 applied to the cycle {Kj

W ,

S
j

W
, HW , B, F j , Dj

p}, we conclude that Kj
W is adjacent to B. This proves (⋆).

Now, to prove (a), suppose for contradiction that there are j, j′ ∈ ∆i such

that both Kj
vi

and Kj′

vi
are not adjacent to B. Then by (⋆), both Sj

vi
and Sj′

vi
are

adjacent to B. Note also that Ai is adjacent to both Sj
vi
, Sj′

vi
, since αvi ∈ Ai∩Sj

vi

and αvi ∈ Ai∩S
j′

vi
. Further, note that AiB and Sj

vi
S
j′

vi
are not edges of G′, since

Ai|B and Sj
vi
|Sj′

vi
are in QI . But then G′ contains an induced 4-cycle on {Sj

vi
,

Ai, S
j′

vi
, B}, which is impossible, since G′ is chordal. This proves (a).

For (b), suppose that Kj
W is adjacent to B for j ∈ ∆i and W ∈ {vi, vi}.

First observe that Kj
W is adjacent to Sj

W
, and the vertex Kj

W
is adjacent to Sj

W ,

since βj

W
∈ K

j
W ∩ Sj

W
and βj

W ∈ K
j

W
∩ Sj

W . Moreover, there exists p ∈ {1, 2, 3}

such that Kj
W ∩ Dj

p and K
j

W
∩ Dj

p contain γjp and λj , respectively, or λj and

γjp, respectively. This implies that Kj
W and Kj

W
are adjacent to Dj

p. Also, Ai is

adjacent to Sj
W and Sj

W
, since αW ∈ Ai ∩S

j
W and αW ∈ Ai ∩S

j

W
. Further, note

that Dj
pB, AiB, Kj

WK
j

W
, and S

j
WS

j

W
are not edges of G′, since Dj

p|B, Ai|B,

K
j
W |Kj

W
, and S

j
W |Sj

W
are in QI . This implies that Kj

W
is not adjacent to B,

since otherwise G′ contains an induced 4-cycle on {Kj
W , B, Kj

W
, Dj

p}. So, by

(⋆), we have that Sj
W is adjacent to B. Thus, Lemma 5 applied to {Kj

W , Sj

W
,

Ai, S
j
W , B} yields that Kj

W is adjacent to Ai and S
j
W . So, by Lemma 4 applied

to {Sj
W , Kj

W , Dj
p, K

j

W
}, we have that Sj

W is adjacent to Dj
p.

Now, observe that HW , HW are adjacent to both Ai and B, since αW ∈
HW ∩ Ai, αW ∈ HW ∩ Ai, and δ ∈ B ∩HW ∩HW . Thus, by Lemma 4 applied

to {u, Ai, u
′, B} where u ∈ {Sj

W , Kj
W } and u′ ∈ {HW , HW } , we conclude that

S
j
W and Kj

W are adjacent to both HW and HW . Similarly, we observe that F j

is adjacent to B and Dj
p, since µ ∈ F j ∩ B and λj ∈ Dj

p ∩ F
j . Thus, Lemma 4

applied to {u, B, F j , Dj
p} yields that Sj

W and Kj
W are also adjacent to F j .

Lastly, suppose that Lj
W exists. Then there exists q ∈ {1, 2, 3} such that

γjq ∈ Dj
q ∩L

j
W implying that Lj

W is adjacent to Dj
q. Moreover, F j is adjacent to

Dj
q and B, since λj ∈ Dj

q ∩F
j and µ ∈ F j ∩B. Also, HW is adjacent to B, Sj

W
,

and the vertex Sj

W
is adjacent to Lj

W , since δ ∈ B ∩HW , αW ∈ HW ∩ Sj

W
, and

β
j

W
∈ S

j

W
∩Lj

W . Further, HWF j and Dj
qB are not edges of G′, since HW |F j and

Dj
q|B are in QI . Also, S

j

W
B is not an edge of G′, since otherwise G′ contains

an induced 4-cycle on {Sj
W , B, Sj

W
, Ai}. Thus, by Lemma 5 applied to {Lj

W ,

S
j

W
, HW , B, F j , Dj

q}, we conclude that Lj
W is adjacent to HW , B, and F j .

Moreover, by Lemma 5 applied to {Lj
W , B, Sj

W , Ai, S
j

W
}, we conclude that Lj

W



is adjacent to Ai. Finally, recall that HW is adjacent to both Ai and B. Thus,
Lemma 4 applied to {Lj

W , Ai, HW , B} yields that Lj
W is also adjacent to HW .

That concludes the proof. �
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Fig. 4. The fill-in edges for a) W = 1, b) X = 1, Y = 0, Z = 0.

Let σ be a truth assignment for the instance I. Recall that, for simplicity,
we write X = 0 and X = 1 in place of σ(X) = 0 and σ(X) = 1, respectively.

