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Abstract. We answer, in the affirmitive, the following question pro-
posed by Mike Steel as a $100 challenge: “Is the following problem N P-
hard? Given a temamﬁl phylogenetic X -tree T and a collection Q of
quartet subtrees on X, is T the only tree that displays Q?” [2527]

1 Introduction

One of the major efforts in molecular biology has been the computation of phylo-
genetic trees, or phylogenies, which describe the evolution of a set of species from
a common ancestor. A phylogenetic tree for a set of species is a tree in which
the leaves represent the species from the set and the internal nodes represent the
(hypothetical) ancestral species. One standard model for describing the species is
in terms of characters, where a character is an equivalence relation on the species
set, partitioning it into different character states. In this model, we also assign
character states to the (hypothetical) ancestral species. The desired property is
that for each state of each character, the set of nodes in the tree having that char-
acter state forms a connected subgraph. When a phylogeny has this property,
we say it is perfect. The Perfect Phylogeny problem [15] then asks for a given set
of characters defining a species set, does there exist a perfect phylogeny? Note
that we allow that states of some characters are unknown for some species; we
call such characters partial, otherwise we speak of full characters. This approach
to constructing phylogenies has been studied since the 1960s [AT92002T30] and
was given a precise mathematical formulation in the 1970s [QUTOITIIT2]. In par-
ticular, Buneman [3] showed that the Perfect Phylogeny problem reduces to a
specific graph-theoretic problem, the problem of finding a chordal completion
of a graph that respects a prescribed colouring. In fact, the two problems are
polynomially equivalent [I7]. Thus, using this formulation, it has been proved
that the Perfect Phylogeny problem is N P-hard in [2] and independently in [2§].
These two results rely on the fact that the input may contain partial characters.
In fact, the characters in these constructions only have two states. If we insist on
full characters, the situation is different as for any fixed number r of character
states, the problem can be solved in time polynomial [I] in the size of the input

 The original formulation uses the term “binary”, in the sense of “rooted binary tree”,
but in this contex the two are equivalent.
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(and exponential in 7). In fact, for » = 2 (or r = 3), the solution exists if and
only if it exists of every pair (or triple) of characters [12/18]. Also, when the
number of characters is k (even if there are partial characters), the complexity
[22] is polynomial in the number of species (and exponential in k).

Another common formulation of this problem is the problem of a consensus
tree [TII4U28], where a collection of subtrees with labeled leaves is given (for
instance, the leaves correspond to species of a partial character). Here, we ask
for a (phylogenetic) tree such that each of the input subtrees can be obtained
by contracting edges from the tree (we say that the tree displays the subtree).
It turns out that the problem is equivalent [25] even if we only allow particular
input subtrees, the so-called quartet trees which have exactly six vertices and
four leaves. In fact, any ternary phylogenetic tree can be uniquely described by
a collection of quartet trees [25]. However, a collection of quartet trees does not
necessarily uniquely describe a ternary phylogenetic tree.

This leads to a natural question: what is the complexity of deciding whether or
not a collection of quartet trees uniquely describes a (ternary) phylogenetic tree?
This question was posed in [25], later conjectured to be N P-hard and listed on
M. Steel’s personal webpage [27] where he offers $100 for the first proof of N P-
hardness. In this paper, we answer this question by showing that the problem is
indeed N P-hard. In particular, we prove the following theorem.

Theorem 1. It is NP-hard to determine, given a ternary phylogenetic X -tree
T and a collection Q of quartet subtrees on X, whether or not T is the only
phylogenetic tree that displays Q.

We prove the theorem by describing a polynomial-time reduction from the
uniqueness problem for ONE-IN-THREE-3SAT, which is N P-hard by the following
result of [16]. (Note that [16] gives a complete complexity characterization of
uniqueness for boolean satisfaction problems similar to that of Shaefer [26].)

Theorem 2. [I6] It is NP-hard to decide, given an instance I to ONE-IN-
THREE-3SAT, and a truth assignment o that satisfies I, whether or not o is
the unique satisfying truth assignment for I.

Our construction in the reduction is essentially a modification of the con-
struction of [2] which proves N P-hardness of the Perfect Phylogeny problem.
Recall that the construction of [2] produces instances Q that have a perfect
phylogeny if and only if a particular boolean formula ¢ is satisfiable. We im-
mediately observed that these instances Q have, in addition, the property that
¢ has a unique satisfying assignment if and only if there is a unique minimal
restricted chordal completion of the partial partition intersection graph of @ (for
definitions see Section [2]). This is precisely one of the two necessary conditions
for uniqueness of perfect phylogeny as proved by Semple and Steel in [24] (see
Theorem [)). Thus by modifying the construction of [2] to also satisfy the other
condition of uniqueness of [24], we obtained the construction that we present
in this paper. Note that, however, unlike [2] which uses 3sAT, we had to use a
different N P-hard problem in order for the construction to work correctly. Also,



to prove that the construction is correct, we employ a variant of the characteri-
zation of [24] that uses the more general chordal sandwich problem [I3] instead
of the restricted chordal completion problem (see Theorem[7)). In fact, by way of
Theorems Bl and [6] we establish a direct connection between the problem of per-
fect phylogeny and the chordal sandwich problem, which apparently has not been
yet observed. (Note that the connection to the (restricted) chordal completion
problem of coloured graphs as mentioned above [3I7] is a special case of this.)
Using this result, we are able to present a much simplified proof of Theorem [I1
Finally, as a corollary, we obtain the following result.

Corollary 1 (Chordal sandwich). The Unique chordal sandwich problem is
N P-hard. Counting the number of minimal chordal sandwiches is #P-complete.

The first part follows directly from Theorems 2] and [8 while the second part
follows from Theorem B and [5]. (Note that [5] gives a complete complexity
characterization for the problem of counting satisfying assignments for boolean
satisfaction problems, just like [I6] gives for uniqueness as mentioned above).

The paper is structured as follows. First, in Section 2l we describe some pre-
liminary definitions and results needed for our construction of the reduction. In
particular, we describe, based on [24], necessary and sufficient conditions for the
existence of a unique perfect phylogeny in terms of the minimal chordal sand-
wich problem (cf. [6/I3]). The proof of this characterization is postponed until
Section Bl In Section Bl we describe the actual construction and state one of
the two uniqueness conditions (Theorem [§]) relating minimal chordal sandwiches
to satisfying assignments of an instance I of ONE-IN-THREE-3SAT. The proof is
presented later in Section[6l In Section ] we describe and prove the other unique-
ness condition (Theorem [0)) relating satisfying assignments of I to phylogenetic
trees. In Section [7, we put these results together to prove Theorem [l

2 Preliminaries

We mostly follow the terminology of [24125] and graph-theoretical notions of [29].

Let X be a non-empty set. An X -tree is a pair (T, ¢) where T is tree and
¢ : X — V(T) is a mapping such that ¢=!(v) # 0 for all vertices v € V(T
of degree at most two. An X-tree (T, ¢) is ternary if all internal vertices of T
have degree three. Two X-trees (11, ¢1), (To, ¢2) are isomorphic if there exists
an isomorphism ¢ : V(T1) — V(T3) between T7 and T5 that satisfies ¢ = 1o ¢;.

An X-tree (T,¢) is a phylogenetic X -tree (or a free X -free in [24]) if ¢ is
bijection between X and the set of leaves of T

A partial partition of X is a partition of a non-empty subset of X into at least
two sets. If Ay, Ag, ..., Ay are these sets, we call them cells of this partition,
and denote the partition Aj|As|...|A:. If t = 2, we call the partition a partial
split. A partial split Aq|As is trivial if [A;| =1 or |As] = 1.

A quartet tree is a ternary phylogenetic tree with a label set of size four,
that is, a ternary tree 7 with 6 vertices, 4 leaves labeled a, b, ¢, d, and with only
one non-trivial partial split {a,b}|{c,d} that it displays. Note that such a tree



is unambiguously defined by this partial split. Thus, in the subseqent text, we
identify the quartet tree 7 with the partial split {a,b}|{c, d}, that is, we say
that {a,b}|{c,d} is both a quartet tree and a partial split.

Let T = (T, ¢) be an X-tree, and let m = Aq|Asg|...|A; be a partial partition
of X. We say that T displays m if there is a set of edges F' of T such that, for
all distinct 4,5 € {1...t}, the sets ¢(A;) and ¢(A;) are subsets of the vertex
sets of different connected components of T'— F. We say that an edge e of T is
distinguished by m if every set of edges that displays 7 in T contains e.

Let Q be a collection of partial partitions of X. An X-tree T displays Q if
it displays every partial partition in Q. An X-tree T = (T, ¢) is distinguished
by Q if every internal edge of T is distinguished by some partial partition in Q;
we also say that Q distinguishes T. The set Q defines T if T displays Q, and
all other X-trees that display Q are isomorphic to 7. Note that if Q defines T,
then T is necessarily a ternary phylogenetic X-tree, since otherwise “resolving”
any vertex either of degree four or more, or with multiple labels results in a
non-isomorphic X-tree that also displays Q (also, see Proposition 2.6 in [24]).

The partial partition intersection graph of Q, denoted by int(Q), is a graph
whose vertex set is {(4, 7) | where A is a cell of 7 € Q} and two vertices (A4, ),
(A’, 7"} are adjacent just if the intersection of A and A’ is non-empty.

