
ar
X

iv
:1

00
4.

04
24

v2
 [

cs
.D

S]
 2

7
Ju

n
20

10

Restricted Common Superstring and Restricted

Common Supersequence

Raphaël Clifford1, Zvi Gotthilf2, Moshe Lewenstein2 and Alexandru Popa1

1 Department of Computer Science, University of Bristol, UK
{clifford,popa}@cs.bris.ac.uk

2 Department of Computer Science, Bar-Ilan University, Ramat Gan 52900, Israel
{gotthiz,moshe}@cs.biu.ac.il

Abstract. The shortest common superstring and the shortest common superse-
quence are two well studied problems having a wide range of applications. In this
paper we consider both problems with resource constraints, denoted as the Re-
stricted Common Superstring (shortly RCSstr) problem and the Restricted Com-
mon Supersequence (shortly RCSseq). In the RCSstr (RCSseq) problem we are
given a set S of n strings, s1, s2, . . ., sn, and a multiset t = {t1, t2, . . . , tm}, and the
goal is to find a permutation π : {1, . . . ,m} → {1, . . . ,m} to maximize the number
of strings in S that are substrings (subsequences) of π(t) = tπ(1)tπ(2)...tπ(m) (we
call this ordering of the multiset, π(t), a permutation of t). We first show that in
its most general setting the RCSstr problem is NP-complete and hard to approxi-
mate within a factor of n1−ǫ, for any ǫ > 0, unless P = NP. Afterwards, we present
two separate reductions to show that the RCSstr problem remains NP-Hard even
in the case where the elements of t are drawn from a binary alphabet or for the
case where all input strings are of length two. We then present some approxima-
tion results for several variants of the RCSstr problem. In the second part of this
paper, we turn to the RCSseq problem, where we present some hardness results,
tight lower bounds and approximation algorithms.

1 Introduction

1.1 Motivation

In AI planning research it is very important to exploit the interactions between
different parts of plans. This was observed early in the area [18, 23, 26]. One very
important type of interaction is the merging of different actions to make the total
plan more efficient.

In the general setting we have a set of goals (or tasks) which have to be
accomplished and we want to find the most cost efficient plan which achieves
all the goals. This problem is also known as the shortest common superstring in
the case that every goal has to be done continuously or the shortest common
supersequence if we can abandon a task and resume its process later. In both
problems we assume that we have an unlimited set of resources and we want to
achieve all our goals. Of course, in real life this is never the case: our resources
are always limited.

http://arxiv.org/abs/1004.0424v2

Therefore, a more realistic question is: given a fixed set of resources, how
many goals can be achieved (continuously or not)?

It seems that most of the applications of the shortest common superstring
and the shortest common supersequence problem, are more suitable for the case
of limited resources. The main challenge for such applications is to find the best
arrangement that will lead us to accomplish the maximum number of goals.

As an example, Wilensky [25] gives the scenario where John is planning to
go camping for a week. He goes to the supermarket to buy a week’s worth of
groceries. John has to achieve a set of goals (i.e. to buy food for meals during
the camping weekend) and he is able to merge some goals (i.e. to buy different
products during a single trip to a supermarket) in order to make the plan more
efficient.

Another application, from the computational biology area, is the case where
only the set of amino acids can be determined and not their precise ordering.
Here we want to know which ordering would maximize the number of short
strings which can be substrings or subsequences of some ordering of the symbols
in a given text.

1.2 Previous work

In the shortest common supersequence we are given a set S of n strings, s1,s2,. . .,sn
and we want to find the shortest string that is a supersequence of every string
in S. For arbitrary n the problem is known to be NP-Hard [11] even in the case
of a binary alphabet [16]. However for fixed n a dynamic programming approach
takes polynomial time and space. The shortest common supersequence problem
has been studied extensively both from a theoretical point of view [9, 12, 15, 17],
from an experimental point of view [1, 5] and from the perspective of its wide
range of applications in data compression [21], query optimization in database
systems [20] and text editing [19].

In the shortest common superstring problem we are given a set S of n strings,
s1, s2, . . . , sn and we want to find the shortest string that is a superstring of
every string in S. For arbitrary n the problem is known to be NP-Complete [7]
and APX-hard [3]. Even for the case of binary alphabet Ott [13] presented lower
bounds for the achievable approximation ratio. The best known approximation
ratio so far is 2.5 [10, 22].