To facilitate the arguments in the proof, we introduce a naming convention for
the vertices in int∗(QI) similar to that of [2]. The vertices Sj

W for all meaningful
choices of j and W are called shoulders. For a fixed j, we call them shoulders
of the clause Cj , and for a fixed W , we call them shoulders of the literal W . A
shoulder is a a true shoulder if W = 1. Otherwise, it is a false shoulder. The
vertices Kj

W , Lj
W for all meaningful choices of j and W are called knees. For a

fixed j, we call them knees of the clause Cj , and for a fixed W , we call them
knees of the literal W . A knee is a true knee if W = 1. Otherwise, it is a false
knee. The vertices Ai, D

j
p, HW , F j for all meaningful choices of indices are called

A-vertices, D-vertices, H-vertices, and F -vertices, respectively.

Let Gσ be the graph constructed from int∗(QI) by performing the following:

(i) make B adjacent to all true knees and true shoulders

Let G′
σ be the graph constructed from Gσ by performing the following steps:

(ii) make {true knees, true shoulders} into a complete graph
(iii) for all i ∈ {1 . . . n}, make Ai adjacent to all true knees of the literals vi,vi,
(iv) for all 1 ≤ i′ ≤ i ≤ n, make Hvi , Hvi adjacent to all true knees and true

shoulders of the literals vi′ , vi′
(v) for all 1 ≤ j ≤ j′ ≤ m, make F j adjacent to all true knees and true

shoulders of the clause Cj′ ,
(vi) for all 1 ≤ i ≤ n and all j, j′ ∈ ∆i such that j ≤ j′:

a) if vi = 1, make Sj′

vi
adjacent to Kj

vi
, Lj

vi
(if exists)

b) if vi = 0, make Sj′

vi
adjacent to Kj

vi
, Lj

vi
(if exists)



Finally, let G∗
σ be constructed from G′

σ by adding the following edges.

(vii) for all j ∈ {1 . . .m} where Cj = X ∨ Y ∨ Z:

a) if X = 1, then add edges F jL
j
Z , K

j
XL

j
Z , K

j
YK

j

Z
, Dj

2K
j

Z
, Dj

2S
j

Y
, Dj

3S
j

Y

and make {Dj
1, D

j
2, D

j
3, S

j
X , Sj

Z
, Lj

Z , K
j
Y } into a complete graph

b) if Y = 1, then add edges F jL
j
X , Kj

Y L
j
X , Kj

ZK
j

X
, Dj

3K
j

X
, Dj

3S
j

Z
, Dj

1S
j

Z

and make {Dj
1, D

j
2, D

j
3, S

j
Y , S

j

X
, Lj

X , Kj
Z} into a complete graph

c) if Z = 1, then add edges F jL
j
Y , K

j
ZL

j
Y , K

j
XK

j

Y
, Dj

1K
j

Y
, Dj

1S
j

X
, Dj

2S
j

X

and make {Dj
1, D

j
2, D

j
3, S

j
Z , S

j

Y
, Lj

Y , K
j
X} into a complete graph

Lemma 8. G′
σ is a subgraph of every chordal sandwich of (Gσ, forb(QI)).

Proof. Let G′ be a chordal sandwich of (Gσ, forb(QI)). We prove the claim by
showing that G′ contains all edges defined in (ii)-(vi).

For (ii), let us consider true shoulders Sj
W , Sj′

W ′ and true knees Kj
W , Kj′

W ′ and

L
j
W , Lj′

W ′ (if they exist). We allow that W is possibly equal to W ′ and possibly

j = j′. First, we observe that, by (i), the true knees Kj
W and Kj′

W ′ are adjacent

to B. Therefore, by Lemma 7, the vertices Sj
W , Kj

W , Lj
W are adjacent to HW and

F j , whereas Sj′

W ′ , K
j′

W ′ , L
j′

W ′ are adjacent to HW ′ and F j′ . Also, HW is adjacent

to HW ′ and F j is adjacent to F j′ , since δ ∈ HW ∩HW ′ and µ ∈ F j ∩ F j′ , re-
spectively. Further, HWF j , HWF j′ , HW ′F j , HW ′F j′ are not edges of G′, since
HW |F j , HW |F j′ , HW ′ |F j , HW ′ |F j′ are in QI . Thus, if j = j′ and W is equal
to W ′, then, by Lemma 4 applied to cycles {u,HW ,u′,F j} where u, u′ ∈ {Sj

W ,

S
j′

W ′ , K
j
W , Kj′

W ′ , L
j
W , Lj′

W ′}, we conclude that {Sj
W , Sj′

W ′ , K
j
W , Kj′

W ′ , L
j
W , Lj′

W ′}
forms a complete graph in G′. If j 6= j′ and W is not equal to W ′, we reach the
same conclusion by Lemma 6 applied to the cycles {u,HW ,HW ′ ,u′,F j′ ,F j}.
Otherwise, we obtain the conclusion by applying Lemma 5 either to cycles
{u,HW ,u′,F j′ ,F j} or cycles {u,F j ,u′,HW ′ ,HW }. This proves (ii).