A graph is chordal if it contains no induced cycle of length four or more. A
chordal completion of a graph G = (V, E) is a chordal graph G’ = (V, E’) with
E C E'. A restricted chordal completion of int(Q) is a chordal completion G’
of int(Q) with the property that if A;,As are cells of 7 € Q, then (A;,7) is
not adjacent to (Aa,m) in G’. A restricted chordal completion G’ of int(Q) is
minimal if no proper subgraph of G’ is a restricted chordal completion of int(Q).

The problem of perfect phylogeny is equivalent to the problem of determining
the existence of an X -tree that display the given collection Q of partial partitions.
In [3], it was given the following graph-theoretical characterization.

Theorem 3. [325128] Let Q be a set of partial partitions of a set X. Then there
exists an X -tree that displays Q if and only if there exists a restricted chordal
completion of int(Q).

Of course, the X-tree in the above theorem might not be unique. For the
problem of uniqueness, Semple and Steel [24I25] describe necessary and sufficient
conditions for when a collection of partial partitions defines an X-tree.

Theorem 4. [24] Let Q be a collection of partial partitions of a set X. Let T
be a ternary phylogenetic X -tree. Then Q defines T if and only if:
(i) T displays Q and is distinguished by Q, and

(ii) there is a unique minimal restricted chordal completion of int(Q).

In order to simplify our construction, we now describe a variant of the above
theorem that, instead, deals with the notion of chordal sandwich.

Let G1 = (V, Ey) and G3 = (V, E2) be two graphs on the same set of vertices
with ByNEy = 0. A chordal sandwicHll of (G1,G2) is a chordal graph G = (V, E’)

 In this formulation, E; are the forced edges and E» are the forbidden edges. See [13]
for further details on different ways of specifying the input to this problem.



with £y C E" and E' N E; = (). A chordal sandwich G’ of (G1,G2) is minimal if
no proper subgraph of G’ is a chordal sandwich of (G1,G2).

The cell intersection graph of Q, denoted by int*(Q), is the graph whose
vertex set is { A | where A is a cell of 7 € Q} and two vertices A, A’ are adjacent
just if the intersection of A and A’ is non-empty. Let forb(Q) denote the graph
whose vertex set is that of int*(Q) in which there is an edge between A and A’
just if A,A" are cells of some 7 € Q.

The correspondence between the partial partition intersection graph and the
cell intersection graph is captured by the following theorem.

Theorem 5. Let Q be a collection of partial partitions of a set X. Then there is
a one-to-one correspondence between the minimal restricted chordal completions
of int(Q) and the minimal chordal sandwiches of (int*(Q), forb(Q)).

(The proof of this theorem is presented as Section [l)

This combined with Theorem [} yields that there exists a phylogenetic X -tree
that displays Q if and only if there exists a chordal sandwich of (int*(Q), forb(Q)).
Conversely, we can express every instance to the chordal sandwich problem as a
corresponding instance to the problem of perfect phylogeny as follows.

Theorem 6. Let (G1,G2) be an instance to the chordal sandwich problem. Then
there is a collection Q of partial splits such that there is a one-to-one correspon-
dence between the minimal chordal sandwiches of (G1,G2) and the minimal re-
stricted chordal completions of int(Q). In particular, there exists a chordal sand-
wich for (G1,G2) if and only if there exists a phylogenetic tree that displays Q.

Proof. Without loss of generality, we may assume that each connected com-
ponent of G has at least three vertices. (We can safely remove any component
with two or less vertices without changing the number of minimal chordal com-
pletions, since every such component is already chordal.)

As usual, G; = (V, Ey) and G2 = (V, E2) where E1 N E2 = (). We define the
collection Q of partial splits (of the set Fp) as follows: for every edge xzy € Eo,
we construct the partial split F,;|F,, where F, are the edges of E; incident to
x, and F), are the edges of E; incident to y. By definition, the vertex set of the
graph int*(Q) is precisly {F, | v € V}. Further, it can be easily seen that the
mapping v that, for each v € V', maps v to F}, is an isomorphism between G and
int*(Q). (Here, one only needs to verify that F,, = F, implies u = v; for this we
use that each component of G has at least three vertices.) Moreover, forb(Q) is
precisely {1 (z)¥(y) | xy € E2} by definition. Therefore, by Theorem[Gl there is a
one-to-one correspondence between the minimal chordal sandwiches of (G1, G2)
are the minimal restricted chordal completions of int(Q). This proves the first
part of the claim; the second part follows directly from Theorem [3 O

As an immediate corollary, we obtain the following desired characterization.

Theorem 7. Let Q be a collection of partial partitions of a set X. Let T be a
ternary phylogenetic X -tree. Then Q defines T if and only if:

(i) T displays Q and is distinguished by Q, and

(i1) there is a unique minimal chordal sandwich of (int*(Q), forb(Q)).



3 Construction

Consider an instance I to ONE-IN-THREE-3SAT. That is, I consists of n variables
v1,...,U, and m clauses Cy,...,C,, each of which is a disjunction of exactly
three literals (i.e., variables v; or their negations 7;).

By standard arguments, we may assume that no variable appears twice in
the same clause, since otherwise we can replace the instance I with an equivalent
instance with this property. In particular, we can replace each clause of the form
v; VO; Vv; by clauses v; Vo Vo and ; VT Vv; where x is a new variable, and replace
each clause of the form v; Vv; Vv, by clauses v; Vv; Vo, v; VU; VT, and 73 VO; Va
where z is again a new variable. Note that these two transformation preserve
the number of satisfying assignments, since in the former the new variable x has
always the truth value of 7; while in the latter z is always false in any satisfying
assignment of this modified instance.

In what follows, we describe a collection Q; of quartet trees arising from the
instance I, and prove the following theorem. (We present the proof as Section[6])

Theorem 8. There is a one-to-one correspondence between satisfying assign-
ments of the instance I and minimal chordal sandwiches of (int*(Qy), forb(Qy)).

To simplify the presentation, we shall denote literals by capital letters X, Y,
etc., and indicate their negations by X, Y, etc. (For instance, if X = v; then
X =7;, and if X =7; then X = v;.)

A truth assignment for the instance I is a mapping o : {v1,...,v,} — {0, 1}
where 0 and 1 represent false and true, respectively. To simplify the notation,
we write v; = 0 and v; = 1 in place of o(v;) = 0 and o(v;) = 1, respectively, and
extend this notation to literals X,Y, etc., i.e., write X = 0 and X = 1 in place
of 0(X) = 0 and o(X) = 1, respectively. A truth assignment o is a satisfying
assignment for I if in each clause C; exactly one the three literals evalues to
true. That is, for each clause C; = X VY V Z, either X =1,Y =0, Z =0, or
X=0,Y=1,Z=0,or X=0,Y=0,72=1.

For each i € {1...n}, welet A; denote all indices j such that v; or 7; appears
in the clause C;. Let X7 be the set consisting of the following elements:

a) Qu,, agy for each ¢ € {1...n},

b) Bi, BL for each i € {1...n} and each j € A;,
¢) v, 4, 4d, M for each j € {1...m},
)

d) ¢ and p.

Consider the following collection of 2-element subsets of Xr:
a) B = {u, 5},
b) for each i € {1,...,n}:

H'Ui:{a'l)i5 5}5 H'U_z':{av_'ﬂ 5}5 AZ = {avi’av_i}7

Si = {avi,ﬂgi}, Si_— {av—i, 53)’7} for all j € A;



Fig. 1. Two configurations from of the graph int*(Qy).

c) for each j € {1...m} where C; = X\/Y\/Z
KL= 18% ;s KL= 15y [ K2 = 157.7
K% = Jy,/\j VK = 37,)\] KJ = BJ N
L ={Bedy, 1 = {804}, o = Zﬁ{
Dl ={xx} pi={d.n}, pi={d N}, P ={Nu}
The collection Q; of quartet trees is defined as follows:

or= U {amsju U {piB.DiiB.D}B}

ie{l..n} je{l...m}
snklbo U (KL KL

o U {suszju U {s

ie{l...n} ie{l..n} ie{l..n}
j.j' €A, j,j €A and j<j’ JEA; and j<j' <m
o U {He 180 HelS) By S5 Hplst o\ (R
1<i’'<i<n ie{l..n}
e o eemy
! U {K§|K§7K§|K;, KKy, K|, Ky|Li K31y }
je{l..m} Sy K, SzIKY, Sk|Kz, SJZIL , SXILy, Sy Ly

where C;=XVYVZ

Note that in each clause C; = X VYV Z there is a particular type of symmetry
between the literals X, Y, and Z. In particular, if we replace, in the above, the
incices X, Y, Zand 1,2, 3 as follows: X - Y -7 > Xand1—>2—3—1,
we obtain precisely the same definition of Q; as the above. We shall refer to this
as the rotational symmetry between X, Y, Z.