1.3 Our contributions

We consider the complexity and the approximability of two problems which are
closely related to the well-known shortest common superstring and shortest com-
mon supersequence problems.

Problem 1. (Restricted Common Superstring (Supersequence)) The input con-
sists of a set S = {s1, s2, . . . , sn} of n strings over an alphabet Σ and a mul-
tiset t = {t1, t2, . . . , tm} over the same alphabet. The goal is to find an or-
dering of the multiset t that maximizes the number of strings in S that are
a substring (subsequence) of the ordered multiset. We denote this ordering by
π(t) = tπ(1)tπ(2)...tπ(m) (and we say that π(t) is a permutation of t). If all
the strings in S have length at most ℓ, we refer to the problem as RCSstr[ℓ]
(RCSseq[ℓ]). For simplicity of presentation, we assume throughout that all the
input strings are distinct and every string si ∈ S is a substring of at least one
permutation π(t).

Example 1. Let multiset t = {a, a, b, b, c, c} and set S = {abb, bbc, cba, aca} be
an instance of RCSstr (and also of RCSstr[3]). In this example the maximum
number of strings from S that can be a substring of a permutation of t is 3. One
such possible permutation is π(t) = acabbc which contains the strings aca, abb,
bbc as substrings.

Example 2. Let multiset t = {a, a, b, c} and set S = {ab, bc, cb, ca} be an instance
of RCSseq and also RCSseq[2]. In this example the maximum number of strings
from S that can be a subsequence of a permutation of t is 3. One such possible
permutation is π(t) = abca which contains the strings ab, bc, ca as a subsequence.

The paper is organized as follows. In Section 2.1 we study the hardness of the
RCSstr problem. We show first that in its most general setting the RCS problem
is NP-complete and hard to approximate within a factor of less than n1−ǫ, for any
ǫ > 0, unless P = NP. Then, we show that even if all input strings are of length
two (RCSstr[2]) and t is a set, i.e. no symbols are repeated, then the RCSstr
problem is APX-Hard. Afterwards, we prove that the RCSstr problem remains
NP-Hard even in the case of a binary alphabet.

In Section 2.2, we design approximation algorithms for several restricted vari-
ants of the RCSstr problem. We first present a 3/4 approximation algorithm for
the RCSstr[2] problem where t is a set. Moreover, we give a 1/(ℓ(ℓ(ℓ+1)/2−1))-
approximation algorithm for RCSstr[ℓ], when ℓ is the length of the longest input
string.

The RCSseq problem is studied in Section 3. In Section 3.1 we show that
the hardness results for RCSstr hold also for RCSseq. Moreover, we show an
approximation lower bound of 1/ℓ! when ℓ is the length of the longest input
string.

In Section 3.2, we present approximation algorithms for two variants of the
RCSseq problem. The first is a (1 + Ω(1/

√
∆))/2 approximation algorithm for

RCSstr[2], where ∆ is the number of occurrences of the most frequent character
in S. Then, for RCSseq we show that a selection of an arbitrary permutation,

π(t), yields a 1/ℓ! randomized approximation algorithm, thus matching the lower
bound presented in Section 3.1.

2 RCSstr

2.1 Hardness of the RCSstr

In this section we present hardness results for several variants of the RCSstr
problem.

We show here that RCSstr problem is NP-complete and hard to approximate
within a factor better than n1−ǫ, for any ǫ > 0, unless P = NP. To do so, we
present an approximation-preserving reduction from the classical maximum clique
problem.

Definition 1. (Maximum Clique) Given an undirected graph G = (V,E) the
maximum clique problem is to find a vertex set V ′ ⊆ V of maximum cardinality,
such that for every two vertices in V ′, there exists an edge connecting the two.

The following seminal hardness result will be useful.

Theorem 1. [27] The maximum clique problem does not have an n1−ǫ approxi-
mation, for any ǫ > 0, unless P = NP.

We can now present our main hardness result of the RCSstr problem.

Theorem 2. RCSstr is NP-complete and hard to approximate within a factor
of n1−ǫ, for any ǫ > 0, unless P = NP.