For (iii), consider the vertex Ai for i ∈ {1 . . . n}. Let W ∈ {vi, vi} be such
thatW = 1. Then, for each j ∈ ∆i, the vertex K

j
W is adjacent to B by (i). Thus,

by Lemma 7, both Kj
W and Lj

W (if exists) are adjacent to Ai. This proves (iii).

For (iv), we consider 1 ≤ i′ ≤ i ≤ n. Let W ′ ∈ {vi′ , vi′} be such that W ′ = 1.
Then, for all j ∈ ∆i′ , the vertex Kj

W ′ is adjacent to B by (i), and hence, the

vertices Sj
W ′ , K

j
W ′ and L

j
W ′ (if exists) are adjacent by Lemma 7 to Hvi′

, Hvi′
.

In other words, the vertices Hvi′
, Hvi′

are adjacent to all true knees and true
shoulders of the literals vi′ , vi′ . Thus, we may assume that i′ < i. Now, the vertex
Hvi′

is adjacent to Hvi ,Hvi , since δ ∈ Hvi ∩Hvi ∩Hvi′
. Let W ∈ {vi, vi} be such

that W = 1. Then K
j
W is adjacent to B by (i), and hence, Sj

W is adjacent to

Hvi , Hvi by Lemma 7. Also, Sj
W is adjacent to all true knees and true shoulders

of the literals vi′ , vi′ , by (ii). Further, the vertex Sj
W is not adjacent to Hvi′

,

since Hvi′
|Sj

W is in QI . Thus, by Lemma 4, both Hvi and Hvi are adjacent to
all true knees and true shoulders of the literals vi′ , vi′ . This proves (iv).



For (v), consider 1 ≤ j ≤ j′ ≤ m. Again, we observe that if Kj′

W is a true

knee, then Kj′

W is adjacent to B by (i), and hence, Sj′

W , Kj′

W , and Lj′

W (if exists)

are adjacent to F j′ by Lemma 7. In other words, the vertex F j′ is adjacent to all
true knees and true shoulders of the clause Cj′ . So, we may assume that j < j′.

Now, let Kj
W be any true knee of the clause Cj . Then K

j
W is adjacent to B,

and hence, to F j by (i) and Lemma 7, respectively. Also, Kj
W is adjacent to

all true shoulders and true knees of Cj′ by (ii). Further, F j is adjacent to F j′ ,

since µ ∈ F j ∩ F j′ , and the vertex Kj
W is not adjacent to F j′ , since Kj

W |F j′ is
in QI . Thus, by Lemma 4, the vertex F j is adjacent to all true knees and true
shoulders of the clause Cj′ . This proves (v).

For (vi), let i ∈ {1 . . . n} and consider j, j′ ∈ ∆i with j ≤ j′. Let W ∈ {vi, vi}
be such thatW = 1. Observe that Kj

W is adjacent to Sj

W
, since βj

W
∈ S

j

W
∩Kj

W .

If Lj
W exists, also Lj

W is adjacent to Sj

W
, since then βj

W
∈ S

j

W
∩Lj

W . Thus, we may

assume that j < j′. Now, Sj′

W
is adjacent to Sj

W
and Kj′

W , since αW ∈ S
j

W
∩Sj′

W
,

and βj′

W
∈ S

j′

W
∩Kj′

W . Also, Kj
W and Lj

W (if exists) are adjacent to Kj′

W by (ii).

Further, Sj

W
K

j′

W is not an edge of G′, since Sj

W
|Kj′

W is in QI . Thus, by Lemma 4,

the vertices Kj
W , Lj

W (if exists) are adjacent to Sj′

W
. This proves (vi).

The proof is now complete. �

Lemma 9. If σ is a satisfying assignment for I, then G∗
σ is a subgraph of every

chordal sandwich of (Gσ, forb(QI)).

Proof. Let G′ be a chordal sandwich of (Gσ, forb(QI)), and assume that σ is
a satisfying assignment for I. That is, in each clause Cj = X ∨ Y ∨ Z, either
X = 1, Y = Z = 0, or Y = 1, X = Z = 0, or Z = 1, X = Y = 0.

By Lemma 8, the graph G′ contain all edges defined in (ii)-(vi). Thus it
remains to prove that it also contains the edges defined in (vii).

Consider j ∈ {1 . . .m} where Cj = X ∨ Y ∨ Z. By the rotational symmetry
between X , Y , and Z, we may assume that X = 1, Y = 0, and Z = 0. Observe
that Kj

Z is adjacent to Kj
X and Lj

Z , since λ
j ∈ K

j
Z ∩ Kj

X and βj

Z
∈ K

j
Z ∩ Lj

Z .