4 Unique trees

Let Tt be the tree defined as follows: (for illustration, see Figures 2l and ()



V(TI) = {y07y17yi7" 7yn7y;7,} U {aluallu' o 7an7a{n,} U {UQ,Ul,.. . um}
U{al,ad ah,af b, od b0 gl ghogd ) U{d e lie A}
Jj= 1=

n
E(Ty) = {ylylayzyz,.--,ynyg}u {aly’l,azyé,-.-any;} {0525 | j EAZ}, .
i

U{yoylayly%y?y& e 7yn—1yn} U {ynulaulu27u2u37 ooy U —1 U, U U
j J j
U{“J 1795153275525337$2$4=$4$5=5549567blxﬁvbzxsv535557919567925317935337( x5}} L
j=
. n
U{a 2 T 2 Sy where gy < ja < ... < j; are elements of Ai}
i=1

Let o be a satisfying assignment for the instance I, and let ¢, be the mapping
of X1 to V(T7) defined as follows:

a) for each i € {1...n}: ‘ ‘
if v; = 1, then ¢, (avw,) = ai, o (aw;) = aj, and ¢, (5;.) = ¢ for all j € A;,
if v; = 0, then ¢, (o) = ai, do(aw,) = aj, and ¢, (B) = ¢ for all j € A,
b) for each j € {1...m} where C; = X VY V Z:
if X =1, then ¢, (5%) = b1, 65 (53) = b3, 6o (5L) =
0o(1]) = g1, ¢e(13) = b, do(7}) =
if Y =1, then Qbo(ﬂ{/) bla Qbo(ﬂj = b2, (ba(ﬂjy
o (7

)=

= Qla ¢a(73) = 927
)
1)

b1, d)o(ﬂj
gi> by
Uug

j
)
if Z =1, then gbg(ﬂjz) ‘
é% = a(”Y% :ggj),, bo (V) =1,

b (7
C) (ba( ) = Yo and chr(

Theorem 9. If o is a satisfying assignment for I, then T, = (Tr1,¢s) is a
ternary phylogenetic Xy-tree that displays Qr and is distinguished by Q.

Proof. Let o be asatisfying assignment for I, i.e., for each clause C; = XVY VZ,
eitheerl,YzZzO,orYz_l,X Z—O or Z=1,X =Y =0. For each
ie{l...n},let A; = {ai,a},y, 20", ..., 20" . c’t}whereAz—{jl,..._,jt}

77,57,7

and for each j € {1...m}, let B; = {3:1,172,1:3,:1:4,3:5,3:6, g1, 95, 93,69, b3, 05, 07}

Al AZ An
| B Ba B,
Yo Y1 Y2 Yn (51 U2 Um U

Fig. 2. The tree T7.



A, ) B;
! J J 7 j j
a 9 v by 7 X
J1 J1 i \ /
C z 1 J .
T 7 VA Tg A acé
J2 J2 ‘
C z .
7 7 J .
J J__
T Ty g3 Ty~ Ty fyg
J j J 7 /
) ) by :c% 3 7 e )
ot St K
1 1 .
J J b jo_ 7
a; Y 92 O—=0 I 2 v3 —ai v
Yi Uj Uj

Fig. 3. a) the subtree A; for the variable v;, b) the subtree B; for the clause Cj,
¢) the subtree for C; = X VY V Z and assignment o(X) =1, 0(Y) =0(Z) =0

It is not difficult to see that ¢, defines a bijection between the elements
of X7 and the leaves of T7. For instance, for each ¢ € {1...n}, we note that
{#(ow,), dlamr)} = {as, @)}, and for each j € A;, either ¢5(8]) = ¢! and
0o (BL) € {b],b], b3}, or ¢(BL) = c] and ¢, (B],) € {b],b},b}}. Also, for each
j €{1...m}, we have ¢(N) = ¢, and {¢5 (1), 6o (72), 6o (3)} = {91, 93, 93}
Further, it can be readily verified that T7 is a ternary tree. Thus, 7, = (17, ¢, )
is indeed a ternary phylogenetic Xj-tree. First, we show that it displays Q;.

Consider A;|B for i € {1...n}. Recall that A; = {aw,, oz}, B = {0, u}, and
that {¢s (), do(azr)} = {as,al}. Also, ¢»(0) = yo and ¢ (u) = ug. Observe
that a;,a; € A;. Hence, both a;, a} are in one connected component of T7 — y;y;
whereas yo, ug are in another component. Thus, 7, indeed displays A;|B.

Next, consider DJ|B for j € {1...m} and p € {1...3}. Recall that D =
{7, N}, and ¢ (7)) € By, ¢o (V) € B;. Also, B = {0,u} and ¢,(6) = yo,
$o(1r) = uo. Thus both ¢4(7]), ¢o(N) are in one component of T7 — u;x]
whereas yg, ug are in another component. This shows that 7, displays Dg)|B.

Now, we look at Sf)l|Sg—l where ¢ € {1...n} and j,j° € A;. Recall that
S ={ow,, B} and S’i—; = {azs, ﬁ%} By symmetry, we may assume that v; = 1.
Then ¢o (aw,) = ai, ¢o(0wr) = al, ¢5(8)) € B;, and qﬁg(ﬁ%) = cf/ Let j; denote
the largest element in A;. Then, both a;,c{ are in one component of T — y;zft
whereas a; and ¢, (3] ) are in a different component. Thus, 7, displays S}, |S%

Next, consider S%JKi—/ and Sg—|Kf,; for i € {1...n} and j,j' € A; where
j < J' Recall that K2 C {8, 74, N}, KiL € {82 7 44 V'),
Si. = {ow,, B} and S = {azr, B, }. Again, by symmetry, we assume v; = 1.
S0, @y () = ai, 6o (om) = af. o(8%) = cl. 6, (B%) = ¢l . 60(B],) € B; and

{60(82), 6o (1] ), 60(33 ), 0 (7] ), 0o (N')} € By Let ji < ja < ... < ji be the
elements of A,;. Since j € A;, let k be such that j = ji. We conclude k < ¢, since



j<j and j' € A;. Thus, the elements of gbg(Sg_i) and ¢, (Kﬂ;), respectively are
in different components of T; — z7* zgk“. Further, observe that ¢U(Kf);;) C Bj,
and since j # j’, the elements of ¢, (57 ) and ¢, (K%) are in different components
of Tr — uj/x{,. This proves that 7, displays both Sg|KfT; and S7_| K}

Now, consider K7 |Fj/ and K |Fj/ forie{l...n}andj < j’ where j € A;.
Agaln recall that KJ C {ﬂij;la’}/lv 725 735 /\]} KJ C {ﬂyla’}/lv 727 735 /\j}v and that
Fi'" = {\', u}. So, (bg(Kf)—i) Ugo(K]) C A UB whereas ¢, (F7') C By U {ug}.
Since j < j' < m, we conclude that ¢U(K%) U ¢o (K], ) and $o(F7') are in
different components of Ty —wuu ;4. Thus 7, displays both K7 |Fjl and KJ. |Fj,

Next, we consider H,,,|SJ , Hy-|S3 , H,,, |S’J— and Hy |S’J for1<i' <i<n
and j € A;. Recall that H,, = {ow,,0}, Hy7 = {om ,,5} 5] ={aw,, B}, and
3. = {aws, B} S0, 65 (S3,) Ude (S2) € A;UB; whereas d)o( H,,)U¢s(Hey) C
Ay U {6} Thus since ¢/ < i < n, we conclude that ¢4 (57 ) U (bg(SJ ) and
¢ (Hy,, ) Ups (Hy) are in different components of Ty —yz/yZ 41 Th1s proves that
o i and Hw|8i—1

Similarly, we consider Hz|F7 and Hvi|F3 for i€ {1 ...n}and j € {l...m}.
Recall that H,, = {ay,,6}, Hy: = {aw, 0}, and F7 = {\, u}. Hence, it follows
that {¢e( UZ)U¢U( H,)} CA, U{(5} and ¢, (F7) C BjU{u}. Thus, we conclude
that ¢, (Hy;) U ¢ (Hy,) and ¢, (F7) are in different components of 77 — y,u;.
This proves that 7, displays both Hy|F7 and H,,|F7.

Finally, we consider the clause C; = X VY V Z for j € {1...m}. Since
o is a satisfying assignment, and by the rotational symmetry between X, Y,
and Z, we may assume that X = 1, Y = 0, and Z = 0. Let ix be the in-
dex such that X = v;, or X = v;, let 4y be such that Y = v;, or ¥ =
iy, and let iz be such that Z = v;, or Z = 7v;,. Note that ix, iy, iz
are all distinct, since we assume that no variable appears more than once in
each ‘clause.‘Thus we have that ¢, (8%) ‘: by, (bg(BJ?) = b), (bg(ﬁ%) = b},
bo(11) = 91, ¢o(73) = 927 ¢a(73) = g3, and ¢o(N) = ;. (See Figure [k.)
Also, {¢s(ax), Qbo(ax) Qbo(ﬂj )} C Aig, {Po(ay), ¢a(ay) Qbo(ﬂy)} C Ay, and
{po(az), b0 (az), 65 (8Y)} C Ai,. First, consider K] |K9 and K7 |L] Recall
that ,K% = {8k} K% = {BL, N}, and L’ = {BX,VQ} Also recall that
¢o(0%) € Aix. Thus it follows that ¢ (K% ) U 6o (L) and ¢, (K]Y) are in dif-
ferent components of Ty — x}a7. Now, consider KJ?|K{, and KJY|L§/ Recall that
Kl z‘{ﬁ{,,wé}‘, K3 = {BL, )\j}, and L3, = {8, 73} where qﬁg(ﬁ{/)‘E‘Aiy. Thus,
b0 (K3 )Udo (Ly,) and ¢4 (K3-) are in different components of Ty —z 3. Similarly,
consider K2 |KJZ and K%|LJZ Recall that KJ? = ‘{B%,*yg},‘Kj = {ﬂj )\j} and
L, = {52771} where ¢, (87) € Ai,. Thus, ¢o(K7)Uds(L7) and ¢y (K7) are in
different components of Tl—x2x4 Now, consider S},| K% and S}|L7,. Recall that
Sy = {av. By}, Ky = {B, N} and LY, = {ﬂzm} Also, {¢a(aY) o (B3)} €
Ay whereas ¢,(8%) € Aiy. Thus, since ix # iy, we conclude that ¢,(S3)

T displays all the four quartet trees H,
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and gbg(Kg() U gbg(LjZ) are in different components of T — y;, y;,.. Similarly,
we consider S4|K7 and S%|L%. Recall that %, = {az, L}, Ki = {ﬁ%, pYA
and Ly = {#2,73}. Also, {¢(az),¢5(5})} € Ai,, and ¢, (%) € Aiy. Thus,
since ix # iz, we conclude that ¢, (S%) and ¢y (KL) U ¢ (L% ) are in different
components of T7 — y;,y;,. Finally, consider S§(|KJ and S%|L3,. Recall that
S% = {ax, B}, K ‘{B M} and L3, {BY,73} where QSU(Q)(_) € Ai.
Thus, ¢, (5% ) and ¢, (K%) are in different components of Ty — 2z, whereas
$o(S%) and ¢,(L3,) are in different components of T — zha7.