Proof. We present an approximation-preserving reduction from the maximum
clique problem to the RCSstr problem. Given an undirected graph G = (V,E),
where V = {v1, v2, . . . , vn}, we construct an instance (S, t) of the RCSstr problem
in the following way.

Set t to be {vn1 , vn2 , . . . , vnn} and for each vertex vi ∈ V define a string si ∈ S
as follows. Set d(vi) to be the ordered sequence of the vertices not adjacent to vi.
Set si to be vni · d(vi), where · denotes concatenation.

We now prove that the optimal solution of the RCSstr instance (S, t) has size
x if and only if the optimal solution of maximum clique problem on the graph G
has size x.

Let π be a permutation on the multiset t and let A ⊆ S be all the strings that
are substrings of π(t). Denote by A′ the set of vertices in G corresponding to the
set of strings A. We prove that the vertices in A′ form a clique. Suppose that this
is not true and there exist two vertices vi, vj ∈ A′ such that (vi, vj) /∈ E. Note
that, in any common superstring of the strings si and sj either vi or vj must have

at least n+ 1 occurrences, since vi is not present in the neighbors list of vj and
vice versa. This is a contradiction since the multiset t has only n copies of each
character. Therefore the set of vertices A′ forms a clique.

On the other hand, let A′ = {v1, . . . , vk} ⊆ V be a clique and let A =
{s1, . . . , sk} ⊆ S be the set of corresponding strings. We can find a permutation
of t which contains all the strings in A as a substring by concatenating s1, . . . , sk
and appending the remaining characters arbitrarily at the end. No character is
used more than n times since the vertices from A′ form a clique and, therefore,
vi /∈ d(vj) for any vi, vj ∈ A′.

Thus, the RCSstr problem is NP-complete and hard to approximate within a
factor n1−ǫ, for any ǫ > 0, unless P = NP. ⊓⊔

We now show that the RCSstr[2] problem is APX-Hard even if t is a set, i.e.
each character in t is unique. To do so, we present an approximation-preserving re-
duction from the classical Asymmetric maximum TSP problem with edge weights
of 0 and 1.

Definition 2. (Maximum Asymmetric Travelling Salesman Problem)
Given a complete weighted directed graph G = (V,E) the Maximum Travelling
Salesman Problem is to find a closed tour of maximum weight visiting all vertices
exactly once.

Theorem 3. [6] For any constant ǫ > 0, it is NP-Hard to approximate the Max-
imum Asymmetric Travelling Salesman with 0, 1 edge weights within 320/321+ǫ.

The hardness result for the RCSstr[2] problem is stated in the following the-
orem.

Theorem 4. There exists a constant β > 0, such that the RCSstr problem is
NP-Hard to approximate within a factor of 1−β, even if all the strings in S have
length two and t is a set.

Proof. We present a gap-preserving reduction from the maximum asymmetric
TSP to the RCSstr[2] problem where t is a set.

Given a complete directed graph G = (V,E), with |V | = n, |E| = n(n− 1)/2
and edge weights of 0 and 1, we construct an instance (S, t) of the RCSstr[2]
problem in the following way.

Set t = V and for each arc (a, b) ∈ E with weight 1 set a string ab in S. Let
OPT (G) be the length of the optimal tour on the graph G and let OPT (S, t) be
the maximum number of strings from S which can be substrings of a permutation
of t. In order to have an inapproximability factor less than 1, we also assume that
n > 322.

We now prove that the reduction presented is a gap-preserving reduction.
Specifically, we prove that:

OPT (G) = n ⇒ OPT (S, t) = n− 1

OPT (G) < (1− α)n ⇒ OPT (S, t) < (1− β)(n − 1)

where α > 0 and β > 0 are constants which are defined later. The permutation
v1v2 . . . vn corresponding to a tour of length n contains n − 1 strings from S as
substrings: v1v2, v2v3, . . . , vn−1vn. Therefore, the first implication is true.

Suppose now that OPT (G) < (1 − α)n. Then, OPT (S, t) < (1 − α)n, since
a permutation of t defines a path in the graph, which is shorter than a tour. We
want to find a constant β such that (1 − α)n ≤ (1 − β)(n − 1). The following
inequality gives the desired.