Further, Kj

X
is adjacent to Lj

Z and Sj
X , since γj1 ∈ L

j
Z ∩Kj

X and βj
X ∈ K

j

X
∩Sj

X .

By (ii), alsoKj
X is adjacent to Sj

X . Moreover, Sj
XK

j
Z andKj

XK
j

X
are not edges of

G′, since Sj
X |Kj

Z ,K
j
X |Kj

X
are inQI . Thus, by Lemma 5 applied to the cycle {Lj

Z ,

K
j
Z ,K

j
X , Sj

X ,Kj

X
}, we conclude that Lj

Z is adjacent to Sj
X andKj

X . Now, observe

that Lj
Y is adjacent to Kj

Y and K
j

Z
, since βj

Y
∈ L

j
Y ∩ Kj

Y and γ
j
3 ∈ L

j
Y ∩ Kj

Z
.

Recall that Kj
Z is adjacent to Lj

Z and also to Kj
Y , since λ

j ∈ K
j
Z∩K

j
Y . Moreover,

S
j
X is adjacent to Kj

Z
and L

j
Z by (ii) and the above. Further, Kj

Z
L
j
Z , S

j
XL

j
Y ,

S
j
XK

j
Z are not edges of G′, since Kj

Z
|Lj

Z , S
j
X |Lj

Y , S
j
X |Kj

Z are in QI . Thus, by

Lemma 6 applied to the cycle {Kj
Y , L

j
Y , K

j

Z
, Sj

X , Lj
Z , K

j
Z}, we conclude that

K
j
Y is adjacent to Kj

Z
, Sj

X , and Lj
Z . Next, observe that S

j

Z
is adjacent to Kj

Z
and



K
j
Z by (ii) and since βj

Z
∈ S

j

Z
∩Kj

Z. Recall that K
j
Y is adjacent to Kj

Z
and Kj

Z .

Further, Kj
ZK

j

Z
is not an edge of G′, since Kj

Z|K
j

Z
is in QI . Thus, by Lemma 4,

the vertex Sj

Z
is adjacent to Kj

Y . Now, recall that L
j
Z is adjacent to Sj

X and Kj
Z ,

and Sj
XK

j
Z is not an edge of G′. Also, F j is adjacent to Sj

X and Kj
Z by (v) and

since λj ∈ F j ∩Kj
Z . Thus, by Lemma 4, the vertex Lj

Z is adjacent to F j. Now,

observe that Dj
1 is adjacent to Kj

X , Kj

X
, since λj ∈ D

j
1∩K

j
X and γj1 ∈ D

j
1∩K

j

X
.

Recall that also SX is adjacent to both K
j
X and K

j

X
, and that Kj

XK
j

X
is not

an edge of G′. Thus, by Lemma 4, we have that Dj
1 is adjacent to Sj

X . Next,

observe that Dj
2 is adjacent to Kj

Y , K
j

Y
, since λj ∈ D

j
2 ∩K

j
Y and γj2 ∈ D

j
2 ∩K

j

Y
.

Recall that Kj
Y is adjacent to K

j

Z
and S

j
X . Also, Kj

Y
is adjacent to S

j
X , Sj

Y
,

K
j

Z
by (ii), and K

j
Y is adjacent to Sj

Y
, since βj

Y
∈ K

j
Y ∩ Sj

Y
. Further, Kj

YK
j

Y

is not an edge of G′, since Kj
Y |K

j

Y
is in QI . Thus, by Lemma 4, the vertices

S
j
X , Sj

Y
, Kj

Z
are adjacent to Dj

2. Now, observe that D
j
1, D

j
2 are adjacent to Kj

Z ,

since λj ∈ D
j
1 ∩ D

j
2 ∩K

j
Z . Also, recall that S

j
X is adjacent to Dj

1, D
j
2, L

j
Z , the

vertex Kj
Z is adjacent to Sj

Z
, Lj

Z , and S
j
XK

j
Z is not an edge of G′. Further, Sj

X is

adjacent to Sj

Z
by (ii). Thus, by Lemma 4, both Dj

1 and Dj
2 are adjacent to Sj

Z

and Lj
Z . Next, observe that D

j
3 is adjacent to Kj

Z , K
j

Z
, since λj ∈ D

j
3 ∩K

j
Z and

γ
j
3 ∈ D

j
3 ∩K

j

Z
. Recall that also Sj

Z
is adjacent to Kj

Z , K
j

Z
, and that Kj

ZK
j

Z
is

not an edge of G′. Thus, by Lemma 4, the vertex Dj
3 is adjacent to Sj

Z
. Further,

recall that Lj
Z is adjacent to K

j
Z , S

j
X , the vertex K

j

Z
is adjacent to S

j
X , and

S
j
XK

j
Z and Kj

Z
L
j
Z are not edges of G′. Thus, Lemma 5 applied to {Dj

3, K
j
Z , L

j
Z ,

S
j
X , Kj

Z
} yields that Dj

3 is adjacent to both Lj
Z and Sj

X . Moveover, Sj

Y
is also

adjacent to Sj
X by (ii), and Lj

Y is also adjacent to Dj
3, S

j

Y
, since γj3 ∈ D

j
3 ∩ L

j
Y

and β
j

Y
∈ S

j

Y
∩ Lj

Y . Further, recall that S
j
XL

j
Y is not an edge of G′. Thus, by

Lemma 4 applied to {Dj
3, L

j
Y , S

j

Y
, Sj

X}, the vertex Dj
3 is adjacent to Sj

Y
.