This proves that 7T, displays Q;. It remains to prove that 7, is distinguished
by Qy. First, consider the edge y;y; for i € {1...n}. Recall that 4; = {a,, az;}
and B = {4, u}. By definition, we have ¢, (A4;) = {a;, a;} and ¢, (B) = {yo, uo}-
Note that every connected subgraph of T; that contains both yg and ug must
also contain y;, since it lies on the path between ug and yo in T7. Likewise,
every connected subgraph of Ty that contains a,, a) also contains y;. Thus, this
shows that the edge y;y; is distinguished by A;|B which is in Qy. We similarly
consider the edge ujx{ for j € {1...m}. By the definition of ¢,, we observe
that there exists p € {1,2,3} such that ¢, (7)) = g%. We recall that B = {0, u}
and DI = {7, M}. Thus, ¢(B) = {yo,uo} and ¢ (D}) = {g,£7}. Since g7 is
adjacent to 3:{, and u; lies on the path between o and wyg, it follows that the
edge uj:v{ is distinguished by DIJ;|B which is in Q.

Now, consider i € {1...n}, and let j1 < jo < ... < j; be the elements
of A;. Let W € {v;,7;} be such that W = 1. Then we have ¢,(aw) = aj,
¢o(a77) = aj, and qﬁg(ﬁj ) = ¢ for all j € A;. Recall that SL = {ag7, B}

and KJ C {BW7’717’727737 )‘]} Where {(ZSG'(/Yl)? ¢o’(’72)7 ¢0(73)7 (bo'()\])} g B fOI'
all j € A;. Thus, for each k € {1...¢— 1}, it follows that gbg(ﬂji) is adjacent to

]k+1 Jk ]k+1

i-k whereas (bg(ﬁj M) is adjacent to z;**'. This proves that the edge z]
is distinguished by S’J’“|KJ’°+1 Similarly, recall that S%, = {aw, 8l } Where
b0 (Bly,) € B; and ¢, (aw) is adjacent to y}. Thus, the edge 7'y} is distinguished
by S’{,{,|S]Wt. Further, if ¢ > 2, then we recall that H,,_, = {avifl,é} where
bo(ay,_,) € Ai—1 and ¢4 (0) = yo. Thus y;_1y; is distinguished by H,,_,[S; .
Now, consider j € {1,...m} where C; = X VY VZ. By the rotational symme-
try, we may assume that X = 1and Y = Z = 0. Thus ¢, (5%) = b7, gbg(ﬂJ?) = bJ,
65(B7) = Vb do(r]) = ol, do(nd) = 9}, 0o () = gh, and 6, (V) = (.
(Again see Figure Bk.) Recall that Ky, = {8, M} and Ki = {By,75} where
b0 (By) & B,. This shows that the edge 2% is distinguished by K7 |K3.. Recall
that % = {ax, 8%}, L} = {5Y=73} and K}, = = {85 A 7} where ¢, (ax) & Bj.

Thus, the edge 3:2:1% is distiguished by S% |LJ whereas the edge x4x% is dis-

tinguished by S%|K%. Recall that KJ {52773} and L7, = {BZ771} where
gbg(ﬂé) ¢ Bj. Thus, the edge xja’ is distinguished by KJ?|LJ. Recall that



Kl = {ﬂ%, M1 and KﬂY = {B%, 71} where ¢, (8%) ¢ B;. Thus, the edge =z} is
distinguished by KJY|K§( Further, if j < m, recall that F/*1 = {\*! ;;} where
bo (M) € Bjy1 and ¢, (11) = ug. Thus uju; i is distinguished by K% |F/+!.
Finally, recall that H,, = {a,,,d} and F' = {\',u}. So, ¢, (H,,) C A, U
{yo} and ¢, (F') C Bj U{up}. Thus, the edge y,u; is distinguished by H,, |F*.
This concludes the proof. (I

5 Proof of Theorem

To prove Theorem Bl we need to introduce some additional tools. The following
is a standard property of minimal chordal completions.

Lemma 1. Let G’ be a chordal completion of G. Then G’ is a minimal chordal
completion of G if and only if for all wv € E(G') \ E(G), the vertices u,v have
at least two non-adjacent common neighbours in G'.

Proof. Suppose that G’ is a minimal chordal completion. Let uv € E(G')\ E(G),
and let G = G’ —uw. Since G’ is a minimal chordal completion and uv ¢ E(G),
we conclude that G” is not chordal. Thus, there exists a set C C V(G’) that
induces a cycle in G”. Since G’ is chordal, C does not induce a cycle in G’. This
implies u,v € C, and hence, uv is the unique chord of G'[C]. So, we conclude
|C| = 4, because otherwise G'[C] contains an induced cycle. Let z,y be the
two vertices of C'\ {u,v}. Clearly, zy ¢ F(G’) and both z and y are common
neighbours of u, v as required.

Conversely, suppose that G’ is not a minimal chordal completion. Then by
[23], there exists an edge uv € E(G’)\ E(G) such that G’ —uv is a chordal graph.
Therefore, u,v do not have non-adjacent common neighbours z,y in G’, since
otherwise {u, x,v,y} induces a 4-cycle in G’ — uv, which is impossible since we
assume that G’ — uv is chordal. That concludes the proof. ([

Using this tool, we prove the following two important lemmas.

Lemma 2. Let G be a graph and G’ be a minimal chordal completion of G. If
G contains vertices u,v with Ng(u) C Ng(v), then also Ng/(u) C N (v).

Proof. Let u,v be vertices of G with Ng(u) C N(G,). Let B = Ng/(u)\ Ngr(v)
and A = Ngr(u) N Ngr(v). Assume that B # (), and let A; denote the vertices of
A with at least one neighbour in B. Look at the graph G; = G'[A; U BU {v}].

By the definition of A; and B, the vertex v is adjacent to each vertex of A
and non-adjacent to each vertex of B. Hence, no vertex of A; is simplicial in G,
since it is adjacent to v and at least one vertex in B.

Now, consider w € B. By the definition of B, we have that w is adjacent
in G’ to u but not v. Thus, uw is not an edge of G, since Ng(u) C Ng(v) and
N¢g(v) € Ngr(v). So, by Lemmalll the vertices u, w have non-adjacent common
neighbours z, y in G’. Since z, y are adjacent to u, we have z,y € AU B. In fact,



since w has no neighbours in A\ A;, we conclude z,y € A; U B. Thus, w is not
a simplicial vertex in GGy, and hence, no vertex of B is simplicial in Gj.

This proves that no vertex of G, except possibly for v, is simplicial in G;.
Also, G1 is not a complete graph, since B # {}, and v has no neighbour in
B. Recall that Gy is chordal because G’ is. Thus, by the result of Dirac [§], G1
must contain at least two non-adjacent simplicial vertices, but that is impossible.
Hence, we must conclude B = . In other words, Ng/(u) € Ng(v). O

Lemma 3. Let G be a graph, and let H be a graph obtained from G by substi-
tuting complete graphs for the vertices of G. Then there is a one-to-one corre-
spondence between minimal chordal completions of G and H.

Proof. Let v1,vs,...,v, be the vertices of G. Since H is obtained from G by
substituting complete graphs, there is a partition C; U...UC,, of V(H) where
each C; induces a complete graph in H, and for every distinct i,5 € {1...n}:

(x) each x € C;, y € Cj satisfy v;v; € E(G) if and only if xy € E(H).

Let G’ be any graph with vertex set V(G), and let H' = ¥(G’) be the graph
constructed from G’ by, for each i € {1...n}, substituting C; for the vertex v;,
and making C; into a complete graph. Thus, for every distinct ¢, € {1...n}

(xx) each z € C;, y € C; satisfy v;v; € E(G’) if and only if zy € E(H').

We prove that ¥ is a bijection between the minimal chordal completions of
G and H which will yield the claim of the lemma.

Let G’ be a minimal chordal completion of G, and let H' = ¥(G"). Clearly, H’
is chordal, since G’ is chordal, and chordal graphs are closed under the operation
of substituting a complete graph for a vertex. Also, observe that V(H) = V(H'),
and if zy € E(H), then either z,y € C; for some ¢ € {1...n}, in which case
xy € E(H'), since C; induces a complete graph in H', or we have z € C;,
y € C; for distinct 4,5 € {1...n} in which case v;v; € E(G) by (%) implying
v;v; € E(G'), since E(G) C E(G"), and hence, zy € E(H') by (). This proves
that E(H) C E(H'), and thus, H' is a chordal completion of H.