β ≤ 1− 1− α

1− 1
n

Therefore, if the maximum ATSP problem does not admit a 1 − α approxi-
mation, then the RCSstr[2] problem (even in case that t is a set) does not admit
a 1 − β approximation (the reader may refer to [24] for a more detailed argu-
ment of this claim). From Theorem 3, we know that is hard to approximate
the Maximum Asymmetric Travelling Salesman with 0, 1 edge weights within
320/321 + ǫ, for any ǫ > 0. Therefore, our problem is inapproximable within 1 -
β ≥ n(320/321 + ǫ)/(n − 1), for any ǫ > 0.

⊓⊔

We now show that even over a binary alphabet the RCSstr problem remains
NP-Hard.

Theorem 5. If |Σ| = 2, then the RCSstr problem is NP-Hard.

Proof. Let Σ = {0, 1}. We prove that if we can solve the RCSstr problem on
the alphabet Σ in polynomial time, then we can solve in polynomial time the
shortest common superstring problem on the alphabet Σ.

Consider a shortest common superstring instance S, where the longest string
has length ℓ. It is easy to see that s1 ·s2 · · · · ·sn is a superstring of all the strings in
S. Hence, the solution is no longer than nℓ. We show that O(n2ℓ2) calls to RCSstr
are sufficient to find the shortest common superstring of the given strings.

We name an RCSstr instance (S, t) complete, if all the strings of S are sub-
strings of the optimal solution π(t).

Note that there exists a string x with i 0’s and j 1’s that is a common
superstring of all the strings in S if and only if the RCSstr instance (S, 0i1j) is
complete. Therefore, we want to find the shortest string t such that the RCSstr
instance (S, t) is complete. The shortest common superstring is given by the
permutation π(t) returned by calling the RCSstr on the instance (S, t). The

number of multisets 0i1j where i + j ≤ nℓ is O(n2ℓ2). Therefore we can call the
RCSstr on all of them and we can find the shortest common superstring on the
given strings in polynomial time (note that this time can be improved somewhat
by employing a binary search). The shortest common superstring problem is
NP-Hard and the theorem follows.

⊓⊔

2.2 Approximating RCSstr

In the this section we present approximation algorithms for two variants of the
RCSstr problem.

We first present a 3/4-approximation algorithm for the RCSstr[2] problem
where each character of t is unique. Our algorithm follows immediately from the
NP-Hardness reduction presented in the previous section. Since each character in
t is unique we can construct a complete directed graph G = (V,E), with V = Σ
as in the proof of Theorem 4. We then apply the 3/4 approximation algorithm
for the Maximum ATSP and we obtain a cycle tπ(1), tπ(2), . . . , tπ(n), tπ(1) of total
weight k, where π : {1, . . . , n} → {1, . . . , n} is a permutation.

If, for some i < n, tπ(i)tπ(i+1) /∈ S, we output tπ(i+1)tπ(i+2) . . . tπ(n−1) tπ(n)tπ(1)tπ(2) . . . tπ(i),
that contains k strings from S as substrings (and yields an approximation ratio of
3/4). Otherwise, we output tπ(1)tπ(2) . . . tπ(n−1)tπ(n) that contains exactly n− 1
strings from S as substrings, which is optimal.

Here we present a simple 1/(ℓ(ℓ(ℓ + 1)/2 − 1))-approximation algorithm for
RCSstr[ℓ].

The idea is output a concatenation of a maximal collection of strings from S.
One can observe that each of the ℓ characters of a string in our solution cannot
be used by more than ℓ(ℓ + 1)/2 − 1 strings in the optimal solution. Therefore,
the algorithm yields a 1/(ℓ(ℓ(ℓ + 1)/2 − 1))-approximation ratio. Formally, the
algorithm is presented below.

Algorithm 1: A 1/(ℓ(ℓ(ℓ+1)/2−1)) approximation algorithm for RCSstr[ℓ]

Find a maximal subset S′ = s′1, s
′
2, . . . , s

′
q ⊂ S of strings under the

following constraint: there exists a permutation π(t) of the multiset such
that s′1 · s′2 · · · · · s′q is a prefix of π(t).
Output: π(t)

Theorem 6. Algorithm 1 is a 1/(ℓ(ℓ(ℓ+1)/2− 1))-approximation algorithm for
RCSstr[ℓ].