To prove (vii), we observe that the above analysis yields that G′ contains
edges F jL

j
Z , K

j
XL

j
Z , K

j
YK

j

Z
, Dj

2K
j

Z
, Dj

2S
j

Y
, and Dj

3S
j

Y
. It remains to show that

{Dj
1,D

j
2,D

j
3, S

j
X , Sj

Z
, Lj

Z ,K
j
Y } forms a complete graph. By the above paragraph,

we have that Sj
X , Sj

Z
, Lj

Z are adjacent to Dj
1, D

j
2, D

j
3. Also, D

j
1, D

j
2, D

j
3 and Kj

Y

are pair-wise adjacent, since λj ∈ D
j
1 ∩D

j
2 ∩D

j
3 ∩K

j
Y . Further, L

j
Z is adjacent

to Sj
X , and Kj

Y is adjacent to Sj
X , Sj

Z
, Lj

Z , by the above paragraph. Finally, Sj

Z

is adjacent to Sj
X and Lj

Z by (ii) and since βj

Z
∈ S

j

Z
∩ Lj

Z . This proves (vii).
The proof is now complete. �

Lemma 10. If σ is a satisfying assignment for I, then G∗
σ is chordal.

Proof. Again, assume that σ is a satisfying assignment for I. That is, for each
clause Cj = X∨Y ∨Z, either X = 1, Y = Z = 0, or Y = 1, X = Z = 0, or Z = 1,
X = Y = 0. Consider the following partition V1∪V2∪V3∪V4∪V5 of V (G∗

σ) where



V1 = {false knees, D-vertices}, V2 = {false shoulders}, V3 = {A-vertices}, V4 =
{H-vertices, F -vertices}, and V5 = {true knees, true shoulders, the vertex B}.

Let π be an enumeration of V (G∗
σ) constructed by listing the elements of V1,

V2, V3, V4, V5 in that order such that:

(•) the elements of V1 are listed by considering each clause Cj = X ∨ Y ∨Z and
listing vertices (based on the truth assignment) as follows:

a) if X = 1, then list Kj

X
, Kj

Z , L
j
Y , L

j
Z , D

j
1, K

j
Y , D

j
3, D

j
2 in that order,

b) if Y = 1, then list Kj

Y
, Kj

X , Lj
Z , L

j
X , Dj

2, K
j
Z , D

j
1, D

j
3 in that order,

c) if Z = 1, then list Kj

Z
, Kj

Y , L
j
X , Lj

Y , D
j
3, K

j
X , Dj

2, D
j
1 in that order,

(•) the elements of V2 (the false shoulders) are listed by listing the false shoulders
of the clauses C1, C2, . . . , Cm in that order,

(•) the elements of V4 are listed as follows: first the vertices Hv1 ,Hv1 , Hv2 ,Hv2 ,
. . .Hvn ,Hvn in that order, then Fm, Fm−1, . . . , F 1 in that order,

(•) the elements of V3 and V5 are listed in any order.

We show that π is a perfect elimination ordering of G∗
σ which implies the claim.

First, consider V1. Let j ∈ {1 . . .m} and let Cj = X∨Y ∨Z. By the rotational
symmetry between X , Y , Z, assume that X = 1 and Y = Z = 0. So, π lists the
false knees and D-vertices of Cj as Kj

X
, Kj

Z , L
j
Y , L

j
Z , D

j
1, K

j
Y , D

j
3, D

j
2.

First, consider the vertex Kj

X
. Recall that Kj

X
= {βj

X , γ
j
1}. Observe that Sj

X

is the only other vertex containing βj
X , and Lj

Z , D
j
1 are the only other vertices

containing γj1. Moreover, none of the rules (i)-(vii) adds edges incident to Kj

X
.

Thus, Sj
X , Lj

Z ,D
j
1 are the only neighbours ofKj

X
, and they are pair-wise adjacent

by (vii). This proves that Kj

X
is indeed simplicial in G∗

σ.