To prove that H’ is a minimal chordal completion of H, it suffices, by
Lemma [I to show that for all zy € E(H') \ E(H), the vertices z,y have at
least two non-adjacent common neighbours in H'. Consider zy € E(H')\ E(H),
and let ¢,5 € {1...n} be such that z € C; and y € C;. Since 2y ¢ E(H) and
C; induces a complete graph in H, we conclude i # j. Thus, by (%*), we have
vv; € E(G"), and so, v;v; € E(G') \ E(G) by (x). Now, recall that G’ is a
minimal chordal completion of G. Thus, by Lemma [I the vertices v;, v; have
non-adjacent common neighbours vy, vy in G'. So, we let w € C), and z € C,. By
(%), we conclude wz ¢ E(H'), since vyv; € E(G'). Moreover, (xx) also implies
that z,w are common neighbours of z,y, since vy, v, are common neighbours
of v;, v;. This proves that x,y have non-adjacent common neighbours, and thus
shows that H’ is a minimal chordal completion of H.

Conversely, let H' be a minimal chordal completion of H. Let G’ be the graph
with V(G') = V(G) such that v,u; € E(G’) if and only if there exists z € C;,



y € C; with zy € E(H'). Let ¢ € {1...n} and consider vertices z,y € C; in
the graph H. Recall that C; induces a complete graph in H. This implies that
xy € E(H) and both = and y are adjacent in H to every z € C;\ {z, y}. Further,
by (%), if z € C; where j # 4, then x,y are both adjacent to z if v;v; € E(G), and
x,y are both non-adjacent to z if v;v; ¢ E(G). This shows that Ny (z) = Ny (y),
and hence, Ny (z) = Npg+(y) by Lemma [ and the fact that H' is a minimal
chordal completion of H. This proves that H' = ¥(G’), and hence, G’ is chordal.
In fact, E(G) C E(G’) by (x) and (*). Thus G’ is a chordal completion of G.

It remains to show that G’ is a minimal chordal completion of G. Again, it
suffices to show that for each v;v; € E(G’) \ E(G), the vertices v;, v; have non-
adjacent common neighbours in G’. Consider v;v; € E(G')\ E(G), and let x € C;
andy € Cj. So, 1 # jand zy € E(H') by (»*). Further, zy € E(H')\E(H) by (x)
and the fact that v;v; € E(G). So, the vertices x,y have non-adjacent common
neighbours w, z in H’ by Lemma 2] and the fact that H’ is a minimal chordal
completion of H. Let k,¢ € {1...n} be such that w € Cy and z € Cy. Since
xz € E(H') but wax ¢ E(H'), we conclude by (xx) that ¢ # k. By symmetry,
also i # ¢, j # k, and j # £. Further, k # ¢, since wx ¢ E(H’) and C} induces a
complete graph in H'. Thus, (x%) implies that vk, vy are non-adjacent common
neighbours of v;, v;, since w, z are non-adjacent common neighbours of x, y. This
proves that G’ is indeed a minimal chordal completion of G.

That concludes the proof. (I

Now, we are finally ready to prove Theorem

Proof of Theorem [Bl We observe that the graph int(Q) is obtained by sub-
stituting complete graphs for the vertices of int*(Q). Thus, by Lemma Bl there
is a bijection ¥ between the minimal chordal completions of int(Q) and int*(Q).
By translating the condition (xx) from the proof of Lemma [B] we obtain that
if G’ is a minimal chordal completion of int*(Q), then H' = ¥(G’) is the graph
whose vertex set is that of int(Q) with the property that for all A, A’ € V(G’)

(xx) all meaningful =, 7’ € Q satisfy AA' € V(G') — (A,n)(4,n') e V(H).

We show that ¥ is a bijection between the minimal restricted chordal com-
pletions of int(Q) and the minimal chordal sandwiches of (int*(Q), forb(Q)).
First, let H' be a minimal restricted chordal completion of int(Q). Then G’ =
w~1(H') is a minimal chordal completion of int*(Q). Consider two cells Ay, Az
of m € Q. Since H' is a restricted chordal completion of int(Q), we have that
(A1, m) is not adjacent to (Az, ) in H'. Thus, A1 Ay & E(G’) by (%*). This shows
that G’ contains no edge of forb(Q). Thus G’ is a minimal chordal sandwich of
(int*(Q), forb(Q)), since it is also a minimal chordal completion of int*(Q).
Conversely, let G’ be a minimal chordal sandwich of (int*(Q), forb(Q)). Then
H' = ¥(G') is a minimal chordal completion of int(Q). Consider two cells Ay, Ay
of m € Q. Since A; As is an edge of forb(Q), and G’ is a minimal chordal sandwich
of (int*(Q),forb(Q)), we have A1 Ay ¢ E(G’). Thus, (A1, 7)(As,7) € E(H') by
(#x). This shows that H’ is a minimal restricted chordal completion of int(Q).
That concludes the proof. (Il



6 Proof of Theorem 8

For the proof, we shall need the following simple properties of chordal graphs.

Lemma 4. Let G be a chordal graph, and let a,b be non-adjacent vertices of G.
Then every two common neighbours of a and b are adjacent.

Lemma 5. Let G be a chordal graph, and C = {a,b,c,d,e} be a 5-cycle in G
with edges ab, be, cd, de, ae. Then

(a) bd,ce ¢ E(G) implies ac,ad € E(G), and

(b) bd,be & E(G) implies ac € E(G).

Lemma 6. Let G be a chordal graph, and C = {a,b,c,d, e, f} be a 6-cycle in G
with edges ab, be, cd, de,ef,af. Then

(a) bd,ce,df ¢ E(G) implies ac,ad,ae € E(G),

(b) bd,ce,cf ¢ E(GQ) implies ac,ad € E(G), and

(c) be,bf,ce,cf & E(G) implies ad € E(G).

To assist the reader in following the subsequent arguments, we list here the
cliques of int*(Q;) according to the elements from which they arise:

a) for each i € {1...n} where j1,ja2,...,ji are the elements of A;:

v, Hypy Ay, SIY,S32, .0 ST, o Hop, Ay, SIS, ..., S2E,
b) for each j € {1...m} whereC; =X VYV Z:

N: K%, Ki., K}, DI, D}, D}, F

il KﬂY L}, D} v KL, L, Dj v K% L, D}
Bx: Sk, K5 850 Sy, K2 Bl S}, K2
9% KXo Ik Bl ST, K3, Ly, Bl 50, Ky, L,
C) o: B, Hvl, ey an, HW? ey Hm

w: B, FY, ..., F™
We start with a useful lemma describing an important property of int*(Qy).

Lemma 7. Let G’ be a chordal sandwich of (int*(Qy), forb(Qy)), and 1 < i < n.

(a) there is W € {v;,7;} such that for all j € A, K{,V is adjacent to B.

(b) for each j € A;, and each W € {v;,v;}, if K{,V is adjacent to B, then the
vertices S{V, K%V, L{/V (if exists) are adjacent to B, A;, Hw, Hyy, FY.

Proof. Let i€ {1...n}. First, we observe the following.

(%) for each j € A;, each W € {v;,T;}, at least one of S%, K{,V is adjacent to B.
We may assume that 5’% is not adjacent to B, otherwise we are done. Observe
that SJW is adjacent to K7, since ﬂJW € K, N S]W' Moreover, there exists

p € {1,2,3} such that K7, N DJ contains X or 77, implying that K7y is adjacent
to DJ. Also, F7 is adjacent to DJ and B, since ¥ € DI N F7 and p € BN F7,



respectively. Further, Hyr is adjacent to SjW and B, since agy € Hy N SjW and
6 € Hyy N B. Finally, Hy is not adjacent to F7, and B is not adjacent to DJ,
since Hyy|F7 and DJ|B are in Q;. So, by Lemma [§ applied to the cycle (K7},
S%, Hy, B, F1, DIJ;}, we conclude that K‘J/V is adjacent to B. This proves (x).

Now, to prove (a), suppose for contradiction that there are j,j' € A; such
that both K2_and K7, are not adjacent to B. Then by (x), both S, and Sqi; are
adjacent to B. Note also that A; is adjacent to both Sgw SZ—;, since ay,, € A; ﬂSf)'i
and ag; € A; N S% Further, note that A;B and SJ, Sf);; are not edges of G’, since
A;|B and S’%|S% are in Q7. But then G’ contains an induced 4-cycle on {5},
A, Sf%, B}, which is impossible, since G’ is chordal. This proves (a).

For (b), suppose that K{V is adjacent to B for j € A; and W € {v;,7;}.
First observe that K, is adjacent to S’JW, and the vertex KJW is adjacent to Sy,
since ﬂJW € K{,V N SJW and ﬂiv € KJW N SY;,. Moreover, there exists p € {1,2,3}
such that Ky, N DJ and KJW N DJ contain ) and M, respectively, or A/ and
~J, respectively. This implies that K3, and KJW are adjacent to DJ. Also, A; is
adjacent to Sy}, and S’JW, since agy € A; NS}, and agr € 4; N S]W' Further, note
that DB, A;B, Kiy K3, and 57,57 are not edges of G', since DJ|B, A;|B,
K{V|KJW, and S{,V|SJW are in Qj. This implies that KJW is not ‘adjacent to B,
since otherwise G’ contains an induced 4-cycle on {K3;,, B, K]W, Dg;}. So, by
(%), we have that S}}, is adjacent to B. Thus, Lemma [ applied to {K7,, SJW,
A;, Siy, B} yields that K7, is adjacent to A; and S};,. So, by Lemma [ applied
to {S},, Ky, DJ, KJW}, we have that Sy, is adjacent to DJ.