Proof. Note that, a single character can be used simultaneously in at most ℓ(ℓ+
1)/2 − 1 strings of the optimal solution. Since for every si ∈ S, |si| ≤ ℓ, we can
conclude that a single string in our solution can cause at most ℓ(ℓ(ℓ+ 1)/2 − 1)

other strings of the optimal solution not to be chosen. Thus, the size of the optimal
solution is at most q(ℓ(ℓ(ℓ+ 1)/2 − 1)) and the approximation ratio follows. ⊓⊔

One tight example for the above analysis of Algorithm 1 is the following:
t = {a, b, c, q, q, q, z, z, z, w,w, w, x, x, x}, and S = {abc, qa, az, wqa, qaz, azx,
qb, bz, wqb, qbz, bzx, qc, cz, wqc, qcz, czx}. If we first select into the maximal
collection the string abc, then we cannot add any other string to our solution.
The optimal solution has size 15 and consists of all the other strings.

Observation 1. Given an RCSstr[ℓ] instance, if for every si ∈ S, si is not a
substring of any other sj ∈ S, then Algorithm 1 is an ℓ2-approximation algorithm.

Proof. Note that, a single character can be used simultaneously in at most ℓ
strings of the optimal solution, thus, a single string in our solution can stop at
most ℓ2 other strings of the optimal solution from being placed. ⊓⊔

One can notice that, in case that all input strings are of length ℓ the above
observation must holds.

3 RCSseq

We now turn to the RCSseq problem. We first present hardness results and
lower bound for several variants of the RCSseq problem and then we present two
approximation algorithms.

3.1 Hardness of the RCSseq problem

In the following theorem we show that the hardness result for the general RCSstr
holds also to the RCSseq.

Theorem 7. RCSseq is NP-complete and hard to approximate within a factor
n1−ǫ, for any ǫ > 0, unless P = NP.

Proof. Omitted (similar to the proof of Theorem 2).

Moreover, we state that even over a binary alphabet the RCSseq problem
remains NP-Hard.

Theorem 8. If |Σ| = 2, then the RCSseq problem is NP-Hard.

Proof. Omitted (similar to the proof of Theorem 3).

We now prove that RCSseq is APX-Hard even if all the input strings are
of length two and t is a set. To do so, we present an approximation-preserving
reduction from the classical maximum acyclic subgraph problem.

Definition 3. (Maximum Acyclic Subgraph) Given a directed graph G = (V,E)
the maximum acyclic subgraph problem is to find a subset A of the arcs such that
G′ = (V,A) is acyclic and A has maximum cardinality.

Theorem 9. [14] The Maximum Acyclic Subgraph problem is APX-Complete.

We can now present our hardness result.

Theorem 10. RCSseq is APX-Hard even if all the strings in S have length two
and t is a set.

Proof. We present an approximation-preserving reduction from the maximum
acyclic subgraph problem. Given a directed graph G = (V,E) we construct an
instance (S, t) of the RCSseq problem as follows. Set t = V and for every arc
(a, b) ∈ E we add a string ab to S.

Let π be a permutation of the set t and let A ⊆ S be all the strings that are
subsequences of π(t). The corresponding edge set A is an acyclic subgraph of G.
On the other hand, let A ⊆ E be an acyclic subgraph. Consider a topological
ordering of (V,A). All strings corresponding to edges A are subsequences of π(t)
that corresponds to the topological ordering.

Note that the optimal solution of the RCSseq instance (S, t) has size x if and
only if the optimal solution of maximum acyclic subgraph problem on the graph
G has size x. Thus, the RCSseq problem is APX-Hard. ⊓⊔

In [8] the following result is proven.

Theorem 11. The maximum acyclic subgraph problem is Unique-Games hard
to approximate within a factor better than the trivial 1/2 achieved by a random
ordering.

The maximum acyclic subgraph is a special case of permutation constraint
satisfaction problem (permCSP). A permCSP of arity k is specified by a subset S
of permutations on {1, 2, . . . , k}. An instance of such a permCSP consists of a set
of variables V and a collection of constraints each of which is an ordered k-tuple
of V . The objective is to find a global ordering σ of the variables that maximizes
the number of constraint tuples whose ordering (under σ) follows a permutation
in S. In [4] Charikar, Guruswami and Manokaran prove the following result.