Next, consider Kj
Z . Since K

j
Z = {βj

Z , λ
j}, we conclude that Kj

Z is adjacent to

S
j

Z
, Lj

Z , K
j
X , Kj

Y , D
1
j , D

2
j , D

3
j , and F

j . Moreover, Kj
Z has no other neighbours

by observing the rules (i)-(vii). Now, by (vii), we conclude that Sj

Z
, Lj

Z , K
j
Y ,

D
j
1, D

j
2, D

j
3 are pair-wise adjacent. Also, the vertices F j , Kj

X , Kj
Y , D

j
1, D

j
2, D

j
3

are pair-wise adjacent, since they all contain λj . Further, F j is adjacent to Sj

Z

and Lj
Z by (v) and (vii), respectively, and Kj

X is adjacent to Sj

Z
and Lj

Z by (ii)

and (vii), respectively. This proves that Kj
Z is simplicial in G∗

σ.

Now, consider Lj
Y . The neighbours of Lj

Y are Sj

Y
, Kj

Y , K
j

Z
, and Dj

3. So, S
j

Y

is adjacent to Kj

Z
, Dj

3, and K
j
Y by (ii), (vii), and since βj

Y
∈ S

j

Y
∩Kj

Y . Similarly,

K
j
Y is adjacent to Kj

Z
and Dj

3 by (vii) and since λj ∈ K
j
Y ∩Dj

3. Finally, K
j

Z
is

adjacent to Dj
3, since γ

j
3 ∈ K

j

Z
∩Dj

3. Thus L
j
Y is simplicial in G∗

σ.

Next, consider Lj
Z . The neighbours of Lj

Z are F j , Kj
X , Kj

Y , K
j
Z , D

j
1, D

j
2,

D
j
3, S

j
X , Sj

Z
, and Kj

X
. By (vii), the vertices Dj

1, D
j
2, D

j
3, S

j
X , Sj

Z
, Kj

Y are pair-

wise adjacent. Also, F j , Kj
X , Kj

Y , D
j
1, D

j
2, D

j
3 are pair-wise adjacent, since they

all contain λj . Further, K
j
X and F j are adjacent to S

j
X , Sj

Z
by (ii) and (v),

respectively. This proves that Lj
Z is simplicial in G∗

σ − {Kj

X
,K

j
Z}.



Now, consider Dj
1. The neighbours of Dj

1 are F j , Kj
X , Kj

Y , K
j
Z , D

j
2, D

j
3,

S
j
X , Sj

Z
, Lj

Z , and K
j

X
. By (vii), the vertices Dj

2, D
j
3, S

j
X , Sj

Z
, Kj

Y are pair-

wise adjacent. Also, F j , Kj
X , Kj

Y , D
j
2, D

j
3 are pair-wise adjacent, since they

all contain λj . Further, Kj
X and F j are adjacent to S

j
X , Sj

Z
by (ii) and (v),

respectively. This proves that Dj
1 is simplicial in G∗

σ − {Kj

X
,K

j
Z , L

j
Z}.

Next, consider Kj
Y . The neighbours of K

j
Y are F j , Kj

X , Kj
Z , D

j
1, D

j
2, D

j
3, S

j
X ,

S
j

Y
, Sj

Z
, Kj

Z
, Lj

Y , and L
j
Z . By (vii), the vertices Dj

2, D
j
3, S

j
X , Sj

Z
are pair-wise

adjacent. Also, F , Kj
X , Dj

2, D
j
3 are pair-wise adjacent, since they all contain λj .

Further, by (ii), the vertices Sj
X , Sj

Y
, Sj

Z
, Kj

X , and Kj

Z
are pair-wise adjacent,

and are adjacent to F j by (v). Moreover, by (vii), both Sj

Y
and Kj

Z
are adjacent

D
j
2, and are also adjacent to Dj

3 by (vii) and since γj3 ∈ K
j

Z
∩Dj

3, respectively.

This proves that Kj
Y is simplicial in G∗

σ − {Kj
Z , L

j
Y , L

j
Z , D

j
1}.

Now, consider D3
j . The neighbours of D3

j are F j, Kj
X , Kj

Y , K
j
Z , D

j
1, D

j
2, S

j
X ,

S
j

Y
, Sj

Z
, Kj

Z
, Lj

Z , and L
j
Y . By (ii), the vertices Sj

X , Sj

Y
, Sj

Z
, Kj

X , Kj

Z
are pair-

wise adjacent. Also, F j ,Kj
X , Dj

2 are pair-wise adjacent, since they all contain λj .

Further, F j andDj
2 are adjacent to S

j
X , Sj

Y
, Sj

Z
,Kj

Z
by (v) and (vii), respectively.

Thus D3
j is simplicial in G∗

σ − {Kj
Z, L

j
Y , L

j
Z , D

j
1,K

j
Y }.

Finally, consider D2
j . The neighbours of D2

j are F j , Kj
X , Kj

Y , K
j
Z , D

1
j , D

3
j ,

S
j
X , Sj

Y
, Sj

Z
,Kj

Z
,Kj

Y
, Lj

X and Lj
Z . By (ii), the vertices Sj

X , Sj

Y
, Sj

Z
,Kj

X , Lj
X ,Kj

Y
,

K
j

Z
are pair-wise adjacent, and are adjacent to F by (v). Thus D2

j is simplicial

in G∗
σ − {Kj

Z , L
j
Z , D

j
1,K

j
Y , D

j
3}. This concludes the vertices in V1.