Now, observe that Hy, Hy are adjacent to both A; and B, since awy €
Hw N A;, agy € Hy N A, and § € BN Hy N Hypr. Thus, by Lemma @ applied
to {u, A;, v/, B} where u € {S},,, Kj,} and v’ € {Hyw, Hy} , we conclude that
SY, and Kij, are adjacent to both Hy and Hypr. Similarly, we observe that F7
is adjacent to B and Dj, since p € FV N B and M € D), N FJ. Thus, Lemma [l

applied to {u, B, F7, DJ} yields that S{V and K‘J/V are also adjacent to F7.
Lastly, suppose that L%V exists. Then there exists ¢ € {1,2,3} such that
73 € Dg N Li,, implying that Li;, is adjacent to Dg. Moreover, FJ is adjacent to
Dg and B, since M € Dg NFJ and p € Fi N B. Also, Hy;; is adjacent to B, S]W’
and the vertex SJW is adjacent to L, since 6 € B N Hyy, ayy € Hy N SJW, and
ﬂJW € SJWQ Ly . Further, HyF7 and D} B are not edges of G’, since Hyy|F7 and
Dg|B are in Q. Also, S]WB is not an edge of G’, since otherwise G’ contains
an induced 4-cycle on {S}},, B, SJW, A;}. Thus, by Lemma [ applied to {L{,
S]W’ Hyy, B, FI, Dg}, we conclude that L, is adjacent to Hyr, B, and F7.
Moreover, by Lemma [5 applied to {L7,,, B, Sj;,, A, SJW}, we conclude that L7,



is adjacent to A;. Finally, recall that Hyy is adjacent to both A; and B. Thus,
Lemma @] applied to {L{;,, A;, Hw, B} yields that L}, is also adjacent to Hyy.
That concludes the proof. (I

Fig. 4. The fill-in edges for o) W =1,0) X =1,Y =0, Z =0.

Let o be a truth assignment for the instance I. Recall that, for simplicity,
we write X = 0 and X =1 in place of o(X) = 0 and o(X) = 1, respectively.

To facilitate the arguments in the proof, we introduce a naming convention for
the vertices in int*(Qy) similar to that of [2]. The vertices S{;, for all meaningful
choices of j and W are called shoulders. For a fixed j, we call them shoulders
of the clause C;, and for a fixed W, we call them shoulders of the literal W. A
shoulder is a a true shoulder if W = 1. Otherwise, it is a false shoulder. The
vertices K7, Li;, for all meaningful choices of j and W are called knees. For a
fixed j, we call them knees of the clause C;, and for a fixed W, we call them
knees of the literal W. A knee is a true knee if W = 1. Otherwise, it is a false
knee. The vertices A;, DJ, Hy, F7 for all meaningful choices of indices are called
A-vertices, D-vertices, H-vertices, and F-vertices, respectively.

Let G, be the graph constructed from int*(Q;) by performing the following:
(i) make B adjacent to all true knees and true shoulders
Let GI. be the graph constructed from G, by performing the following steps:

(ii) make {true knees, true shoulders} into a complete graph
(iii) for all i € {1...n}, make A; adjacent to all true knees of the literals v;,7;,
(iv) for all 1 <4’ < i < n, make H,,, Hy adjacent to all true knees and true
shoulders of the literals v;/, vy
(v) for all 1 < j < j/ < m, make FY adjacent to all true knees and true
shoulders of the clause C;r,
(vi) for all 1 <4 < n and all j,j" € A; such that j < j”:
a) if v; = 1, make Sf% adjacent to K7 , Li  (if exists)
b) if v; = 0, make Sf)i adjacent to Kf)_, Li_ (if exists)



Finally, let G% be constructed from G/, by adding the following edges.

(vii) for all j € {1...m} whereC; =X VY V Z:
a) if X = 1, then add edges FIL3,, K%L}, K{/K% D%K%, D%S%, Dgsé
and make {Df, D}, D}, S%, S%, L?,, Ky} into a complete graph
b) if Y =1, then add edges F/L%,, K{ L%, KJZK%, Déij, D%S’JZ, D{S%
and make {D7, D}, D}, Sy, Sjy, L%, K7,} into a complete graph
c) if Z =1, then_ add edggs F_'jLi,., K%L{,,_K&K%, D{KJ?7 D{Sjy, D%SJY
and make {D7], D}, D}, 5, SJ?, L3, K%} into a complete graph

Lemma 8. G/ is a subgraph of every chordal sandwich of (G, forb(Qr)).

Proof. Let G’ be a chordal sandwich of (G, forb(Qr)). We prove the claim by
showing that G’ contains all edges defined in ({)- ().

For (EII) let us consider true shoulders S’ S{;,, and true knees K év, K i{,, and
LJW, LW, (if they exist). We allow that W is possibly equal to W’ and possibly
j = j'. First, we observe that, by (i), the true knees K‘J/V and Kg‘l,, are adjacent
to B. Therefore, by Lemmalfl the vertices Sév, K{V, L%V are adjacent to Hy and
FJ, whereas S{;‘/,/, K{;‘l,/, L{,{,, are adjacent to Hys and Fi', Also, Hy is adjacent
to Hy and F7 is adjacent to Fj/, since 6 € Hy N Hy» and u € FI N Fj/7 re-
spectively. Further, Hy, F7, HWFJ‘/7 Hyy F9, Hy Fi' are not edges of G’, since
Hyw |F7, HW|Fj/ Hy|F7, HW/|Fj/ are in Qy. Thus, if j = j' and W is equal
to W', then, by LemmaIZI applied to cycles {u, HW,u F7} where u,u’ € {S
S{,V,, K{,V, KW,, LW, LW,} we conclude that {S5,, S{,V,, K{,V, K{,V,, LW, LW,}
forms a complete graph in G’. If j # j/ and W is not equal to W', we reach the
same conclusion by Lemma [6] applied to the cycles {u,HW,HW/,u’,Fj,,Fj}.
Otherwise, we obtain the conclusion by applying Lemma [0l either to cycles
{u, Hy v/, Fi' Fi} or cycles {u, F7,u', Hy, Hy }. This proves ().

For (i), consider the vertex A; for i € {1...n}. Let W € {v;,7;} be such
that W = 1. Then, for each j € A;, the vertex K7, is adjacent to B by ({). Thus,
by Lemma [7] both K{,V and L{/V (if exists) are adjacent to A;. This proves ().

For (iv), we consider 1 < 4" <i < n. Let W’ € {vy, Ty} be such that W’ = 1.
Then, for all j € Ay, the vertex Ki,, is adjacent to B by (), and hence, the
vertices S’év,, Kév, and L{;V, (if exists) are adjacent by Lemma [ to H,,, Hy;-
In other words, the vertices H,,, Hy are adjacent to all true knees and true
shoulders of the literals vy, ;7. Thus, we may assume that i’ < 7. Now, the vertex
H,, is adjacent to H,, ,Hy;, since 6 € H,, N Hy; N H,,. Let W € {v;,7;} be such
that W = 1. Then K{V is adjacent to B by (), and hence, Sév is adjacent to
H,,, Hy by Lemmal[7l Also, Sév is adjacent to all true knees and true shoulders
of the literals v;, v, by (). Further, the vertex Sév is not adjacent to H,,, ,
since H,, |S"J/V is in Q. Thus, by Lemma [ both H,, and Hy; are adjacent to
all true knees and true shoulders of the literals v;/, v;. This proves ().



For (@), consider 1 < j < j/ < m. Again, we observe that if K{{, is a true
knee, then K{{, is adjacent to B by (@), and hence, S{,-[,,, K{,‘;,, and L%{, (if exists)
are adjacent to F7 ' by Lemmal[Zl In other words, the vertex F7 "is adjacent to all
true knees and true shoulders of the clause C;. So, we may assume that j < j'.
Now, let K{,V be any true knee of the clause C;. Then K‘J/V is adjacent to B,
and hence, to F/ by () and Lemma [7] respectively. Also, K3}, s adjacent to
all true shoulders and true knees of C;» by (). Further, F7 1s adjacent to F i’
since p € FI N FJ' , and the vertex K{,V is not adjacent to Fi' , since K7, |FJ is
in Qy. Thus, by Lemma @ the vertex F7 is adjacent to all true knees and true
shoulders of the clause C;. This proves ([@).

For (i), let ¢ € {1.. n} and consider j,j" € A; with j < j'. Let W € {v;, 73}
be such that W = 1. Observe that K‘J/V is adjacent to SJ— since BJ € S] NKYy.

If L, exists, also LY, is adjacent to SJW, since then BJW € SJWQL{,V. Thus, we may
assumfz, that j{ < j’._,Now, S]W ig adjacegt to S]W and Ky, since agy € S:JWQ S]W’
and B € SN K. Also, Ky, and Ly, (if exists) are adjacent to K3y, by ().
Further, S’JWK{,V is not an edge of G’, since S’JW|K‘J/V isin Q;. Thus, by Lemma [

the vertices K3, L}, (if exists) are adjacent to S%. This proves ().
The proof is now complete. O

Lemma 9. If o is a satisfying assignment for I, then G is a subgraph of every
chordal sandwich of (G, forb(Qy)).