Theorem 12. For every permCSP of arity 3, beating the random ordering is
Unique-Games hard.

Our problem corresponds a permCSP where S contains only the identical
permutation. Therefore we can conclude the following.

Theorem 13. RCSseq[2] is Unique-Games hard to approximate within a factor
better than 1/2.

Theorem 14. RCSseq[3] is Unique-Games hard to approximate within a factor
better than 1/6.

Currently there is an unpublished result by Charikar, H̊astad and Guruswami
stating that every k-ary permCSP is approximation resistant. This implies that
RCSseq[ℓ] cannot have an approximation algorithm better than 1/ℓ!.

3.2 Approximating RCSseq

In the this subsection we present a (1 + Ω(1/
√
∆))/2 approximation algorithm

for the RCSseq[2] problem where ∆ is the number of occurrences of the most
frequent character in S. We also present a simple randomized approximation
algorithm which achieves an approximation ratio of 1/ℓ!.

Theorem 15. [2] The maximum acyclic subgraph problem is approximable within
(1 +Ω(1/

√
∆))/2, where ∆ is the maximum degree of a node in the graph.

Given a multiset t, let P ′ be the set of characters that have a single occurrence
in t and let P be Σ\P ′, where Σ is the alphabet of t. We define Q to be the
following multiset. For every σ ∈ P , if σ has r occurrences in t, then σ has r− 2
occurrences Q.

Algorithm 2: A (1 +Ω(1/
√
∆))/2 approximation algorithm for RCSseq2

1. Given a multiset t, construct a graph G = (V,E) such that:
vi ∈ V iff vi ∈ P ′ and (a, b) ∈ E iff a, b ∈ P ′ and ab ∈ S.

2. Apply the (1 +Ω(1/
√
∆))/2 approximation algorithm for the maximum

acyclic subgraph to the graph G. Denote the output subgraph by G′(V,E′).
3. Let F ′ be a topological order of the vertices of G′.

Let F and F ′′ be an arbitrary ordering of P and Q respectively.
4. Output F · F ′ · F · F ′′.

Figure 1 is an example of Algorithm 2. In the first stage we construct a graph
according to the first two steps, note that P = {e}, P ′ = {a, b, c, d} and Q = ∅.
Then we present an acyclic directed subgraph and we output F ·F ′ ·F ·F ′′, where
F = e and F ′ = cadb.

Theorem 16. Algorithm 2 is a (1 + Ω(1/
√
∆))/2 approximation algorithm for

the RCSseq[2] problem, where ∆ is the maximum number of occurrences of a
character in the set S.

s 2

1s

s 3

ab=

= bc

ca=

t= abcdee

be=

= ee

= ea

8s

7s

9s

s 6= ec

db=5s

s 4 cd=

ba

dc c d

a b

t=ecadbe

Fig. 1. Algorithm 2 example.

Proof. Given a string ab ∈ S. If a ∈ P or b ∈ P (or both), then ab is always a
subsequence of F · F ′ · F . Otherwise, if both a and b appear only once in t, then
ab is a subsequence of F · F ′ · F if only if the edge (a, b) is selected in the arc set
of the maximum acyclic subgraph. Since the maximum acyclic subgraph problem
has an approximation ratio of (1 + Ω(1/

√
∆))/2, the same approximation ratio

holds for RCSseq2 problem. ⊓⊔

We now deal with RCSseq[ℓ] instances. We show that selecting an arbitrary
permutation π(t) achieves an expected approximation ratio of 1

ℓ! .
We define by P (si, π(t)) the probability that a string si ∈ S is a subsequence

of a permutation π(t).

Note that, P (si, π(t)) ≥ (|t|
ℓ
)(|t|−ℓ)!

|t|! = 1
ℓ! . Therefore, the expected number of

strings from S to be subsequences of an arbitrary permutation π(t) ≥ |S|
ℓ! . Thus,

selecting an arbitrary permutation π(t) achieves an expected approximation ratio

of at least |S|
|S|ℓ! =

1
ℓ! .