We now consider V2. Let j ∈ {1 . . .m} and consider a false shoulder Sj
W for

some W = 0. Let i be such that W = vi or W = vi. Then the neighbours of Sj
W

are the vertices HW , Ai, and the elements of the following sets:

S− = {Sj′

W | j′ ∈ ∆i and j
′ < j} S+ = {Sj′

W | j′ ∈ ∆i and j < j′}

K− = {Kj′

W
, L

j′

W
(if exists) | j′ ∈ ∆i and j

′ ≤ j}

By (ii), the elements of K− are pair-wise adjacent. Similarly, the elements of
{HW , Ai} ∪S+ are pair-wise adjacent, since they all contain αW . Further, each
element of S+ is adjacent to every element of K− by (vi), and each element
of K− is adjacent to Ai and HW by (iii) and (iv), respectively. This proves that
S
j
W is simplicial in G∗

σ − S−. Finally, note that the elements of S− are false
shoulders in clauses C1, . . . , Cj−1. This concludes the elements of V2.

For V3, let i ∈ {1 . . . n} and consider the vertex Ai. The neighbours of Ai

are the vertices Hvi , Hvi , all shoulders of the literals vi, vi, and all true knees
of vi, vi. By (ii), the true knees and true shoulders of vi, vi are pair-wise adjacent,
and are adjacent to both Hvi and Hvi by (iv). Also, Hvi is adjacent to Hvi , since
δ ∈ Hvi ∩Hvi . Thus Ai is simplicial in G∗

σ − V2. This concludes V3.

Now, we consider V4. Let i ∈ {1 . . . n} and consider Hvi , Hvi . The vertices
Hvi , Hvi are adjacent to the vertices B, Ai, the elements of the following sets

H− = {Hvi′
, Hvi′

| i′ < i} H+ = {Hvi′
, Hvi′

| i < i′}



and all true knees, true shoulders of vi′ , vi′ for all i
′ ∈ {1 . . . i}. Further, Hvi is

adjacent to Hvi , to all shoulders of vi and to no other vertices, whereas Hvi is
adjacent Hvi , to all shoulders of vi and to no other vertices. Now, by (ii), the true
knees and true shoulders of vi′ , vi′ for all i′ ∈ {1 . . . i}, are pair-wise adjacent,
and are adjacent to B and each element of H+ by (i) and (iv), respectively.
Also, the elements of {B} ∪H+ are pair-wise adjacent, since they all contain δ.
Finally, observe that the false shoulders of vi, vi belong to V2. This proves that
both Hvi and Hvi are simplicial in G∗

σ − (V2 ∪ V3 ∪H−) as required.
Next, let j ∈ {1 . . .m} and consider F j . Let Cj = X ∨ Y ∨ Z, and by the

rotational symmetry, assume that X = 1 and Y = Z = 0. Then the neighbours
of F j are B, Kj

Y , K
j
Z , D

j
1, D

j
2, D

j
3, L

j
Z , the elements of the following sets

F− = {F j′ | j′ < j} F+ = {F j′ | j < j′}
and all true knees and true shoulders of the clause Cj′ for all j′ ∈ {j . . .m}.
By (ii), the true knees and true shoulders of the clause Cj′ for all j′ ∈ {j . . .m},
are pair-wise adjacent, and are adjacent to B and each elements of F− by (i)
and (v), respectively. Also, the vertices of {B}∪F− are pair-wise adjacent, since
they all contain µ. Thus F j is simplicial in G∗

σ − (V1 ∪ F+). This concludes V4.
Finally, observe that all vertices of V5 are pair-wise adjacent by (i) and (ii).

That concludes the proof. �

Lemma 11. For every chordal sandwich G′ of (int∗(QI), forb(QI)), there is σ
such that Gσ is a subgraph of G′, and such that σ is a satisfying assignment for I.

Proof. By Lemma 7, for each i ∈ {1 . . . n}, there is W ∈ {vi, vi} such that
for all j ∈ ∆i, the vertices Sj

W , Kj
W , and Lj

W (if exists) are adjacent to B. Set
σ(vi) = 1 if W = vi, and otherwise set σ(vi) = 0. For such a mapping σ, the
graph G′ clearly contains all edges of Gσ. Thus, by Lemma 9, the graph G′

σ is a
subgraph of G′, that is, G′ contains the edges defined in (ii)-(vi).

It remains to prove that σ is a satisfying assignment for I. Let j ∈ {1 . . .m}
and consider the clause Cj = X ∨ Y ∨ Z. If X = Y = 1, then the vertex Sj

Y is

a true shoulder, and K
j
X is a true knee. Thus, by (ii), we conclude that Sj

Y is

adjacent Kj
X . However, this is impossible, since Sj

Y |K
j
X is in QY . Similarly, if

X = Z = 1, we have that Sj
X is adjacent to Kj

Z by (ii) while Sj
X |Kj

Z is in QI ,

and if Y = Z = 1, then Sj
Z is adjacent to Kj

Y by (ii) while Sj
Z |K

j
Y is in QI .