Proof. Let G’ be a chordal sandwich of (G, forb(Q)), and assume that o is
a satisfying assignment for /. That is, in each clause C; = X VY V Z, either
X=1,Y=Z=0,orY=1,X=Z=0,orZ=1,X=Y=0.

By Lemma [B] the graph G’ contain all edges defined in ({)-({d). Thus it
remains to prove that it also contains the edges defined in ().

Consider j € {1...m} where C; = X VY V Z. By the rotational symmetry
between X, Y, and Z we may assume that X =1, Y =0, and Z = 0. Observe
that K]Z is adjacent to K% and LJZ7 since M € KJ N K] and BJ € KJ N LJ

Further, KJY is adjacent to L, and %, since 4] € L, NK% and §% € KJYQ S
By (), also K% is adjacent to S% . Moreover, S% K7, and Kg(KJY are not edges of
G', since S% | K7, K§(|KJY are in Q. Thus, by Lemma[Glapplied to the cycle {L?,
K}, K%, 5%, KJY}, we conclude that L, is adjacent to S% and K% . Now, observe
that L3, is adjacent to K] and KJ—, since BJ? € Ly, N Ky and 73 € L}, N K]7
Recall that K7 is adjacent to L7, and also to K7, since A € K%NK7.. Moreover,
S% is adjacent to K% and L7, by () and the above. Further, K]?LJZ, SE L3,
S% K7 are not edges of G', since K7|L%, S%|Lsy,, S%|K7 are in Q. Thus, by
Lemma [6] applied to the cycle {K{,, L{,, %, S’g(, LjZ7 K]Z}, we conclude that
K{/ is adjacent to K%, Sig, and LJZ. Next, observe that S% is adjacent to K% and



KJZ by (@) z_md_since B% € S%ﬁ KJZ Recall that K{, is adjacent to K% and KJZ
Further, KJZK% is not an edge of G’, since KJZ|KJ7 is in Qy. Thus, by Lemma [4]
the Veljtexls% is adjacent to K f/ Now, recall that LjZ is adj_acent to ng and K %,
and S% K% is not an edge of G'. Also, F7 is adjacent to S% and K7, by (@) and
since M € FV N K. Thus, by Lemma[d] the vertex L, is adjacent to FY. Now,
observe that D1 is adjacent to K3, K., since NV € D{NK% and 7] € D{NK7.
Recall that also Sx is adjacent to both K% and KJ—, and that K% KJ— is not

an edge of G'. Thus, by Lemma [l we have that D is adjacent to SJ Next,
observe that Dj is adjacent to K3, K7 since M € DJ NK{ and ~} € D] N K]

Recall that Kf/ is adjacent to K% and Sﬁf. Also, KJ? is adjacent to SX, S]?,
K% by (@), and K{, is adjacept tq S%, since ﬂ% € K{, N S%. Further, K{,KJ?
is not an edge of G, since K{/|K]— is in Q. Thus, by Lemma [l the vertices
S%, SJ K are adjacent to D). Now, observe that DJ, D} are adjacent to K7,

since )\J € D] N DJ N K] Also, recall that S’g( is adjacent to D{ D%, LJZ7 the
vertex KJZ is adjacent to S%, 7, and S&KJZ is not an edge of G'. Further, SfX is

adjacent to S% by (). Thus, by Lemma @ both D{ and D% are adjacent to S%
and L’,. Next, observe that D} is adjacent to K7, K]— since M € D} N K7 and
v} e Din KJZ Recall that also S% is adjacent to K Ki, and that K7, KJ is
not an edge of G'. Thus, by Lemma [ the vertex Dj is adjacent to 5]7. Further,
recall that L7, is adjacent to KJ, S%, the vertex KJZ is adjacent to S%, and
S% K7, and K]ZLJZ are not edges of G'. Thus, Lemma B applied to {D}, K7, L?,,
S%, KZ ~} yields that Dj is adjacent to both L7, and S%. Moveover, SJ_ is also
adjacent to S% by (@), and L} is also adjacent to D Sf since 7} € DJ NnLi
and BJ? € S]? N L{,. Further, recall that S’%L{, is not an edge of G’. Thus, by
Lemma [ applied to {DJ, L{,, S2., S% 1}, the vertex D is adjacent to SJ

To prove (iil), we observe that the above analysis yields that G’ contalns
edges FJ LJZ, K LJZ, K KJZ DJKJ DJ S]_ and DJ S] It remains to show that
(D}, D}, Di, S;(, SJZ’ LJZ,’ K forms a complete‘ graph. By the‘abox‘/e pgragraph,
we have that S%, S’J L7, are adjacent to D{, D}, D}. Also, D, D%, D} and K3,
are pair-wise adJacent since N € DJ N Dy N D4 N K{.. Further, L7, is adjacent
to Sg(, and K{, is adjacent to S’g(, S’J LJZ, by the above paragraph. Finally, S]

is adjacent to S% and L%, by () and since [3]7 € SJE N L7,. This proves ().
The proof is now complete. O

Lemma 10. If o is a satisfying assignment for I, then G% is chordal.

Proof. Again, assume that o is a satisfying assignment for I. That is, for each
clauseC; = XVYVZ,either X =1,Y =Z=0,orY =1, X =Z=0,0or Z =1,
X =Y = 0. Consider the following partition V1 UVoUV3UV,UV; of V(GE) where



V1 = {false knees, D-vertices}, Vo = {false shoulders}, V53 = {A-vertices}, V, =
{H-vertices, F-vertices}, and V5 = {true knees, true shoulders, the vertex B}.

Let 7 be an enumeration of V(G%) constructed by listing the elements of V7,
Vo, V3, Vi, V5 in that order such that:

(o) the elements of V; are listed by considering each clause C; = X VY V Z and
listing vertices (based on the truth assignment) as follows:

a) if X =1, then list K%, K7, L3, L};, D], K{,, D}, D} in that order,
b) if Y = 1, then list KJ7 K, L, Ly, D}, KJ,, DJ, D} in that order,
¢) if Z =1, then list Kﬂ7 Ki, %, L}, D}, K%, D}, D} in that order,
(o) the elements of V5 (the false shoulders) are listed by listing the false shoulders

of the clauses Cy, Ca, ..., Cy, in that order,
(o) the elements of Vj are listed as follows: first the vertices H,, ,Hwr, Hy,,Hzy,
... H, ,Hy in that order, then F™ F™=! .  F!in that order,

(e) the elements of V3 and Vj; are listed in any order.

We show that 7 is a perfect elimination ordering of G5 which implies the claim.
First, consider V5. Let j € {1...m} and let C; = X VY V Z. By the rotational

symmetry between X, Y, Z, assume that X =1 and Y = Z = 0. So, 7 lists the

false knees and D-vertices of Cj_as ij, K7, Lg/,_ L, D_{, K{/, D, Dj. .

First, consider the vertex KJY Rec_all that KJY = {B%~1}. Observe that S%
is the only other vertex containing 3%, and L7, D] are the only other vertices
containing 7i. Moreover, none of the rules ({)-(ui) adds edges incident to K.
Thus, Sg(, LjZ, D{ are the only neighbours of K%, and they are pair-wise adjacent
by (). This proves that K]Y is indeed simplicial in G%.

Next, consider K%. Since K, = {37, M }, we conclude that K is adjacent to
S%, LY, K%, K3,, D}, D?, D3, and F7. Moreover, K7, has no other‘neig:hbou‘rs
by_ obsgrvipg the rules ([)-({1). Now, by (), we conc_lude‘that‘S’%, _LJZ,‘Kf,?
D{, Dj, D} are pair-wise adjacent. Also, the ve}“tices F7, Kg{’ K3, D], Dj, D;J,,
are pair-wise adjacent, since they all contain A/. Further, F7 is adjacent to 5]7
and L7, by (@) and (@), respectively, and K % is adjacent to S% and L7, by ()
and (i), respectively. This proves that K7, is simplicial in G%.

Now, conside.r Li/_. The ne_ighbours of Li, are SJ?, K{,, KJZ’ and.Dé. So, S]?
is gdjacent to K7, Dé, and K{, by (@), (i), and since [3]?‘6 SJ?QK{, Simila}“ly,
K3, is adjacen‘_c to KJ7 @nd Dé by (Ix_fj]) and s%nce N € K{. N Dj. Finally, K% is
adjacent to D3, since‘ 73 € KN Dj. Thus L{T is simplicial_ in G; -

Next, consider LJZ The neighbours of L7, are Fj, Kg(, K;, Ké, Di, Di,
Di, S%, 5’37, and KJY By (E]]), _the Yerti;es D{, D}, D}, S%, 5’37, K3, are pair-
wise adjacent. Also, FV, K%, K{., D], D}, D} are pair-wise adjacent, since they
all contain A;. Further, K% and FJ are adjacent to S’g(,_ S _by @) and @),
respectively. This proves that L7, is simplicial in G% — {ij, K7}



Now, consider D{. The neighbours of D{ are FJ, Kgf, K{-/, Ké, D%, Dg,
S%s S’i L7, and K] By (), the vertices D}, Dj, S%, Si K3, are pair-
wise adjacent Also, FJ Kgg, K{,, D27 D3 are pair-wise adjacent since they
all contain A. Further, K% and F/ are adjacent to Sg(, SJ by (@) and (@),
respectively. This proves that D is simplicial in G — {K K JZ, LJZ}

Next, cons1der KJ The neighbours of K] are FJ Kgg, K]Z, D{, D%, D%, S’gf,

SJ SJ L{,, and L7,. By (), the vertices D3}, D}, S%, SJ are pair-wise
adjacent. Also, F. K g(, D%, D% are pair-wise adJacent, since they all contain M.
Further, by (i), the vertices S%, SJ SJ %, and KJ are pair-wise adjacent,

and are adjacent to FV by (). Moreover by (Iﬁﬂ) both S’J and K7 J_are adjacent
D}, and are also adjacent to D} by (&) and since 73 € K] N Dé, respectively.
This proves that K7, is simplicial in G% — {K%, L3,, LJZ‘7 D{ } S

Now, consider D3. The neighbours of D? are F7, K%, K3, K7, D, D3, S%,
SJ SJ LJZ, and L},. By (@), the vertices S%, S%, S%, K%, KJZ are paie—
wise adjacent. Also, F7, K fx, D% are pair-wise adjacent, since they all contain M.
Further, F7 and D} are adjacent to‘Sg(,‘ SJ?,‘ S%,}K%by (@) and (), respectively.
Thus D3 is simplicial in G — {K},L},,L}, D, K3 }.