References

1. Paolo Barone, Paola Bonizzoni, Gianluca Della Vedova, and Giancarlo Mauri. An ap-
proximation algorithm for the shortest common supersequence problem: an experimental
analysis. In SAC, pages 56–60, 2001.

2. Bonnie Berger and Peter W. Shor. Approximation algorithms for the maximum acyclic
subgraph problem. In SODA, pages 236–243, 1990.

3. Avrim Blum, Tao Jiang, Ming Li, John Tromp, and Mihalis Yannakakis. Linear approxi-
mation of shortest superstrings. J. ACM, 41(4):630–647, 1994.

4. Moses Charikar, Venkatesan Guruswami, and Rajsekar Manokaran. Every permutation csp
of arity 3 is approximation resistant. In IEEE Conference on Computational Complexity,
pages 62–73, 2009.

5. Carlos Cotta. Memetic algorithms with partial lamarckism for the shortest common super-
sequence problem. In IWINAC (2), pages 84–91, 2005.

6. Lars Engebretsen and Marek Karpinski. Approximation hardness of tsp with bounded
metrics. In ICALP, pages 201–212, 2001.

7. M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the theory of
NP-completeness. W. H. Freeman, 1979.

8. Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beating the ran-
dom ordering is hard: Inapproximability of maximum acyclic subgraph. In FOCS, pages
573–582, 2008.

9. Tao Jiang and Ming Li. On the approximation of shortest common supersequences and
longest common subsequences. SIAM J. Comput., 24(5):1122–1139, 1995.

10. Haim Kaplan, Moshe Lewenstein, Nira Shafrir, and Maxim Sviridenko. Approximation
algorithms for asymmetric tsp by decomposing directed regular multigraphs. J. ACM,
52(4):602–626, 2005.

11. David Maier. The complexity of some problems on subsequences and supersequences. J.
ACM, 25(2):322–336, 1978.

12. Martin Middendorf. The shortest common nonsubsequence problem is np-complete. Theor.
Comput. Sci., 108(2):365–369, 1993.

13. Sascha Ott. Lower bounds for approximating shortest superstrings over an alphabet of size
2. In WG, pages 55–64, 1999.

14. Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and
complexity classes. J. Comput. Syst. Sci., 43(3):425–440, 1991.

15. P. A. Pevzner. Multiple alignment, communication cost, and graph matching. SIAM Journal
of Applied Mathematics, 52(6):1763–1779, December 1992.

16. Kari-Jouko Räihä and Esko Ukkonen. The shortest common supersequence problem over
binary alphabet is np-complete. Theor. Comput. Sci., 16:187–198, 1981.

17. Anatoly R. Rubinov and Vadim G. Timkovsky. String noninclusion optimization problems.
SIAM J. Discrete Math., 11(3):456–467, 1998.

18. Earl D. Sacerdoti. A structure for plans and behavior. American Elsevier, 1977.
19. David Sankoff and Joseph Kruskal. Time Warps, String Edits, and Macromolecules: The

Theory and Practice of Sequence Comparison. CSLI Publications, 1983.
20. Timos K. Sellis. Multiple-query optimization. ACM Trans. Database Syst., 13(1):23–52,

1988.
21. James A. Storer. Data Compression: Methods and Theory. Computer Science Press, 1988.
22. Z. Sweedyk. A 2 1

2
-approximation algorithm for shortest superstring. SIAM J. Comput.,

29(3):954–986, 1999.
23. Austin Tate. Generating project networks. In IJCAI, pages 888–893, 1977.
24. Vijay V. Vazirani. Approximation Algorithms. Springer, 2004.
25. R. Wilensky. Planning and understanding. Addison Wesley, 1983.
26. David E. Wilkins. Practical planning: Extending the classical ai planning paradigm. Morgan

Kaufmann, CA, 1988.
27. David Zuckerman. Linear degree extractors and the inapproximability of max clique and

chromatic number. Theory of Computing, 3(1):103–128, 2007.

A1

A2

B1

B2

B3

b c

b

a c

c a

c a c c a bb

b

b

aa

bc a

c

b a

a a b a A1

A2

B1

B2

bac

c a a

ab

aab

b b cc a b

c bbc

c

a c ab

ba

dc

s 5

s 2

1s

s 3

s 4

ab=

= bc

ca=

cd=

= db

t= abcd