Now, suppose that X = Y = Z = 0. First, observe that Kj
X is adjacent

to Lj
X , Kj

Z , and the vertex Lj
Z is adjacent to Kj

Z , K
j

X
, since βj

X
∈ K

j
X ∩ Lj

X ,

λj ∈ K
j
X ∩Kj

Z , β
j

Z
∈ L

j
Z ∩Kj

Z , and γ
j
1 ∈ L

j
Z ∩Kj

X
. Also, Kj

X
is adjacent to Kj

Z

by (ii). Further, Kj

Z
K

j
Z , K

j

Z
L
j
Z and Kj

X
L
j
X are not edges of G′, since Kj

Z
|Kj

Z ,

K
j

Z
|Lj

Z , andK
j

X
|Lj

X and in QI . Thus, if L
j
X is adjacent to Kj

Z
, then by Lemma 6

applied to {Kj
X , Lj

X , Kj

Z
, Kj

X
, Lj

Z , K
j
Z}, we conclude that Kj

X is adjacent to

K
j

X
, which is impossible since Kj

X
|Kj

X is in QI . Similarly, if Kj
X is adjacent to

K
j

Z
, then by Lemma 5 applied to {Kj

X , Kj

Z
, Kj

X
, Lj

Z , K
j
Z}, we again conclude

that Kj
X is adjacent to Kj

X
, a contradiction. So, we may assume that both Kj

X



and Lj
X are not adjacent to Kj

Z
. Now, observe that Lj

Y is adjacent to Kj

Z
, Kj

Y ,

and the vertex Kj
X is adjacent to Lj

X , Kj
Y , since γ

j
3 ∈ K

j

Z
∩Lj

Y , β
j

Y
∈ L

j
Y ∩Kj

Y ,

β
j

X
∈ K

j
X ∩Lj

X , and λj ∈ K
j
Y ∩Kj

X . Also, Kj

Y
is adjacent to Kj

Z
and Lj

X by (ii)

and since γj2 ∈ K
j

Y
∩Lj

X . Further, Kj

Y
K

j
Y and Kj

Y
L
j
Y are not edges of G′, since

K
j

Y
|Kj

Y and Kj

Y
|Lj

Y are in QI . Recall that K
j
X and Lj

X are not adjacent to Kj

Z
.

Then this contradicts Lemma 6 when applied to {Kj
X , Lj

X , Kj

Y
, Kj

Z
, Lj

Y , K
j
Y }.

Thus, it is not the case that X = Y = Z = 0, and by the above also not
X = Y = 1, nor X = Z = 1, nor Y = Z = 1. Therefore, either X = 1,
Y = Z = 0, or Y = 1, X = Z = 0, or Z = 1, X = Y = 0. This proves that σ is
indeed a satisfying assignment for I, which concludes the proof. �

We are finally ready to prove Theorem 8.

Proof of Theorem 8. Let G′ be a minimal chordal sandwich of (int∗(QI),
forb(QI)). By Lemma 11, there exists σ, a satisfying assignment for I, such that
Gσ is a subgraph fo G′. Thus, G′ is also a chordal sandwich of (Gσ , forb(QI)),
and hence, G∗

σ is a subgraph of G′ by Lemma 9. But by Lemma 10, G∗
σ is chordal,

and so G′ is isomorphic to G∗
σ by the minimality of G′.

Conversely, if σ is a satisfying assignment for I, then the graph G∗
σ is chordal

by Lemma 10. Moreover, int∗(QI) is a subgraph of G∗
σ, by definition, and G∗

σ

contains no edges of forb(QI), also by definition. Thus, G∗
σ is a chordal sandwich

of (int∗(QI), forb(QI)), and it is minimal by Lemma 9.
This proves that by mapping each satisfying assigment σ to the graph G∗

σ,
we obtain the required bijection. That concludes the proof. �

Finally, we have all the pieces to prove Theorem 1.

7 Proof of Theorem 1

Consider an instance I to one-in-three-3sat and a satisfying assignment for I.
We construct the collection QI of quartet trees, as well as the ternary phyloge-
netic tree Tσ as described in Sections 3 and 4, respectively. Clearly, constructing
QI and Tσ takes polynomial time. By combining Theorem 7 with Theorems 8
and 9, we obtain that σ is the unique satisfying assignment of I if and only if Tσ
is the only phylogenetic tree that displays QI . Since, by Theorem 2, it is NP -
hard to determine if an instance to one-in-three-3sat has a unique satisfying
assignment, it is therefore NP -hard to decide, for a given phylogenetic tree T
and a collection of quartet trees Q, whether or not Q defines T .

That concludes the proof.
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