Finally, con31der D?. The neighbours of D? are F, K, K}, K%, Dj, D3,
Sg(, S’J S’J K] LJ and LJ By (), the vertices Sg(, S’J S] Kg(, Lg(, K%,
K2 JZ are pair-wise adjacent, and are adjacent to F' by (). Thus DJQ- is simplicial
in G — {KJZ, LjZ, D{, K{,, D%} This concludes the vertices in V.

We now consider Va. Let j € {1...m} and consider a false shoulder Sév for
some W = 0. Let ¢ be such that W = v; or W = 7;. Then the neighbours of S,
are the vertices Hy, 4;, and the elements of the following sets:

= {8l |jeAandj <j}  ST={S} |j €A andj<j}

~ = {Ky, L (if exists) | j' € A; and j' < j}
By (@), the elements of K~ are pair-wise adjacent. Similarly, the elements of
{Hw, A;} US™ are pair-wise adjacent, since they all contain ayy . Further, each
element of ST is adjacent to every element of K~ by (i), and each element
of K~ is adjacent to A; and Hy by () and (iv), respectively. This proves that

S{ is simplicial in G — 8. Finally, note that the elements of S~ are false
shoulders in clauses Cy, ..., C;—1. This concludes the elements of V5.

For V3, let i € {1...n} and consider the vertex A;. The neighbours of A;
are the vertices H,,, Hy;, all shoulders of the literals v;, 7;, and all true knees
of v;,7;. By (), the true knees and true shoulders of v;, T; are pair-wise adjacent,
and are adjacent to both H,, and Hz: by ([v)). Also, H,, is adjacent to Hzr, since
0 € H,, N Hy;. Thus A; is simplicial in G, — V5. This concludes V3.

Now, we consider V;. Let i € {1...n} and consider H,,, Hy;. The vertices
H,,, Hy are adjacent to the vertices B, A;, the elements of the following sets

- ={H,,, Hyr | i’ <i} HY ={H,,,Hs> | i <i'}



and all true knees, true shoulders of v;/, T for all i’ € {1...:}. Further, H,, is
adjacent to Hz7, to all shoulders of v; and to no other vertices, whereas Hy; is
adjacent H,,, to all shoulders of 7; and to no other vertices. Now, by (i), the true
knees and true shoulders of vy, Ty for all i’ € {1...i}, are pair-wise adjacent,
and are adjacent to B and each element of HT by () and (), respectively.
Also, the elements of { B} UH™ are pair-wise adjacent, since they all contain 6.
Finally, observe that the false shoulders of v;, ©; belong to V5. This proves that
both H,, and Hg; are simplicial in G} — (Vo U V3 U H ™) as required.

Next, let j € {1...m} and consider FV. Let C; = X VY V Z, and by the
rotational symmetry, assume that X =1 and Y = Z = 0. Then the neighbours
of FJ are B, K{,, K]Z, D17 D%, Dé, LJZ7 the elements of the following sets

C={F | <y Fr={FT]j<j}
and all true knees and true shoulders of the clause C;» for all j/ € {j...m}.
By (@), the true knees and true shoulders of the clause Cj for all j/ € {j...m},
are pair-wise adjacent, and are adjacent to B and each elements of 7~ by (i)
and (@), respectively. Also, the vertices of { B} UF ™ are pair-wise adjacent, since
they all contain p. Thus FY is simplicial in G — (V4 U F ). This concludes Vj.

Finally, observe that all vertices of V5 are pair-wise adjacent by (i) and ().
That concludes the proof. 0

Lemma 11. For every chordal sandwich G’ of (int*(Qy), forb(Qy)), there is o
such that G4 is a subgraph of G, and such that o is a satisfying assignment for I.

Proof. By Lemma [7] for each ¢ 6 {1...n}, there is W € {v;,7;} such that
for all j € A;, the vertices S{,V, v, and Li,, (if exists) are adjacent to B. Set

o(v;)) = 1if W = v;, and otherwise set o(vz) = 0. For such a mapping o, the
graph G’ clearly contains all edges of G,. Thus, by Lemma[d the graph Gf, isa
subgraph of G’, that is, G’ contains the edges defined in (i)- ().

It remains to prove that o is a satisfying assignment for I. Let j € {1...m}
and consider the clause C; = X VY V Z. If X =Y = 1, then the vertex S{, is
a true shoulder, and K §{ is a true knee. Thus, by (i), we conclude that S3
adjacent K% . However, this is impossible, since S%|K% is in Qy. Similarly, 1f
X = Z =1, we have that S% is adjacent to K7 by () while S$%|K7 is in Qr,
and if Y = Z =1, then S} is adjacent to K3, by () while S%|K3 is in Q.

Now, suppose that X =Y = Z = 0. First, observe that K% is adjacent
to L%, K7, and the vertex L7, is adJacent to K7, ij, sinfze ﬂ% e K% N LfX‘,
M oe Kg( N KJZ, ﬁ%e LJZ N KJZ, and ~y{ € L% N K]Y Also, K]Y is adjacent t‘o KJ?
by_ (E]]) Further., K%KJZ, K%LJZ and K]YLJX are not edges of G, since K%|K]Z,
KJ?|LJZ, and KJY|L§( and ‘in Q(. Thus, if‘Lﬂ( is adjacent to KJZ, then by Lemmal[f]
applied to {K%, L, KJE, ij, LJZ, KJZ}, we conclude that K§( is adjacent to
K J_, which is impossible since K7 LK % s in Q 7. Similarly, if K% is adjacent to
KJ then by Lemma [ applied to {Kg(, KJ LjZ7 K]Z}, we again conclude
that K is adjacent to ij, a contradlctlon. So, we may assume that both K%



and LJ)-( are not adjacent to K% Now, observe that L{, is adjacent to K%, K{‘,,
apd the yerteg Kg( is adjacept to Lﬂ(, K{,, sipce 7§ S K%ﬁ L{,,‘ B% S L;” N K{,,
BJY € K% ﬂ_LJX, apd )\j_e Ky NK%. Alsq, K]? is a_udjz_icent to K]7 and L% by (i)
and since 5 € K5 N L. Further, K7 K3 and K7 Ly, are not edges of G, since
KJ?|K{, and K]?|L§/ are in Qr. Recall that K% and LfX are not adj@cen‘g to K]7
Then this contradicts Lemma [6] when applied to {K%, L%, KJ?, KJZ, L3, K3 }.

Thus, it is not the case that X =Y = Z = 0, and by the above also not
X =Y =1,nor X = Z =1, nor Y = Z = 1. Therefore, either X = 1,
Y=7=0,0rY=1,X=2=0,or Z=1, X =Y = 0. This proves that o is
indeed a satisfying assignment for I, which concludes the proof. O

We are finally ready to prove Theorem [8

Proof of Theorem [8l Let G’ be a minimal chordal sandwich of (int*(Qj),
forb(Qy)). By LemmalIT] there exists o, a satisfying assignment for I, such that
G, is a subgraph fo G’. Thus, G’ is also a chordal sandwich of (G, forb(Qy)),
and hence, G is a subgraph of G’ by Lemma[d But by Lemmal[l0, G is chordal,
and so G’ is isomorphic to G% by the minimality of G'.

Conversely, if o is a satisfying assignment for I, then the graph G is chordal
by Lemma [I0l Moreover, int*(Qy) is a subgraph of GZ, by definition, and G
contains no edges of forb(Qy), also by definition. Thus, G% is a chordal sandwich
of (int*(Qy), forb(Qr)), and it is minimal by Lemma [0

This proves that by mapping each satisfying assigment o to the graph G,
we obtain the required bijection. That concludes the proof. O

Finally, we have all the pieces to prove Theorem [l

7 Proof of Theorem [

Consider an instance I to ONE-IN-THREE-3SAT and a satisfying assignment for .
We construct the collection Qj of quartet trees, as well as the ternary phyloge-
netic tree 7, as described in Sections [3]and @] respectively. Clearly, constructing
Q; and 7, takes polynomial time. By combining Theorem [7] with Theorems [
and [ we obtain that ¢ is the unique satisfying assignment of I if and only if 7
is the only phylogenetic tree that displays Qj. Since, by Theorem Bl it is N P-
hard to determine if an instance to ONE-IN-THREE-3SAT has a unique satisfying
assignment, it is therefore N P-hard to decide, for a given phylogenetic tree T
and a collection of quartet trees Q, whether or not Q defines 7.
That concludes the proof.
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